Advertisement

Brain Structure and Function

, Volume 220, Issue 2, pp 979–997 | Cite as

The neurobiology of speech perception decline in aging

  • Mylène Bilodeau-Mercure
  • Catherine L. Lortie
  • Marc Sato
  • Matthieu J. Guitton
  • Pascale TremblayEmail author
Original Article

Abstract

Speech perception difficulties are common among elderlies; yet the underlying neural mechanisms are still poorly understood. New empirical evidence suggesting that brain senescence may be an important contributor to these difficulties has challenged the traditional view that peripheral hearing loss was the main factor in the etiology of these difficulties. Here, we investigated the relationship between structural and functional brain senescence and speech perception skills in aging. Following audiometric evaluations, participants underwent MRI while performing a speech perception task at different intelligibility levels. As expected, with age speech perception declined, even after controlling for hearing sensitivity using an audiological measure (pure tone averages), and a bioacoustical measure (DPOAEs recordings). Our results reveal that the core speech network, centered on the supratemporal cortex and ventral motor areas bilaterally, decreased in spatial extent in older adults. Importantly, our results also show that speech skills in aging are affected by changes in cortical thickness and in brain functioning. Age-independent intelligibility effects were found in several motor and premotor areas, including the left ventral premotor cortex and the right supplementary motor area (SMA). Age-dependent intelligibility effects were also found, mainly in sensorimotor cortical areas, and in the left dorsal anterior insula. In this region, changes in BOLD signal modulated the relationship between age and speech perception skills suggesting a role for this region in maintaining speech perception in older ages. These results provide important new insights into the neurobiology of speech perception in aging.

Keywords

Speech intelligibility Language Functional magnetic resonance imaging Brain senescence Insula Premotor cortex 

Notes

Acknowledgments

This study was supported by the “Institut Universitaire en Santé Mentale de Québec”, Quebec City, and by the “Fonds de la Recherche du Québec Société-Culture” (FRQ-SC). Technical support was provided by the “Consortium d’imagerie en neuroscience et santé mentale de Québec” (CINQ) for protocol development and MRI data acquisition.

Supplementary material

429_2013_695_MOESM1_ESM.eps (1.5 mb)
Supplementary material 1 (EPS 1552 kb)
429_2013_695_MOESM2_ESM.docx (50 kb)
Supplementary material 2 (DOCX 50 kb)
429_2013_695_MOESM3_ESM.docx (124 kb)
Supplementary material 3 (DOCX 123 kb)

References

  1. Ackermann H, Riecker A (2004) The contribution of the insula to motor aspects of speech production: a review and a hypothesis. Brain Lang 89(2):320–328. doi: 10.1016/S0093-934X(03)00347-X PubMedGoogle Scholar
  2. Anderson B, Harvey T (1996) Alterations in cortical thickness and neuronal density in the frontal cortex of Albert Einstein. Neurosci Lett 210(3):161–164PubMedGoogle Scholar
  3. Argall BD, Saad ZS, Beauchamp MS (2006) Simplified intersubject averaging on the cortical surface using SUMA. Hum Brain Mapp 27(1):14–27PubMedGoogle Scholar
  4. Baron RM, Kenny DA (1986) The moderator-mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations. J Pers Soc Psychol 51(6):1173–1182PubMedGoogle Scholar
  5. Berkowitz AL, Ansari D (2010) Expertise-related deactivation of the right temporoparietal junction during musical improvisation. Neuroimage 49(1):712–719. doi: 10.1016/j.neuroimage.2009.08.042 PubMedGoogle Scholar
  6. Binder JR, Liebenthal E, Possing ET, Medler DA, Ward BD (2004) Neural correlates of sensory and decision processes in auditory object identification. Nat Neurosci 7(3):295–301. doi: 10.1038/nn1198 PubMedGoogle Scholar
  7. Boersma P, Weenink D (2011) Praat: doing phonetics by computer [computer program] (version 5.2.10). University of Amsterdam, Amsterdam. http://www.praat.org/
  8. Bohland JW, Guenther FH (2006) An fMRI investigation of syllable sequence production. Neuroimage 32(2):821–841. doi: 10.1016/j.neuroimage.2006.04.173 PubMedGoogle Scholar
  9. Braga RM, Wilson LR, Sharp DJ, Wise RJ, Leech R (2013) Separable networks for top-down attention to auditory non-spatial and visuospatial modalities. Neuroimage 74:77–86. doi: 10.1016/j.neuroimage.2013.02.023 PubMedCentralPubMedGoogle Scholar
  10. Burianova H, Lee Y, Grady CL, Moscovitch M (2013) Age-related dedifferentiation and compensatory changes in the functional network underlying face processing. Neurobiol Aging 34(12):2759–2767. doi: 10.1016/j.neurobiolaging.2013.06.016 PubMedGoogle Scholar
  11. Callan DE, Tsytsarev V, Hanakawa T, Callan AM, Katsuhara M, Fukuyama H, Turner R (2006) Song and speech: brain regions involved with perception and covert production. Neuroimage 31(3):1327–1342. doi: 10.1016/j.neuroimage.2006.01.036 PubMedGoogle Scholar
  12. Callan D, Callan A, Gamez M, Sato MA, Kawato M (2010) Premotor cortex mediates perceptual performance. Neuroimage 51(2):844–858. doi: 10.1016/j.neuroimage.2010.02.027 PubMedGoogle Scholar
  13. Campbell KL, Grady CL, Ng C, Hasher L (2012) Age differences in the frontoparietal cognitive control network: implications for distractibility. Neuropsychologia 50(9):2212–2223. doi: 10.1016/j.neuropsychologia.2012.05.025 PubMedGoogle Scholar
  14. Chee MW, Chen KH, Zheng H, Chan KP, Isaac V, Sim SK, Chuah LY, Schuchinsky M, Fischl B, Ng TP (2009) Cognitive function and brain structure correlations in healthy elderly East Asians. Neuroimage 46(1):257–269. doi: 10.1016/j.neuroimage.2009.01.036 PubMedGoogle Scholar
  15. Chen JJ, Rosas HD, Salat DH (2011) Age-associated reductions in cerebral blood flow are independent from regional atrophy. Neuroimage 55(2):468–478. doi: 10.1016/j.neuroimage.2010.12.032 PubMedCentralPubMedGoogle Scholar
  16. Chen JJ, Salat DH, Rosas HD (2012) Complex relationships between cerebral blood flow and brain atrophy in early Huntington’s disease. Neuroimage 59(2):1043–1051. doi: 10.1016/j.neuroimage.2011.08.112 PubMedCentralPubMedGoogle Scholar
  17. Cooper JC Jr, Gates GA (1991) Hearing in the elderly–the Framingham cohort, 1983-1985: Part II. Prevalence of central auditory processing disorders. Ear Hear 12(5):304–311PubMedGoogle Scholar
  18. Corbetta M, Patel G, Shulman GL (2008) The reorienting system of the human brain: from environment to theory of mind. Neuron 58(3):306–324. doi: 10.1016/j.neuron.2008.04.017 PubMedCentralPubMedGoogle Scholar
  19. Corfield DR, Murphy K, Josephs O, Fink GR, Frackowiak RS, Guz A, Adams L, Turner R (1999) Cortical and subcortical control of tongue movement in humans: a functional neuroimaging study using fMRI. J Appl Physiol 86(5):1468–1477PubMedGoogle Scholar
  20. Cox RW (1996) AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 29(3):162–173PubMedGoogle Scholar
  21. Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis: I. Segmentation and surface reconstruction. NeuroImage 9(2):179–194PubMedGoogle Scholar
  22. De Leon MJ, George AE, Golomb J, Tarshish C, Convit A, Kluger A, De Santi S, McRae T, Ferris SH, Reisberg B, Ince C, Rusinek H, Bobinski M, Quinn B, Miller DC, Wisniewski HM (1997) Frequency of hippocampal formation atrophy in normal aging and Alzheimer’s disease. Neurobiol Aging 18(1):1–11PubMedGoogle Scholar
  23. Deiber MP, Ibanez V, Sadato N, Hallett M (1996) Cerebral structures participating in motor preparation in humans: a positron emission tomography study. J Neurophysiol 75(1):233–247PubMedGoogle Scholar
  24. Desai R, Liebenthal E, Possing ET, Waldron E, Binder JR (2005) Volumetric versus surface-based alignment for localization of auditory cortex activation. NeuroImage 26(4):1019–1029PubMedGoogle Scholar
  25. Dickerson BC, Fenstermacher E, Salat DH, Wolk DA, Maguire RP, Desikan R, Pacheco J, Quinn BT, Van der Kouwe A, Greve DN, Blacker D, Albert MS, Killiany RJ, Fischl B (2008) Detection of cortical thickness correlates of cognitive performance: reliability across MRI scan sessions, scanners, and field strengths. Neuroimage 39(1):10–18. doi: 10.1016/j.neuroimage.2007.08.042 PubMedCentralPubMedGoogle Scholar
  26. Dronkers NF (1996) A new brain region for coordinating speech articulation. Nature 384(6605):159–161. doi: 10.1038/384159a0 PubMedGoogle Scholar
  27. Ducharme S, Albaugh MD, Hudziak JJ, Botteron KN, Nguyen TV, Truong C, Evans AC, Karama S (2013) Anxious/depressed symptoms are linked to right ventromedial prefrontal cortical thickness maturation in healthy children and young adults. Cereb Cortex. doi: 10.1093/cercor/bht151 PubMedCentralGoogle Scholar
  28. Eden GF, Joseph JE, Brown HE, Brown CP, Zeffiro TA (1999) Utilizing hemodynamic delay and dispersion to detect fMRI signal change without auditory interference: the behavior interleaved gradients technique. Magn Reson Med Off J Soc Magnetic Resonance in Med Soc Magn Reson Med 41(1):13–20Google Scholar
  29. Edmister WB, Talavage TM, Ledden PJ, Weisskoff RM (1999) Improved auditory cortex imaging using clustered volume acquisitions. Hum Brain Mapp 7(2):89–97PubMedGoogle Scholar
  30. Fischl B, Dale AM (2000) Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci USA 97(20):11050–11055. doi: 10.1073/pnas.200033797 PubMedCentralPubMedGoogle Scholar
  31. Fischl B, Sereno MI, Dale AM (1999) Cortical surface-based analysis: II: Inflation, flattening, and a surface-based coordinate system. NeuroImage 9(2):195–207PubMedGoogle Scholar
  32. Fischl B, van der Kouwe A, Destrieux C, Halgren E, Segonne F, Salat DH, Busa E, Seidman LJ, Goldstein J, Kennedy D, Caviness V, Makris N, Rosen B, Dale AM (2004) Automatically parcellating the human cerebral cortex. Cereb Cortex 14(1):11–22. doi: 10.1093/cercor/bhg087 PubMedGoogle Scholar
  33. Fjell AM, Walhovd KB (2010) Structural brain changes in aging: courses, causes and cognitive consequences. Rev Neurosci 21(3):187–221PubMedGoogle Scholar
  34. Fjell AM, Westlye LT, Amlien I, Espeseth T, Reinvang I, Raz N, Agartz I, Salat DH, Greve DN, Fischl B, Dale AM, Walhovd KB (2009) High consistency of regional cortical thinning in aging across multiple samples. Cereb Cortex 19(9):2001–2012. doi: 10.1093/cercor/bhn232 PubMedCentralPubMedGoogle Scholar
  35. Frisina DR, Frisina RD (1997) Speech recognition in noise and presbycusis: relations to possible neural mechanisms. Hear Res 106(1–2):95–104PubMedGoogle Scholar
  36. Galantucci B, Fowler CA, Turvey MT (2006) The motor theory of speech perception reviewed. Psychon Bull Rev 13(3):361–377PubMedCentralPubMedGoogle Scholar
  37. Gates GA, Mills JH (2005) Presbycusis. Lancet 366(9491):1111–1120. doi: 10.1016/S0140-6736(05)67423-5 PubMedGoogle Scholar
  38. Ghosh SS, Tourville JA, Guenther FH (2008) A neuroimaging study of premotor lateralization and cerebellar involvement in the production of phonemes and syllables. J Speech Lang Hear Res (JSLHR) 51(5):1183–1202. doi: 10.1044/1092-4388(2008/07-0119 PubMedCentralGoogle Scholar
  39. Gordon-Salant S, Fitzgibbons PJ (2001) Sources of age-related recognition difficulty for time-compressed speech. J Speech Lang Hear Res (JSLHR) 44(4):709–719Google Scholar
  40. Grabski K, Lamalle L, Vilain C, Schwartz JL, Vallee N, Tropres I, Baciu M, Le Bas JF, Sato M (2012) Functional MRI assessment of orofacial articulators: neural correlates of lip, jaw, larynx, and tongue movements. Hum Brain Mapp 33(10):2306–2321. doi: 10.1002/hbm.21363 PubMedGoogle Scholar
  41. Grabski K, Tremblay P, Gracco VL, Girin L, Sato M (2013) A mediating role of the auditory dorsal pathway in selective adaptation to speech: a state-dependent transcranial magnetic stimulation study. Brain Res 1515:55–65. doi: 10.1016/j.brainres.2013.03.024 PubMedGoogle Scholar
  42. Gracco VL, Tremblay P, Pike B (2005) Imaging speech production using fMRI. Neuroimage 26(1):294–301. doi: 10.1016/j.neuroimage.2005.01.033 PubMedGoogle Scholar
  43. Grady CL, Protzner AB, Kovacevic N, Strother SC, Afshin-Pour B, Wojtowicz M, Anderson JA, Churchill N, McIntosh AR (2010) A multivariate analysis of age-related differences in default mode and task-positive networks across multiple cognitive domains. Cereb Cortex 20(6):1432–1447. doi: 10.1093/cercor/bhp207 PubMedCentralPubMedGoogle Scholar
  44. Guenther FH (1994) A neural network model of speech acquisition and motor equivalent speech production. Biol Cybern 72(1):43–53PubMedGoogle Scholar
  45. Guenther FH (1995) Speech sound acquisition, coarticulation, and rate effects in a neural network model of speech production. Psychol Rev 102(3):594–621PubMedGoogle Scholar
  46. Guenther FH, Ghosh SS, Tourville JA (2006) Neural modeling and imaging of the cortical interactions underlying syllable production. Brain Lang 96(3):280–301. doi: 10.1016/j.bandl.2005.06.001 PubMedCentralPubMedGoogle Scholar
  47. Hall DA, Haggard MP, Akeroyd MA, Palmer AR, Summerfield AQ, Elliott MR, Gurney EM, Bowtell RW (1999) “Sparse” temporal sampling in auditory fMRI. Hum Brain Mapp 7(3):213–223PubMedGoogle Scholar
  48. Han X, Jovicich J, Salat D, van der Kouwe A, Quinn B, Czanner S, Busa E, Pacheco J, Albert M, Killiany R, Maguire P, Rosas D, Makris N, Dale A, Dickerson B, Fischl B (2006) Reliability of MRI-derived measurements of human cerebral cortical thickness: the effects of field strength, scanner upgrade and manufacturer. Neuroimage 32(1):180–194. doi: 10.1016/j.neuroimage.2006.02.051 PubMedGoogle Scholar
  49. Hayes D (1981) Central auditory problems and the aging process. In: Beasley DS, Davis GA (eds) Aging, communication processes and disorders. Grune & Stratton, New York, pp 257–266Google Scholar
  50. Hayes AF (2013) Introduction to mediation, moderation, and conditional process analysis: a regression-based approach. Methodology in the social sciences. The Guilford Press, NYGoogle Scholar
  51. Head D, Rodrigue KM, Kennedy KM, Raz N (2008) Neuroanatomical and cognitive mediators of age-related differences in episodic memory. Neuropsychology 22(4):491–507. doi: 10.1037/0894-4105.22.4.491 PubMedCentralPubMedGoogle Scholar
  52. Helfer KS, Vargo M (2009) Speech recognition and temporal processing in middle-aged women. J Am Acad Audiol 20(4):264–271PubMedCentralPubMedGoogle Scholar
  53. Helfer KS, Wilber LA (1990) Hearing loss, aging, and speech perception in reverberation and noise. J Speech Hear Res 33(1):149–155PubMedGoogle Scholar
  54. Humes LE, Lee JH, Coughlin MP (2006) Auditory measures of selective and divided attention in young and older adults using single-talker competition. J Acoust Soc Am 120(5 Pt 1):2926–2937PubMedGoogle Scholar
  55. Jacobs-Condit LE (1984) Gerontology and communication disorders. American Speech-Language-Hearing Association, RockvilleGoogle Scholar
  56. Johnstone T, Ores Walsh KS, Greischar LL, Alexander AL, Fox AS, Davidson RJ, Oakes TR (2006) Motion correction and the use of motion covariates in multiple-subject fMRI analysis. Hum Brain Mapp 27:779–788PubMedGoogle Scholar
  57. Kabani N, Le Goualher G, MacDonald D, Evans AC (2001) Measurement of cortical thickness using an automated 3-D algorithm: a validation study. Neuroimage 13(2):375–380. doi: 10.1006/nimg.2000.0652 PubMedGoogle Scholar
  58. Kemeny S, Ye FQ, Birn R, Braun AR (2005) Comparison of continuous overt speech fMRI using BOLD and arterial spin labeling. Hum Brain Mapp 24(3):173–183. doi: 10.1002/hbm.20078 PubMedGoogle Scholar
  59. Kuperberg GR, Broome MR, McGuire PK, David AS, Eddy M, Ozawa F, Goff D, West WC, Williams SC, van der Kouwe AJ, Salat DH, Dale AM, Fischl B (2003) Regionally localized thinning of the cerebral cortex in schizophrenia. Arch Gen Psychiatry 60(9):878–888PubMedGoogle Scholar
  60. Lau HC, Rogers RD, Haggard P, Passingham RE (2004) Attention to intention. Science 303(5661):1208–1210. doi: 10.1126/science.1090973 PubMedGoogle Scholar
  61. Lau H, Rogers RD, Passingham RE (2006) Dissociating response selection and conflict in the medial frontal surface. Neuroimage 29(2):446–451. doi: 10.1016/j.neuroimage.2005.07.050 PubMedGoogle Scholar
  62. MacKinnon DP, Fairchild AJ, Fritz MS (2007) Mediation analysis. Annu Rev Psychol 58:593–614. doi: 10.1146/annurev.psych.58.110405.085542 PubMedCentralPubMedGoogle Scholar
  63. Martin RE, MacIntosh BJ, Smith RC, Barr AM, Stevens TK, Gati JS, Menon RS (2004) Cerebral areas processing swallowing and tongue movement are overlapping but distinct: a functional magnetic resonance imaging study. J Neurophysiol 92(4):2428–2443. doi: 10.1152/jn.0.1144.2003 PubMedGoogle Scholar
  64. Meister IG, Wilson SM, Deblieck C, Wu AD, Iacoboni M (2007) The essential role of premotor cortex in speech perception. Curr Biol 17:1692–1696PubMedGoogle Scholar
  65. Meunier D, Stamatakis EA, Tyler LK (2014) Age-related functional reorganization, structural changes, and preserved cognition. Neurobiol Aging 35(1):42–54. doi: 10.1016/j.neurobiolaging.2013.07.003 PubMedGoogle Scholar
  66. Nasreddine ZS, Chertkow HP, Phillips N, Bergman H, Whitehead V (2003) Sensitivity and specificity of the Montreal Cognitive Assessment (MoCA) for detection of mild cognitive deficits. Can J Neurol Sci 30(2):30Google Scholar
  67. Nelson SM, Dosenbach NU, Cohen AL, Wheeler ME, Schlaggar BL, Petersen SE (2010) Role of the anterior insula in task-level control and focal attention. Brain Struct Funct 214(5–6):669–680. doi: 10.1007/s00429-010-0260-2 PubMedCentralPubMedGoogle Scholar
  68. Nichols T, Brett M, Andersson J, Wager T, Poline JB (2005) Valid conjunction inference with the minimum statistic. Neuroimage 25(3):653–660. doi: 10.1016/j.neuroimage.2004.12.005 PubMedGoogle Scholar
  69. Nyberg L, Salami A, Andersson M, Eriksson J, Kalpouzos G, Kauppi K, Lind J, Pudas S, Persson J, Nilsson LG (2010) Longitudinal evidence for diminished frontal cortex function in aging. Proc Natl Acad Sci USA 107(52):22682–22686. doi: 10.1073/pnas.1012651108 PubMedCentralPubMedGoogle Scholar
  70. Ogar J, Willock S, Baldo J, Wilkins D, Ludy C, Dronkers N (2006) Clinical and anatomical correlates of apraxia of speech. Brain Lang 97(3):343–350. doi: 10.1016/j.bandl.2006.01.008 PubMedGoogle Scholar
  71. Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9(1):97–113PubMedGoogle Scholar
  72. Peelle JE, Troiani V, Grossman M, Wingfield A (2011) Hearing loss in older adults affects neural systems supporting speech comprehension. J Neurosci Off J Soc Neurosci 31(35):12638–12643. doi: 10.1523/JNEUROSCI.2559-11.2011 Google Scholar
  73. Peelle JE, Chandrasekaran K, Powers J, Smith EE, Grossman M (2013) Age-related vulnerability in the neural systems supporting semantic processing. Frontiers Aging Neurosci 5:46. doi: 10.3389/fnagi.2013.00046 Google Scholar
  74. Peeva MG, Guenther FH, Tourville JA, Nieto-Castanon A, Anton JL, Nazarian B, Alario FX (2010) Distinct representations of phonemes, syllables, and supra-syllabic sequences in the speech production network. Neuroimage 50(2):626–638. doi: 10.1016/j.neuroimage.2009.12.065 PubMedCentralPubMedGoogle Scholar
  75. Petrini K, Pollick FE, Dahl S, McAleer P, McKay LS, Rocchesso D, Waadeland CH, Love S, Avanzini F, Puce A (2011) Action expertise reduces brain activity for audiovisual matching actions: an fMRI study with expert drummers. Neuroimage 56(3):1480–1492. doi: 10.1016/j.neuroimage.2011.03.009 PubMedGoogle Scholar
  76. Plath P (1991) Speech recognition in the elderly. Acta Otolaryngol 476(Suppl.):127–130Google Scholar
  77. Preacher KJ, Hayes AF (2004) SPSS and SAS procedures for estimating indirect effects in simple mediation models. Behav Res Methods Instr Comput J Psychon Soc Inc 36(4):717–731Google Scholar
  78. Preacher KJ, Hayes AF (2008a) Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behav Res Methods 40(3):879–891PubMedGoogle Scholar
  79. Preacher KJ, Hayes AF (2008b) Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behav Res Methods 40:879–891PubMedGoogle Scholar
  80. Pulvermüller F, Huss M, Kherif F, del Prado Moscoso, Martin F, Hauk O, Shtyrov Y (2006) Motor cortex maps articulatory features of speech sounds. Proc Natl Acad Sci 103(20):7865–7870PubMedCentralPubMedGoogle Scholar
  81. Riecker A, Ackermann H, Wildgruber D, Dogil G, Grodd W (2000) Opposite hemispheric lateralization effects during speaking and singing at motor cortex, insula and cerebellum. NeuroReport 11:1997–2000PubMedGoogle Scholar
  82. Ries PW (1994) Prevalence and characteristics of persons with hearing trouble: United States, 1990–1991. Vital and health statistics Series 10, Data from the National Health Survey (188):1–75Google Scholar
  83. Rosas HD, Liu AK, Hersch S, Glessner M, Ferrante RJ, Salat DH, van der Kouwe A, Jenkins BG, Dale AM, Fischl B (2002) Regional and progressive thinning of the cortical ribbon in Huntington’s disease. Neurology 58(5):695–701PubMedGoogle Scholar
  84. Roski C, Caspers S, Lux S, Hoffstaedter F, Bergs R, Amunts K, Eickhoff SB (2013) Activation shift in elderly subjects across functional systems: an fMRI study. Brain Struct Funct. doi: 10.1007/s00429-013-0530-x PubMedCentralGoogle Scholar
  85. Salat DH, Buckner RL, Snyder AZ, Greve DN, Desikan RS, Busa E, Morris JC, Dale AM, Fischl B (2004) Thinning of the cerebral cortex in aging. Cereb Cortex 14(7):721–730PubMedGoogle Scholar
  86. Salvi RJ, Lockwood AH, Frisina RD, Coad ML, Wack DS, Frisina DR (2002) PET imaging of the normal human auditory system: responses to speech in quiet and in background noise. Hear Res 170(1–2):96–106PubMedGoogle Scholar
  87. Sambataro F, Murty VP, Callicott JH, Tan HY, Das S, Weinberger DR, Mattay VS (2010) Age-related alterations in default mode network: impact on working memory performance. Neurobiol Aging 31(5):839–852. doi: 10.1016/j.neurobiolaging.2008.05.022 PubMedCentralPubMedGoogle Scholar
  88. Sato M, Tremblay P, Gracco VL (2009) A mediating role of the premotor cortex in phoneme segmentation. Brain Lang 111(1):1–7. doi: 10.1016/j.bandl.2009.03.002 PubMedGoogle Scholar
  89. Schwartz J-L, Basirat A, Ménard L, Sato M (2012) The Perception-for-Action-Control Theory (PACT): a perceptuo-motor theory of speech perception. J Neurolinguistics 25(5):336–354. doi: 10.1016/j.jneuroling.2009.12.004 Google Scholar
  90. Scott SK, Rosen S, Wickham L, Wise RJ (2004) A positron emission tomography study of the neural basis of informational and energetic masking effects in speech perception. J Acoust Soc Am 115(2):813–821PubMedGoogle Scholar
  91. Seydell-Greenwald A, Greenberg AS, Rauschecker JP (2013) Are you listening? Brain activation associated with sustained nonspatial auditory attention in the presence and absence of stimulation. Hum Brain Mapp. doi: 10.1002/hbm.22323
  92. Sheppard JP, Wang JP, Wong PC (2011) Large-scale cortical functional organization and speech perception across the lifespan. PLoS ONE 6(1):e16510. doi: 10.1371/journal.pone.0016510 PubMedCentralPubMedGoogle Scholar
  93. Shrout PE, Bolger N (2002) Mediation in experimental and nonexperimental studies: new procedures and recommendations. Psychol Methods 7(4):422–445PubMedGoogle Scholar
  94. Skipper JI, Nusbaum HC, Small SL (2005) Listening to talking faces: motor cortical activation during speech perception. Neuroimage 25(1):76–89. doi: 10.1016/j.neuroimage.2004.11.006 PubMedGoogle Scholar
  95. Spaniol J, Grady C (2012) Aging and the neural correlates of source memory: over-recruitment and functional reorganization. Neurobiol Aging 33(2):425, e423–e418. doi: 10.1016/j.neurobiolaging.2010.10.005
  96. Stach BA (2010) Clinical audiology: an introduction. Delmar, Clifton Park, NYGoogle Scholar
  97. Strouse A, Ashmead DH, Ohde RN, Grantham DW (1998) Temporal processing in the aging auditory system. J Acoust Soc Am 104(4):2385–2399PubMedGoogle Scholar
  98. Thambisetty M, Wan J, Carass A, An Y, Prince JL, Resnick SM (2010) Longitudinal changes in cortical thickness associated with normal aging. Neuroimage 52(4):1215–1223. doi: 10.1016/j.neuroimage.2010.04.258 PubMedCentralPubMedGoogle Scholar
  99. Tremblay P, Gracco VL (2006) Contribution of the frontal lobe to externally and internally specified verbal responses: fMRI evidence. Neuroimage 33(3):947–957. doi: 10.1016/j.neuroimage.2006.07.041 PubMedGoogle Scholar
  100. Tremblay P, Gracco VL (2009) Contribution of the pre-SMA to the production of words and non-speech oral motor gestures, as revealed by repetitive transcranial magnetic stimulation (rTMS). Brain Res 1268:112–124. doi: 10.1016/j.brainres.2009.02.076 PubMedGoogle Scholar
  101. Tremblay P, Small SL (2011a) From language comprehension to action understanding and back again. Cereb Cortex 21(5):1166–1177. doi: 10.1093/cercor/bhq189 PubMedCentralPubMedGoogle Scholar
  102. Tremblay P, Small SL (2011b) Motor response selection in overt sentence production: a functional MRI study. Frontiers Psychol 2:253. doi: 10.3389/fpsyg.2011.00253 Google Scholar
  103. Tremblay P, Small SL (2011c) On the context-dependent nature of the contribution of the ventral premotor cortex to speech perception. Neuroimage 57(4):1561–1571. doi: 10.1016/j.neuroimage.2011.05.067 PubMedCentralPubMedGoogle Scholar
  104. Tremblay P, Shiller DM, Gracco VL (2008) On the time-course and frequency selectivity of the EEG for different modes of response selection: evidence from speech production and keyboard pressing. Clin Neurophysiol Off J Int Fed Clin Neurophysiol 119(1):88–99Google Scholar
  105. Tremblay P, Baroni M, Hasson U (2012) Processing of speech and non-speech sounds in the supratemporal plane: auditory input preference does not predict sensitivity to statistical structure. Neuroimage 66C:318–332. doi: 10.1016/j.neuroimage.2012.10.055 Google Scholar
  106. Tremblay P, Dick AS, Small SL (2013) Functional and structural aging of the speech sensorimotor neural system: functional magnetic resonance imaging evidence. Neurobiol Aging. doi: 10.1016/j.neurobiolaging.2013.02.004 PubMedCentralGoogle Scholar
  107. Van Oostende S, Van Hecke P, Sunaert S, Nuttin B, Marchal G (1997) FMRI studies of the supplementary motor area and the premotor cortex. Neuroimage 6(3):181–190. doi: 10.1006/nimg.1997.0287 PubMedGoogle Scholar
  108. van Velsen EF, Vernooij MW, Vrooman HA, van der Lugt A, Breteler MM, Hofman A, Niessen WJ, Ikram MA (2013) Brain cortical thickness in the general elderly population: the Rotterdam Scan Study. Neurosci Lett 550:189–194. doi: 10.1016/j.neulet.2013.06.063 PubMedGoogle Scholar
  109. Walhovd KB, Fjell AM, Dale AM, McEvoy LK, Brewer J, Karow DS, Salmon DP, Fennema-Notestine C (2010) Multi-modal imaging predicts memory performance in normal aging and cognitive decline. Neurobiol Aging 31(7):1107–1121. doi: 10.1016/j.neurobiolaging.2008.08.013 PubMedCentralPubMedGoogle Scholar
  110. Westlye LT, Grydeland H, Walhovd KB, Fjell AM (2011) Associations between regional cortical thickness and attentional networks as measured by the attention network test. Cereb Cortex 21(2):345–356. doi: 10.1093/cercor/bhq101 PubMedGoogle Scholar
  111. Wiesmann M, Ishai A (2011) Expertise reduces neural cost but does not modulate repetition suppression. Cognit Neurosci 2(1):57–65. doi: 10.1080/17588928.2010.525628 Google Scholar
  112. Wilson S, Saygin A, Sereno M, Iacoboni M (2004) Listening to speech activates motor areas involved in speech production. Nat Neurosci 7(7):701–702PubMedGoogle Scholar
  113. Wong PC, Uppunda AK, Parrish TB, Dhar S (2008) Cortical mechanisms of speech perception in noise. J Speech Lang Hear Res (JSLHR) 51(4):1026–1041. doi: 10.1044/1092-4388(2008/075 Google Scholar
  114. Wong PC, Jin JX, Gunasekera GM, Abel R, Lee ER, Dhar S (2009) Aging and cortical mechanisms of speech perception in noise. Neuropsychologia 47(3):693–703. doi: 10.1016/j.neuropsychologia.2008.11.032 PubMedCentralPubMedGoogle Scholar
  115. Wong PC, Ettlinger M, Sheppard JP, Gunasekera GM, Dhar S (2010) Neuroanatomical characteristics and speech perception in noise in older adults. Ear Hear 31(4):471–479. doi: 10.1097/AUD.0b013e3181d709c2 PubMedCentralPubMedGoogle Scholar
  116. Yesavage JA, Brink TL, Rose TL, Lum O, Huang V, Adey M, Leirer VO (1982) Development and validation of a geriatric depression screening scale: a preliminary report. J Psychiatr Res 17(1):37–49PubMedGoogle Scholar
  117. Yorkston KM, Bourgeois MS, Baylor CR (2010) Communication and aging. Phys Med Rehabil Clin N Am 21(2):309–319. doi: 10.1016/j.pmr.2009.12.011 PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Mylène Bilodeau-Mercure
    • 1
    • 2
  • Catherine L. Lortie
    • 1
    • 4
  • Marc Sato
    • 3
  • Matthieu J. Guitton
    • 1
    • 4
  • Pascale Tremblay
    • 1
    • 2
    Email author
  1. 1.Centre de Recherche de l’Institut Universitaire en Santé Mentale de QuébecQuebec CityCanada
  2. 2.Département de Réadaptation, Faculté de MédecineUniversité LavalQuebec CityCanada
  3. 3.GIPSA-lab, CNRSUniversité de GrenobleSaint-Martin-d’HèresFrance
  4. 4.Département d’Oto-Rhino-Laryngologie et Ophtalmologie, Faculté de MédecineUniversité LavalQuebec CityCanada

Personalised recommendations