Brain Structure and Function

, Volume 220, Issue 2, pp 999–1012 | Cite as

Age-related decrease of functional connectivity additional to gray matter atrophy in a network for movement initiation

  • F. Hoffstaedter
  • C. Grefkes
  • C. Roski
  • S. Caspers
  • K. Zilles
  • S. B. Eickhoff
Original Article


Healthy aging is accompanied by a decrease in cognitive and motor capacities. In a network associated with movement initiation, we investigated age-related changes of functional connectivity (FC) as well as regional atrophy in a sample of 232 healthy subjects (age range 18–85 years). To this end, voxel-based morphometry and whole-brain resting-state FC were analyzed for the supplementary motor area (SMA), anterior midcingulate cortex (aMCC) and bilateral striatum (Str). To assess the specificity of age-related effects, bilateral primary sensorimotor cortex (S1/M1) closely associated with motor execution was used as control seeds. All regions showed strong reduction of gray matter volume with age. Corrected for this regional atrophy, the FC analysis revealed an age × seed interaction for each of the bilateral Str nodes against S1/M1 with consistent age-related decrease in FC with bilateral caudate nucleus and anterior putamen. Specific age-dependent FC decline of SMA was found in bilateral central insula and the adjacent frontal operculum. aMCC showed exclusive age-related decoupling from the anterior cingulate motor area. The present study demonstrates network as well as node-specific age-dependent FC decline of the SMA and aMCC to highly integrative cortical areas involved in cognitive motor control. FC decrease in addition to gray matter atrophy within the Str may provide a substrate for the declining motor control in elderly. Finally, age-related FC changes in both the network for movement initiation as well as the network for motor execution are not explained by regional atrophy in the healthy aging brain.


Gray matter atrophy Voxel-based morphometry Functional connectivity Resting-state fMRI Aging Movement initiation 



This study was supported by the Human Brain Project (R01-MH074457-01A1; SBE), the Initiative and Networking Fund of the Helmholtz Association within the Helmholtz Alliance on Systems Biology (Human Brain Model; KZ, SBE), and the Helmholtz Alliance for Mental Health in an Aging Society (HelMA; KZ). CG was supported by a Grant from the German Research Foundation (Deutsche Forschungsgemeinschaft GR 3285/2-1).

Supplementary material

429_2013_696_MOESM1_ESM.docx (558 kb)
Supplementary material 1 (DOCX 558 kb)
429_2013_696_MOESM2_ESM.docx (1.9 mb)
Supplementary material 2 (DOCX 1912 kb)


  1. Amunts K, Schleicher A, Burgel U, Mohlberg H, Uylings HB, Zilles K (1999) Broca’s region revisited: cytoarchitecture and intersubject variability. J Comp Neurol 412(2):319–341CrossRefPubMedGoogle Scholar
  2. Amunts K, Lenzen M, Friederici AD, Schleicher A, Morosan P, Palomero-Gallagher N, Zilles K (2010) Broca’s region: novel organizational principles and multiple receptor mapping. PLoS Biol 8(9). doi: 10.1371/journal.pbio.1000489
  3. Andrews-Hanna JR, Snyder AZ, Vincent JL, Lustig C, Head D, Raichle ME, Buckner RL (2007) Disruption of large-scale brain systems in advanced aging. Neuron 56(5):924–935. doi: 10.1016/j.neuron.2007.10.038 CrossRefPubMedCentralPubMedGoogle Scholar
  4. Ashburner J, Friston KJ (2005) Unified segmentation. Neuroimage 26(3):839–851. doi: 10.1016/j.neuroimage.2005.02.018 CrossRefPubMedGoogle Scholar
  5. Ball T, Schreiber A, Feige B, Wagner M, Lucking CH, Kristeva-Feige R (1999) The role of higher-order motor areas in voluntary movement as revealed by high-resolution EEG and fMRI. Neuroimage 10(6):682–694CrossRefPubMedGoogle Scholar
  6. Behzadi Y, Restom K, Liau J, Liu TT (2007) A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. Neuroimage 37(1):90–101. doi: 10.1016/j.neuroimage.2007.04.042 CrossRefPubMedCentralPubMedGoogle Scholar
  7. Bergfield KL, Hanson KD, Chen K, Teipel SJ, Hampel H, Rapoport SI, Moeller JR, Alexander GE (2010) Age-related networks of regional covariance in MRI gray matter: reproducible multivariate patterns in healthy aging. Neuroimage 49(2):1750–1759. doi: 10.1016/j.neuroimage.2009.09.051 CrossRefPubMedCentralPubMedGoogle Scholar
  8. Binkofski F, Amunts K, Stephan KM, Posse S, Schormann T, Freund HJ, Zilles K, Seitz RJ (2000) Broca’s region subserves imagery of motion: a combined cytoarchitectonic and fMRI study. Hum Brain Mapp 11(4):273–285CrossRefPubMedGoogle Scholar
  9. Birren JE, Fisher LM (1995) Aging and speed of behavior: possible consequences for psychological functioning. Annu Rev Psychol 46:329–353. doi: 10.1146/ CrossRefPubMedGoogle Scholar
  10. Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34(4):537–541CrossRefPubMedGoogle Scholar
  11. Cauda F, D’Agata F, Sacco K, Duca S, Geminiani G, Vercelli A (2011) Functional connectivity of the insula in the resting brain. Neuroimage 55(1):8–23. doi: 10.1016/j.neuroimage.2010.11.049 CrossRefPubMedGoogle Scholar
  12. Chai XJ, Castanon AN, Ongur D, Whitfield-Gabrieli S (2012) Anticorrelations in resting state networks without global signal regression. Neuroimage 59(2):1420–1428. doi: 10.1016/j.neuroimage.2011.08.048 CrossRefPubMedCentralPubMedGoogle Scholar
  13. Clark BC, Taylor JL (2011) Age-related changes in motor cortical properties and voluntary activation of skeletal muscle. Curr Aging Sci 4(3):192–199CrossRefPubMedCentralPubMedGoogle Scholar
  14. Cordes D, Haughton VM, Arfanakis K, Carew JD, Turski PA, Moritz CH, Quigley MA, Meyerand ME (2001) Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data. Am J Neuroradiol 22(7):1326–1333PubMedGoogle Scholar
  15. Cunnington R, Windischberger C, Deecke L, Moser E (2003) The preparation and readiness for voluntary movement: a high-field event-related fMRI study of the Bereitschafts-BOLD response. Neuroimage 20(1):404–412. doi: 10.1016/S1053-8119(03)00291-X CrossRefPubMedGoogle Scholar
  16. Damoiseaux JS, Beckmann CF, Arigita EJ, Barkhof F, Scheltens P, Stam CJ, Smith SM, Rombouts SA (2008) Reduced resting-state brain activity in the “default network” in normal aging. Cereb Cortex 18(8):1856–1864. doi: 10.1093/cercor/bhm207 CrossRefPubMedGoogle Scholar
  17. Darbin O (2012) The aging striatal dopamine function. Parkinsonism Relat Disord 18(5):426–432. doi: 10.1016/j.parkreldis.2011.11.025 CrossRefPubMedGoogle Scholar
  18. Deiber MP, Honda M, Ibanez V, Sadato N, Hallett M (1999) Mesial motor areas in self-initiated versus externally triggered movements examined with fMRI: effect of movement type and rate. J Neurophysiol 81(6):3065–3077PubMedGoogle Scholar
  19. DeLong MR, Wichmann T (2007) Circuits and circuit disorders of the basal ganglia. Arch Neurol 64(1):20–24. doi: 10.1001/archneur.64.1.20 CrossRefPubMedGoogle Scholar
  20. Eickhoff SB, Paus T, Caspers S, Grosbras MH, Evans AC, Zilles K, Amunts K (2007) Assignment of functional activations to probabilistic cytoarchitectonic areas revisited. Neuroimage 36(3):511–521. doi: 10.1016/j.neuroimage.2007.03.060 CrossRefPubMedGoogle Scholar
  21. Erdler M, Beisteiner R, Mayer D, Kaindl T, Edward V, Windischberger C, Lindinger G, Deecke L (2000) Supplementary motor area activation preceding voluntary movement is detectable with a whole-scalp magnetoencephalography system. Neuroimage 11(6 Pt 1):697–707. doi: 10.1006/nimg.2000.0579 CrossRefPubMedGoogle Scholar
  22. Ferreira LK, Busatto GF (2013) Resting-state functional connectivity in normal brain aging. Neurosci Biobehav Rev. doi: 10.1016/j.neubiorev.2013.01.017 Google Scholar
  23. Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8(9):700–711. doi: 10.1038/Nrn2201 CrossRefPubMedGoogle Scholar
  24. Fox MD, Snyder AZ, Vincent JL, Raichle ME (2007) Intrinsic fluctuations within cortical systems account for intertrial variability in human behavior. Neuron 56(1):171–184. doi: 10.1016/j.neuron.2007.08.023 CrossRefPubMedGoogle Scholar
  25. Francois-Brosseau FE, Martinu K, Strafella AP, Petrides M, Simard F, Monchi O (2009) Basal ganglia and frontal involvement in self-generated and externally-triggered finger movements in the dominant and non-dominant hand. Eur J Neurosci 29(6):1277–1286. doi: 10.1111/j.1460-9568.2009.06671.x CrossRefPubMedGoogle Scholar
  26. Geyer S, Ledberg A, Schleicher A, Kinomura S, Schormann T, Burgel U, Klingberg T, Larsson J, Zilles K, Roland PE (1996) Two different areas within the primary motor cortex of man. Nature 382(6594):805–807. doi: 10.1038/382805a0 CrossRefPubMedGoogle Scholar
  27. Geyer S, Schormann T, Mohlberg H, Zilles K (2000) Areas 3a, 3b, and 1 of human primary somatosensory cortex. Part 2. Spatial normalization to standard anatomical space. Neuroimage 11 (6 Pt 1):684–696. doi: 10.1006/nimg.2000.0548
  28. Giorgio A, Santelli L, Tomassini V, Bosnell R, Smith S, De Stefano N, Johansen-Berg H (2010) Age-related changes in grey and white matter structure throughout adulthood. Neuroimage 51(3):943–951. doi: 10.1016/j.neuroimage.2010.03.004 CrossRefPubMedCentralPubMedGoogle Scholar
  29. Goldberg G (1985) Supplementary motor area structure and function—review and hypotheses. Behav Brain Sci 8(4):567–588CrossRefGoogle Scholar
  30. Good CD, Johnsrude IS, Ashburner J, Henson RN, Friston KJ, Frackowiak RS (2001) A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage 14(1 Pt 1):21–36. doi: 10.1006/nimg.2001.0786 CrossRefPubMedGoogle Scholar
  31. Grefkes C, Geyer S, Schormann T, Roland P, Zilles K (2001) Human somatosensory area 2: observer-independent cytoarchitectonic mapping, interindividual variability, and population map. Neuroimage 14(3):617–631. doi: 10.1006/nimg.2001.0858 CrossRefPubMedGoogle Scholar
  32. Guo Z, Rudow G, Pletnikova O, Codispoti KE, Orr BA, Crain BJ, Duan W, Margolis RL, Rosenblatt A, Ross CA, Troncoso JC (2012) Striatal neuronal loss correlates with clinical motor impairment in Huntington’s disease. Mov Disord Off J Mov Disord Soc 27(11):1379–1386. doi: 10.1002/mds.25159 CrossRefGoogle Scholar
  33. Haggard P (2008) Human volition: towards a neuroscience of will. Nat Rev Neurosci 9(12):934–946. doi: 10.1038/nrn2497 CrossRefPubMedGoogle Scholar
  34. Haynes JD, Sakai K, Rees G, Gilbert S, Frith C, Passingham RE (2007) Reading hidden intentions in the human brain. Curr Biol CB 17(4):323–328. doi: 10.1016/j.cub.2006.11.072 CrossRefGoogle Scholar
  35. Heuninckx S, Wenderoth N, Debaere F, Peeters R, Swinnen SP (2005) Neural basis of aging: the penetration of cognition into action control. J Neurosci 25(29):6787–6796. doi: 10.1523/JNEUROSCI.1263-05.2005 CrossRefPubMedGoogle Scholar
  36. Heuninckx S, Wenderoth N, Swinnen SP (2010) Age-related reduction in the differential pathways involved in internal and external movement generation. Neurobiol Aging 31(2):301–314. doi: 10.1016/j.neurobiolaging.2008.03.021 CrossRefPubMedGoogle Scholar
  37. Hoffstaedter F, Grefkes C, Caspers S, Roski C, Palomero-Gallagher N, Laird AR, Fox PT, Eickhoff SB (2013a) The role of anterior midcingulate cortex in cognitive motor control: evidence from functional connectivity analyses. Hum Brain Mapp. doi: 10.1002/hbm.22363 PubMedGoogle Scholar
  38. Hoffstaedter F, Grefkes C, Zilles K, Eickhoff SB (2013b) The “what” and “when” of self-initiated movements. Cereb Cortex 23(3):520–530. doi: 10.1093/cercor/bhr391 CrossRefPubMedCentralPubMedGoogle Scholar
  39. Holmes CJ, Hoge R, Collins L, Woods R, Toga AW, Evans AC (1998) Enhancement of MR images using registration for signal averaging. J Comput Assist Tomogr 22(2):324–333CrossRefPubMedGoogle Scholar
  40. Jakobs O, Langner R, Caspers S, Roski C, Cieslik EC, Zilles K, Laird AR, Fox PT, Eickhoff SB (2012) Across-study and within-subject functional connectivity of a right temporo-parietal junction subregion involved in stimulus-context integration. Neuroimage 60(4):2389–2398. doi: 10.1016/j.neuroimage.2012.02.037 CrossRefPubMedCentralPubMedGoogle Scholar
  41. Jenkins IH, Jahanshahi M, Jueptner M, Passingham RE, Brooks DJ (2000) Self-initiated versus externally triggered movements II. The effect of movement predictability on regional cerebral blood flow. Brain 123:1216–1228CrossRefPubMedGoogle Scholar
  42. Jernigan TL, Archibald SL, Fennema-Notestine C, Gamst AC, Stout JC, Bonner J, Hesselink JR (2001) Effects of age on tissues and regions of the cerebrum and cerebellum. Neurobiol Aging 22(4):581–594CrossRefPubMedGoogle Scholar
  43. Kalpouzos G, Persson J, Nyberg L (2012) Local brain atrophy accounts for functional activity differences in normal aging. Neurobiol Aging 33 (3):623 e621–623 e613. doi: 10.1016/j.neurobiolaging.2011.02.021
  44. Kelly C, Toro R, Di Martino A, Cox CL, Bellec P, Castellanos FX, Milham MP (2012) A convergent functional architecture of the insula emerges across imaging modalities. Neuroimage 61(4):1129–1142. doi: 10.1016/j.neuroimage.2012.03.021 CrossRefPubMedCentralPubMedGoogle Scholar
  45. Kornhuber HH, Deecke L (1965) Hirnpotentialveränderungen bei Willkürbewegungen und passiven Bewegungen des Menschen: Bereitschaftspotential und reafferente Potentiale. Pfulgers Archiv 284:1–17CrossRefGoogle Scholar
  46. Kreitzer AC, Malenka RC (2008) Striatal plasticity and basal ganglia circuit function. Neuron 60(4):543–554. doi: 10.1016/j.neuron.2008.11.005 CrossRefPubMedCentralPubMedGoogle Scholar
  47. Kurth F, Zilles K, Fox PT, Laird AR, Eickhoff SB (2010) A link between the systems: functional differentiation and integration within the human insula revealed by meta-analysis. Brain Struct Funct 214(5–6):519–534. doi: 10.1007/s00429-010-0255-z CrossRefPubMedGoogle Scholar
  48. Morosan P, Schleicher A, Amunts K, Zilles K (2005) Multimodal architectonic mapping of human superior temporal gyrus. Anat Embryol 210(5–6):401–406. doi: 10.1007/s00429-005-0029-1 CrossRefPubMedGoogle Scholar
  49. Nachev P, Kennard C, Husain M (2008) Functional role of the supplementary and pre-supplementary motor areas. Nat Rev Neurosci 9(11):856–869. doi: 10.1038/Nrn2478 CrossRefPubMedGoogle Scholar
  50. Nichols T, Brett M, Andersson J, Wager T, Poline JB (2005) Valid conjunction inference with the minimum statistic. Neuroimage 25(3):653–660. doi: 10.1016/j.neuroimage.2004.12.005 CrossRefPubMedGoogle Scholar
  51. Oldfield RC (1971) Assessment and analysis of handedness—Edinburgh inventory. Neuropsychologia 9(1):97–113CrossRefPubMedGoogle Scholar
  52. Onoda K, Ishihara M, Yamaguchi S (2012) Decreased functional connectivity by aging is associated with cognitive decline. J Cognit Neurosci 24(11):2186–2198. doi: 10.1162/jocn_a_00269 CrossRefGoogle Scholar
  53. Palomero-Gallagher N, Mohlberg H, Zilles K, Vogt B (2008) Cytology and receptor architecture of human anterior cingulate cortex. J Comp Neurol 508(6):906–926. doi: 10.1002/Cne.21684 CrossRefPubMedCentralPubMedGoogle Scholar
  54. Palomero-Gallagher N, Vogt BA, Schleicher A, Mayberg HS, Zilles K (2009) Receptor architecture of human cingulate cortex: evaluation of the four-region neurobiological model. Hum Brain Mapp 30(8):2336–2355. doi: 10.1002/Hbm.20667 CrossRefPubMedGoogle Scholar
  55. Paus T (2001) Primate anterior cingulate cortex: where motor control, drive and cognition interface. Nat Rev Neurosci 2(6):417–424. doi: 10.1038/35077500 CrossRefPubMedGoogle Scholar
  56. Raz N, Rodrigue KM, Kennedy KM, Head D, Gunning-Dixon F, Acker JD (2003) Differential aging of the human striatum: longitudinal evidence. AJNR Am J Neuroradiol 24(9):1849–1856PubMedGoogle Scholar
  57. Raz N, Lindenberger U, Rodrigue KM, Kennedy KM, Head D, Williamson A, Dahle C, Gerstorf D, Acker JD (2005) Regional brain changes in aging healthy adults: general trends, individual differences and modifiers. Cereb Cortex 15(11):1676–1689. doi: 10.1093/cercor/bhi044 CrossRefPubMedGoogle Scholar
  58. Reetz K, Dogan I, Rolfs A, Binkofski F, Schulz JB, Laird AR, Fox PT, Eickhoff SB (2012) Investigating function and connectivity of morphometric findings—exemplified on cerebellar atrophy in spinocerebellar ataxia 17 (SCA17). Neuroimage 62(3):1354–1366. doi: 10.1016/j.neuroimage.2012.05.058 CrossRefPubMedGoogle Scholar
  59. Rehme AK, Grefkes C (2013) Cerebral network disorders after stroke: evidence from imaging-based connectivity analyses of active and resting brain states in humans. J Physiol 591(Pt 1):17–31. doi: 10.1113/jphysiol.2012.243469 CrossRefPubMedCentralPubMedGoogle Scholar
  60. Rosano C, Bennett DA, Newman AB, Venkatraman V, Yaffe K, Harris T, Kritchevsky S, Aizenstein HJ (2012) Patterns of focal gray matter atrophy are associated with bradykinesia and gait disturbances in older adults. J Gerontol Ser A Biol Sci Med Sci 67(9):957–962. doi: 10.1093/gerona/glr262 CrossRefGoogle Scholar
  61. Roski C, Caspers S, Lux S, Hoffstaedter F, Bergs R, Amunts K, Eickhoff SB (2013) Activation shift in elderly subjects across functional systems: an fMRI study. Brain Struct Funct. doi: 10.1007/s00429-013-0530-x PubMedCentralGoogle Scholar
  62. Sakai H, Takahara M, Honjo NF, Doi S, Sadato N, Uchiyama Y (2012) Regional frontal gray matter volume associated with executive function capacity as a risk factor for vehicle crashes in normal aging adults. PLoS One 7(9):e45920. doi: 10.1371/journal.pone.0045920 CrossRefPubMedCentralPubMedGoogle Scholar
  63. Satterthwaite TD, Elliott MA, Gerraty RT, Ruparel K, Loughead J, Calkins ME, Eickhoff SB, Hakonarson H, Gur RC, Gur RE, Wolf DH (2013) An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data. Neuroimage 64:240–256. doi: 10.1016/j.neuroimage.2012.08.052 CrossRefPubMedGoogle Scholar
  64. Segall JM, Allen EA, Jung RE, Erhardt EB, Arja SK, Kiehl K, Calhoun VD (2012) Correspondence between structure and function in the human brain at rest. Front Neuroinform 6:10. doi: 10.3389/fninf.2012.00010 CrossRefPubMedCentralPubMedGoogle Scholar
  65. Seidler RD, Bernard JA, Burutolu TB, Fling BW, Gordon MT, Gwin JT, Kwak Y, Lipps DB (2010) Motor control and aging: links to age-related brain structural, functional, and biochemical effects. Neurosci Biobehav Rev 34(5):721–733. doi: 10.1016/j.neubiorev.2009.10.005 CrossRefPubMedCentralPubMedGoogle Scholar
  66. Shehzad Z, Kelly AM, Reiss PT, Gee DG, Gotimer K, Uddin LQ, Lee SH, Margulies DS, Roy AK, Biswal BB, Petkova E, Castellanos FX, Milham MP (2009) The resting brain: unconstrained yet reliable. Cereb Cortex 19(10):2209–2229. doi: 10.1093/cercor/bhn256 CrossRefPubMedCentralPubMedGoogle Scholar
  67. Smith CD, Chebrolu H, Wekstein DR, Schmitt FA, Markesbery WR (2007) Age and gender effects on human brain anatomy: a voxel-based morphometric study in healthy elderly. Neurobiol Aging 28(7):1075–1087. doi: 10.1016/j.neurobiolaging.2006.05.018 CrossRefPubMedGoogle Scholar
  68. Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE, Filippini N, Watkins KE, Toro R, Laird AR, Beckmann CF (2009) Correspondence of the brain’s functional architecture during activation and rest. Proc Natl Acad Sci USA 106(31):13040–13045. doi: 10.1073/pnas.0905267106 CrossRefPubMedCentralPubMedGoogle Scholar
  69. Smith SM, Miller KL, Salimi-Khorshidi G, Webster M, Beckmann CF, Nichols TE, Ramsey JD, Woolrich MW (2011) Network modelling methods for FMRI. Neuroimage 54(2):875–891. doi: 10.1016/j.neuroimage.2010.08.063 CrossRefPubMedGoogle Scholar
  70. Sowell ER, Peterson BS, Thompson PM, Welcome SE, Henkenius AL, Toga AW (2003) Mapping cortical change across the human life span. Nat Neurosci 6(3):309–315. doi: 10.1038/nn1008 CrossRefPubMedGoogle Scholar
  71. Spreng RN, Wojtowicz M, Grady CL (2010) Reliable differences in brain activity between young and old adults: a quantitative meta-analysis across multiple cognitive domains. Neurosci Biobehav Rev 34(8):1178–1194. doi: 10.1016/j.neubiorev.2010.01.009 CrossRefPubMedGoogle Scholar
  72. Swick D, Ashley V, Turken U (2011) Are the neural correlates of stopping and not going identical? Quantitative meta-analysis of two response inhibition tasks. Neuroimage 56(3):1655–1665. doi: 10.1016/j.neuroimage.2011.02.070 CrossRefPubMedGoogle Scholar
  73. Swinnen SP (2002) Intermanual coordination: from behavioural principles to neural-network interactions. Nat Rev Neurosci 3(5):348–359. doi: 10.1038/nrn807 CrossRefPubMedGoogle Scholar
  74. Thoenissen D, Zilles K, Toni I (2002) Differential involvement of parietal and precentral regions in movement preparation and motor intention. J Neurosci 22(20):9024–9034PubMedGoogle Scholar
  75. Tisserand DJ, van Boxtel MP, Pruessner JC, Hofman P, Evans AC, Jolles J (2004) A voxel-based morphometric study to determine individual differences in gray matter density associated with age and cognitive change over time. Cereb Cortex 14(9):966–973. doi: 10.1093/cercor/bhh057 CrossRefPubMedGoogle Scholar
  76. Tomasi D, Volkow ND (2012) Aging and functional brain networks. Mol Psychiatry 17(5):471 549–458. doi: 10.1038/mp.2011.81 Google Scholar
  77. Toni I, Thoenissen D, Zilles K (2001) Movement preparation and motor intention. Neuroimage 14(1 Pt 2):S110–S117. doi: 10.1006/nimg.2001.0841 CrossRefPubMedGoogle Scholar
  78. Turner GR, Spreng RN (2012) Executive functions and neurocognitive aging: dissociable patterns of brain activity. Neurobiol Aging 33(4):826 e821–813. doi: 10.1016/j.neurobiolaging.2011.06.005 Google Scholar
  79. van Eimeren T, Wolbers T, Munchau A, Buchel C, Weiller C, Siebner HR (2006) Implementation of visuospatial cues in response selection. Neuroimage 29(1):286–294. doi: 10.1016/j.neuroimage.2005.07.014 CrossRefPubMedGoogle Scholar
  80. Walhovd KB, Westlye LT, Amlien I, Espeseth T, Reinvang I, Raz N, Agartz I, Salat DH, Greve DN, Fischl B, Dale AM, Fjell AM (2011) Consistent neuroanatomical age-related volume differences across multiple samples. Neurobiol Aging 32(5):916–932. doi: 10.1016/j.neurobiolaging.2009.05.013 CrossRefPubMedCentralPubMedGoogle Scholar
  81. Ward NS (2006) Compensatory mechanisms in the aging motor system. Ageing Res Rev 5(3):239–254. doi: 10.1016/j.arr.2006.04.003 CrossRefPubMedGoogle Scholar
  82. Wiener M, Turkeltaub P, Coslett HB (2010) The image of time: a voxel-wise meta-analysis. Neuroimage 49(2):1728–1740. doi: 10.1016/j.neuroimage.2009.09.064 CrossRefPubMedGoogle Scholar
  83. Wu T, Zang Y, Wang L, Long X, Li K, Chan P (2007) Normal aging decreases regional homogeneity of the motor areas in the resting state. Neurosci Lett 423(3):189–193. doi: 10.1016/j.neulet.2007.06.057 CrossRefPubMedGoogle Scholar
  84. Zang Y, Jiang T, Lu Y, He Y, Tian L (2004) Regional homogeneity approach to fMRI data analysis. Neuroimage 22(1):394–400. doi: 10.1016/j.neuroimage.2003.12.030 CrossRefPubMedGoogle Scholar
  85. Zilles K, Amunts K (2010) Centenary of Brodmann’s map–conception and fate. Nat Rev Neurosci 11(2):139–145. doi: 10.1038/nrn2776 CrossRefPubMedGoogle Scholar
  86. Zilles K, Schlaug G, Geyer S, Luppino G, Matelli M, Qu M, Schleicher A, Schormann T (1996) Anatomy and transmitter receptors of the supplementary motor areas in the human and nonhuman primate brain. Adv Neurol 70:29–43PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • F. Hoffstaedter
    • 1
    • 2
  • C. Grefkes
    • 3
    • 4
  • C. Roski
    • 1
  • S. Caspers
    • 1
  • K. Zilles
    • 1
  • S. B. Eickhoff
    • 1
    • 2
  1. 1.Institute of Neuroscience and Medicine (INM-1)Research Centre JülichJülichGermany
  2. 2.Institute of Clinical Neuroscience and Medical PsychologyHeinrich Heine UniversityDüsseldorfGermany
  3. 3.Max-Planck-Institute for Neurological Research, Neuromodulation and NeurorehabilitationCologneGermany
  4. 4.Department of NeurologyCologne UniversityCologneGermany

Personalised recommendations