Brain Structure and Function

, Volume 220, Issue 1, pp 1–12

Monocarboxylate transporters in temporal lobe epilepsy: roles of lactate and ketogenic diet



Epilepsy is a serious neurological disorder that affects approximately 1 % of the general population, making it one of the most common disorders of the central nervous system. Furthermore, up to 40 % of all patients with epilepsy cannot control their seizures with current medications. More efficacious treatments for medication refractory epilepsy are therefore needed. A better understanding of the mechanisms that cause this disorder is likely to facilitate the discovery of such treatments. Impairment in cerebral energy metabolism has been proposed as a possible causative factor in the pathogenesis of temporal lobe epilepsy (TLE), which is one of the most common types of medication-refractory epilepsies in adults. In this review, we will discuss some of the current hypotheses regarding the possible causal relationship between brain energy metabolism and TLE. Emphasis will be placed on the role of energy substrates (lactate and ketone bodies) and their transporter molecules, particularly monocarboxylate transporters 1 and 2 (MCT1 and MCT2). We recently reported that the cellular distribution of MCT1 and MCT2 is perturbed in the hippocampus in patients with TLE. The changes may be an adaptive response aimed at keeping high levels of lactate in the epileptic tissue, which may serve to counteract epileptic activity by downregulating cAMP levels through the lactate receptor GPR81, newly discovered in hippocampus. We propose that the perturbation of MCTs may be further involved in the pathophysiology of TLE by influencing brain energy homeostasis, mitochondrial function, GABA-ergic and glutamatergic neurotransmission, and flux of lactate through the brain.


Energy failure Pathophysiology Immunocytochemistry Electronmicroscopy Human Rodent Blood–brain barrier 


  1. Abbott NJ, Ronnback L, Hansson E (2006) Astrocyte-endothelial interactions at the blood–brain barrier. Nat Rev Neurosci 7:41–53PubMedCrossRefGoogle Scholar
  2. Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ (2010) Structure and function of the blood–brain barrier. Neurobiol Dis 37:13–25PubMedCrossRefGoogle Scholar
  3. Allaman I, Belanger M, Magistretti PJ (2011) Astrocyte-neuron metabolic relationships: for better and for worse. Trends Neurosci 34:76–87PubMedCrossRefGoogle Scholar
  4. Amiel SA (1994) Nutrition of the brain: macronutrient supply. Proc Nutr Soc 53:01–05CrossRefGoogle Scholar
  5. Attwell D, Laughlin SB (2001) An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab 21:1133–1145PubMedCrossRefGoogle Scholar
  6. Babb TL, Lieb JP, Brown WJ, Pretorius J, Crandall PH (1984) Distribution of pyramidal cell density and hyperexcitability in the epileptic human hippocampal formation. Epilepsia 25:721–728PubMedCrossRefGoogle Scholar
  7. Baker SK, McCullagh KJ, Bonen A (1998) Training intensity-dependent and tissue-specific increases in lactate uptake and MCT-1 in heart and muscle. J Appl Physiol 84:987–994PubMedCrossRefGoogle Scholar
  8. Ballaban-Gil K, Callahan C, O’Dell C, Pappo M, Moshe S, Shinnar S (1998) Complications of the ketogenic diet. Epilepsia 39:744–748PubMedCrossRefGoogle Scholar
  9. Barros LF, Deitmer JW (2010) Glucose and lactate supply to the synapse. Brain Res Rev 63:149–159PubMedCrossRefGoogle Scholar
  10. Baud O, Fayol L, Gressens P, Pellerin L, Magistretti P, Evrard P, Verney C (2003) Perinatal and early postnatal changes in the expression of monocarboxylate transporters MCT1 and MCT2 in the rat forebrain. J Comp Neurol 465:445–454PubMedCrossRefGoogle Scholar
  11. Bergersen LH (2007) Is lactate food for neurons? Comparison of monocarboxylate transporter subtypes in brain and muscle. Neuroscience 145:11–19PubMedCrossRefGoogle Scholar
  12. Bergersen LH, Gjedde A (2012) Is lactate a volume transmitter of metabolic states of the brain? Front Neuroenergetics 4:5PubMedCentralPubMedCrossRefGoogle Scholar
  13. Bergersen L, Waerhaug O, Helm J, Thomas M, Laake P, Davies AJ, Wilson MC, Halestrap AP, Ottersen OP (2001) A novel postsynaptic density protein: the monocarboxylate transporter MCT2 is co-localized with delta-glutamate receptors in postsynaptic densities of parallel fiber-Purkinje cell synapses. Exp Brain Res 136:523–534PubMedCrossRefGoogle Scholar
  14. Bergersen LH, Magistretti PJ, Pellerin L (2005) Selective postsynaptic co-localization of MCT2 with AMPA receptor GluR2/3 subunits at excitatory synapses exhibiting AMPA receptor trafficking. Cereb Cortex 15:361–370PubMedCrossRefGoogle Scholar
  15. Bergersen LH, Thomas M, Jóhannsson E, Waerhaug O, Halestrap A, Andersen K, Sejersted OM, Ottersen OP (2006) Cross-reinnervation changes the expression patterns of the monocarboxylate transporters 1 and 4: an experimental study in slow and fast rat skeletal muscle. Neuroscience 138(4):1105–1113PubMedCrossRefGoogle Scholar
  16. Bergqvist AG, Chee CM, Lutchka L, Rychik J, Stallings VA (2003) Selenium deficiency associated with cardiomyopathy: a complication of the ketogenic diet. Epilepsia 44:618–620PubMedCrossRefGoogle Scholar
  17. Best TH, Franz DN, Gilbert DL, Nelson DP, Epstein MR (2000) Cardiac complications in pediatric patients on the ketogenic diet. Neurology 54:2328–2330PubMedCrossRefGoogle Scholar
  18. Bonen A, McCullagh KJ, Putman CT, Hultman E, Jones NL, Heigenhauser GJ (1998) Short-term training increases human muscle MCT1 and femoral venous lactate in relation to muscle lactate. Am J Physiol 274:E102–E107PubMedGoogle Scholar
  19. Borghammer P, Chakravarty M, Jonsdottir KY, Sato N, Matsuda H, Ito K, Arahata Y, Kato T, Gjedde A (2010) Cortical hypometabolism and hypoperfusion in Parkinson’s disease is extensive: probably even at early disease stages. Brain Struct Funct 214:303–317PubMedCrossRefGoogle Scholar
  20. Bough KJ, Rho JM (2007) Anticonvulsant mechanisms of the ketogenic diet. Epilepsia 48:43–58PubMedCrossRefGoogle Scholar
  21. Bough KJ, Wetherington J, Hassel B, Pare JF, Gawryluk JW, Greene JG, Shaw R, Smith Y, Geiger JD, Dingledine RJ (2006) Mitochondrial biogeneses is the anticonvulsant mechanism of the ketogenic diet. Ann Neurol 60:223–235PubMedCrossRefGoogle Scholar
  22. Boumezbeur F, Petersen KF, Cline GW, Mason GF, Behar KL, Shulman GI, Rothman DL (2010) The contribution of blood lactate to brain energy metabolism in humans measured by dynamic 13C nuclear magnetic resonance spectroscopy. J Neurosci 30:13983–13991PubMedCentralPubMedCrossRefGoogle Scholar
  23. Browne SE, Beal MF (2004) The energetics of Huntington’s disease. Neurochem Res 29:531–546PubMedCrossRefGoogle Scholar
  24. Bush TG, Puvanachandra N, Horner CH, Polito A, Ostenfeld T, Svendsen CN, Mucke L, Johnson MH, Sofroniew MV (1999) Leukocyte infiltration, neuronal degeneration, and neurite outgrowth after ablation of scar-forming, reactive astrocytes in adult transgenic mice. Neuron 23:297–308PubMedCrossRefGoogle Scholar
  25. Cantello R, Varrasi C, Tarletti R, Cecchin M, D’Andrea F, Veggiotti P, Bellomo G, Monaco F (2007) Ketogenic diet: electrophysiological effects on the normal human cortex. Epilepsia 48:1756–1763PubMedCrossRefGoogle Scholar
  26. Chachua T, Bilanishvili I, Khizanishvili N, Nanobashvili Z (2010) Noradrenergic modulation of seizure activity. Georgian Med News 6(183):34–39Google Scholar
  27. Chiry O, Fishbein WN, Merezhinskaya N, Clarke S, Galuske R, Magistretti PJ, Pellerin L (2008) Distribution of the monocarboxylate transporter MCT2 in human cerebral cortex: an immunohistochemical study. Brain Res 1226:61–69PubMedCrossRefGoogle Scholar
  28. Chmiel-Perzynska I, Kloc R, Perzynski A, Rudzki S, Urbanska EM (2011) Novel aspect of ketone action: beta-hydroxybutyrate increases brain synthesis of kynurenic acid in vitro. Neurotox Res 20:40–50PubMedCrossRefGoogle Scholar
  29. Connelly A, Jackson GD, Duncan JS, King MD, Gadian DG (1994) Magnetic resonance spectroscopy in temporal lobe epilepsy. Neurology 44:1411–1417PubMedCrossRefGoogle Scholar
  30. Cornford EM, Hyman S (1999) Blood–brain barrier permeability to small and large molecules. Adv Drug Deliv Rev 36:145–163PubMedCrossRefGoogle Scholar
  31. Coulter DA, Eid T (2012) Astrocytic regulation of glutamate homeostasis in epilepsy. Glia 60:1215–1226PubMedCentralPubMedCrossRefGoogle Scholar
  32. Cremer JE, Heath DF (1974) The estimation of rates of utilization of glucose and ketone bodies in the brain of the suckling rat using compartmental analysis of isotopic data. Biochem J 142:527–544PubMedCentralPubMedGoogle Scholar
  33. Dalsgaard MK, Quistorff B, Danielsen ER, Selmer C, Vogelsang T, Secher NH (2004) A reduced cerebral metabolic ratio in exercise reflects metabolism and not accumulation of lactate within the human brain. J Physiol 554:571–578PubMedCentralPubMedCrossRefGoogle Scholar
  34. Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105PubMedCrossRefGoogle Scholar
  35. Daniel PM, Love ER, Moorhouse SR, Pratt OE (1977) The transport of ketone bodies into the brain of the rat (in vivo). J Neurol Sci 34:1–13PubMedCrossRefGoogle Scholar
  36. de Lanerolle NC, Lee TS (2005) New facets of the neuropathology and molecular profile of human temporal lobe epilepsy. Epilepsy Behav 7:190–203PubMedCrossRefGoogle Scholar
  37. de Lanerolle NC, Kim JH, Williamson A, Spencer SS, Zaveri HP, Eid T, Spencer DD (2003) A retrospective analysis of hippocampal pathology in human temporal lobe epilepsy: evidence for distinctive patient subcategories. Epilepsia 44:677–687PubMedCrossRefGoogle Scholar
  38. de Lanerolle NC, Lee TS, Spencer DD (2010) Astrocytes and epilepsy. Neurotherapeutics 7:424–438PubMedCrossRefGoogle Scholar
  39. Dombrowski SM, Desai SY, Marroni M, Cucullo L, Goodrich K, Bingaman W, Mayberg MR, Bengez L, Janigro D (2001) Overexpression of multiple drug resistance genes in endothelial cells from patients with refractory epilepsy. Epilepsia 42:1501–1506PubMedCrossRefGoogle Scholar
  40. During MJ, Spencer DD (1993) Extracellular hippocampal glutamate and spontaneous seizure in the conscious human brain. Lancet 341:1607–1610PubMedCrossRefGoogle Scholar
  41. During MJ, Fried I, Leone P, Katz A, Spencer DD (1994) Direct measurement of extracellular lactate in the human hippocampus during spontaneous seizures. J Neurochem 62:2356–2361PubMedCrossRefGoogle Scholar
  42. Ferreira IL, Resende R, Ferreiro E, Rego AC, Pereira CF (2010) Multiple defects in energy metabolism in Alzheimer’s disease. Curr Drug Targets 11:1193–1206PubMedCrossRefGoogle Scholar
  43. Fischer W, Praetor K, Metzner L, Neubert RH, Brandsch M (2008) Transport of valproate at intestinal epithelial (Caco-2) and brain endothelial (RBE4) cells: mechanism and substrate specificity. Eur J Pharm Biopharm 70(2):486–492PubMedCrossRefGoogle Scholar
  44. Froberg MK, Gerhart DZ, Enerson BE, Manivel C, Guzman-Paz M, Seacotte N, Drewes LR (2001) Expression of monocarboxylate transporter MCT1 in normal and neoplastic human CNS tissues. NeuroReport 12:761–765PubMedCrossRefGoogle Scholar
  45. Gandhi GK, Cruz NF, Ball KK, Dienel GA (2009) Astrocytes are poised for lactate trafficking and release from activated brain and for supply of glucose to neurons. J Neurochem 111:522–536PubMedCentralPubMedCrossRefGoogle Scholar
  46. Gerhart DZ, Enerson BE, Zhdankina OY, Leino RL, Drewes LR (1997) Expression of monocarboxylate transporter MCT1 by brain endothelium and glia in adult and suckling rats. Am J Physiol 273:E207–E213PubMedGoogle Scholar
  47. Gerhart DZ, Enerson BE, Zhdankina OY, Leino RL, Drewes LR (1998) Expression of the monocarboxylate transporter MCT2 by rat brain glia. Glia 22:272–281PubMedCrossRefGoogle Scholar
  48. Gjedde A, Crone C (1975) Induction processes in blood–brain transfer of ketone bodies during starvation. Am J Physiol 229:1165–1169PubMedGoogle Scholar
  49. Hanu R, McKenna M, O’Neill A, Resneck WG, Bloch RJ (2000) Monocarboxylic acid transporters, MCT1 and MCT2, in cortical astrocytes in vitro and in vivo. Am J physiol Cell Physiol 278:C921–C930PubMedGoogle Scholar
  50. Harris AB (1975) Cortical neuroglia in experimental epilepsy. Exp Neurol 49:691–715PubMedCrossRefGoogle Scholar
  51. Hawkins BT, Davis TP (2005) The blood–brain barrier/neurovascular unit in health and disease. Pharmacol Rev 57:173–185PubMedCrossRefGoogle Scholar
  52. Haymond MW, Karl IE, Clarke WL, Pagliara AS, Santiago JV (1982) Differences in circulating gluconeogenic substrates during short-term fasting in men, women, and children. Metabolism 31:33–42PubMedCrossRefGoogle Scholar
  53. Hertz L, Peng L, Dienel GA (2007) Energy metabolism in astrocytes: high rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis. J Cereb Blood Flow Metab 27:219–249PubMedCrossRefGoogle Scholar
  54. Hetherington H, Kuzniecky R, Pan J, Mason G, Morawetz R, Harris C, Faught E, Vaughan T, Pohost G (1995) Proton nuclear magnetic resonance spectroscopic imaging of human temporal lobe epilepsy at 4.1 T. Ann Neurol 38:396–404PubMedCrossRefGoogle Scholar
  55. Ide K, Schmalbruch IK, Quistorff B, Horn A, Secher NH (2000) Lactate, glucose and O2 uptake in human brain during recovery from maximal exercise. J physiol 522(Pt 1):159–164PubMedCentralPubMedCrossRefGoogle Scholar
  56. Ivanov A, Mukhtarov M, Bregestovski P, Zilberter Y (2011) Lactate effectively covers energy demands during neuronal network activity in neonatal hippocampal slices. Front Neuroenerg 3:2Google Scholar
  57. Jackson VN, Price NT, Carpenter L, Halestrap AP (1997) Cloning of the monocarboxylate transporter isoform MCT2 from rat testis provides evidence that expression in tissues is species-specific and may involve post-transcriptional regulation. Biochem J 324(Pt 2):447–453PubMedCentralPubMedGoogle Scholar
  58. Jasper H, Erikson TC (1941) Cerebral blood flow and pH in excessive cortical discharge induced by metrazol and electrical stimulation. J Neurophysiol 24:935–940Google Scholar
  59. Juge N, Gray JA, Omote H, Miyaji T, Inoue T, Hara C, Uneyama H, Edwards RH, Nicoll RA, Moriyama Y (2010) Metabolic control of vesicular glutamate transport and release. Neuron 68:99–112PubMedCentralPubMedCrossRefGoogle Scholar
  60. Kang HC, Chung DE, Kim DW, Kim HD (2004) Early- and late-onset complications of the ketogenic diet for intractable epilepsy. Epilepsia 45:1116–1123PubMedCrossRefGoogle Scholar
  61. Kang TC, Kim DS, Kwak SE, Kim JE, Won MH, Kim DW, Choi SY, Kwon OS (2006) Epileptogenic roles of astroglial death and regeneration in the dentate gyrus of experimental temporal lobe epilepsy. Glia 54(4):258–271PubMedCrossRefGoogle Scholar
  62. Koehler-Stec EM, Simpson IA, Vannucci SJ, Landschulz KT, Landschulz WH (1998) Monocarboxylate transporter expression in mouse brain. Am J Physiol 275:E516–E524PubMedGoogle Scholar
  63. Kossoff EH, Rowley H, Sinha SR, Vining EP (2008) A prospective study of the modified Atkins diet for intractable epilepsy in adults. Epilepsia 49:316–319PubMedCrossRefGoogle Scholar
  64. Kudin AP, Zsurka G, Elger CE, Kunz WS (2009) Mitochondrial involvement in temporal lobe epilepsy. Exp Neurol 218:326–332PubMedCrossRefGoogle Scholar
  65. Kuhl DE Jr, Engel J, Phelps ME, Selin C (1980) Epileptic patterns of local cerebral metabolism and perfusion in humans determined by emission computed tomography of 18FDG and 13NH3. Ann Neurol 8:348–360PubMedCrossRefGoogle Scholar
  66. Kwan P, Brodie MJ (2000) Early identification of refractory epilepsy. N Engl J Med 342:314–319PubMedCrossRefGoogle Scholar
  67. Larrabee MG (1995) Lactate metabolism and its effects on glucose metabolism in an excised neural tissue. J Neurochem 64:1734–1741PubMedCrossRefGoogle Scholar
  68. Lauritzen F, de Lanerolle NC, Lee TS, Spencer DD, Kim JH, Bergersen LH, Eid T (2011) Monocarboxylate transporter 1 is deficient on microvessels in the human epileptogenic hippocampus. Neurobiol Dis 41:577–584PubMedCentralPubMedCrossRefGoogle Scholar
  69. Lauritzen F, Perez EL, Melillo ER, Roh JM, Zaveri HP, Lee TS, Wang Y, Bergersen LH, Eid T (2012a) Altered expression of brain monocarboxylate transporter 1 in models of temporal lobe epilepsy. Neurobiol Dis 45:165–176PubMedCentralPubMedCrossRefGoogle Scholar
  70. Lauritzen F, Heuser K, de Lanerolle NC, Lee TS, Spencer DD, Kim JH, Gjedde A, Eid T, Bergersen LH (2012b) Redistribution of monocarboxylate transporter 2 on the surface of astrocytes in the human epileptogenic hippocampus. Glia 60(7):1172–1181PubMedCentralPubMedCrossRefGoogle Scholar
  71. Lauritzen KH, Morland C, Puchades M, Holm-Hansen S, Hagelin EM, Lauritzen F, Attramadal H, Storm-Mathisen J, Gjedde A, Bergersen LH (2013) Lactate receptor sites link neurotransmission, neurovascular coupling, and brain energy metabolism. Cereb Cortex (Epub 2013 May 21)Google Scholar
  72. Ledo A, Barbosa RM, Gerhardt GA, Cadenas E, Laranjinha J (2005) Concentration dynamics of nitric oxide in rat hippocampal subregions evoked by stimulation of the NMDA glutamate receptor. Proc Natl Acad Sci USA 102(48):17483–17488PubMedCentralPubMedCrossRefGoogle Scholar
  73. Leino RL, Gerhart DZ, Drewes LR (1999) Monocarboxylate transporter (MCT1) abundance in brains of suckling and adult rats: a quantitative electron microscopic immunogold study. Brain Res Dev Brain Res 113:47–54PubMedCrossRefGoogle Scholar
  74. Leino RL, Gerhart DZ, Duelli R, Enerson BE, Drewes LR (2001) Diet-induced ketosis increases monocarboxylate transporter (MCT1) levels in rat brain. Neurochem Int 38:519–527PubMedCrossRefGoogle Scholar
  75. Likhodii SS, Serbanescu I, Cortez MA, Murphy P, Snead OC 3rd, Burnham WM (2003) Anticonvulsant properties of acetone, a brain ketone elevated by the ketogenic diet. Ann Neurol 54:219–226PubMedCrossRefGoogle Scholar
  76. Lund TM, Obel LF, Risa O, Sonnewald U (2011) beta-Hydroxybutyrate is the preferred substrate for GABA and glutamate synthesis while glucose is indispensable during depolarization in cultured GABAergic neurons. Neurochem Int 59:309–318PubMedCrossRefGoogle Scholar
  77. Marchi N, Teng Q, Ghosh C, Fan Q, Nguyen MT, Desai NK, Bawa H, Rasmussen P, Masaryk TK, Janigro D (2010) Blood–brain barrier damage, but not parenchymal white blood cells, is a hallmark of seizure activity. Brain Res 1353:176–186PubMedCentralPubMedCrossRefGoogle Scholar
  78. Mathiisen TM, Lehre KP, Danbolt NC, Ottersen OP (2010) The perivascular astroglial sheath provides a complete covering of the brain microvessels: an electron microscopic 3D reconstruction. Glia 58:1094–1103PubMedCrossRefGoogle Scholar
  79. McCullagh KJ, Juel C, O’Brien M, Bonen A (1996) Chronic muscle stimulation increases lactate transport in rat skeletal muscle. Mol Cell Biochem 156:51–57PubMedCrossRefGoogle Scholar
  80. McIntosh AM, Wilson SJ, Berkovic SF (2001) Seizure outcome after temporal lobectomt: current research practice and findings. Epilepsia 42:1288–1307PubMedCrossRefGoogle Scholar
  81. Meyer JS, Gotoh F, Favale E (1966) Cerebral metabolism during epileptic seizures in man. Electroencephalogr Clin Neurophysiol 21:10–22PubMedCrossRefGoogle Scholar
  82. Morin-Brureau M, Lebrun A, Rousset MC, Fagni L, Bockaert J, de Bock F, Lerner-Natoli M (2011) Epileptiform activity induces vascular remodeling and zonula occludens 1 downregulation in organotypic hippocampal cultures: role of VEGF signaling pathways. J Neurosci 31:10677–10688PubMedCrossRefGoogle Scholar
  83. Morris AA (2005) Cerebral ketone body metabolism. J Inherit Metab Dis 28:109–121PubMedCrossRefGoogle Scholar
  84. Mosek A, Natour H, Neufeld MY, Shiff Y, Vaisman N (2009) Ketogenic diet treatment in adults with refractory epilepsy: a prospective pilot study. Seizure 18:30–33PubMedCrossRefGoogle Scholar
  85. Mueller AL, Dunwiddie TV (1983) Anticonvulsant and proconvulsant actions of alpha- and beta-noradrenergic agonists on epileptiform activity in rat hippocampus in vitro. Epilepsia 24(1):57–64PubMedCrossRefGoogle Scholar
  86. Musa-Veloso K, Likhodii SS, Cunnane SC (2002) Breath acetone is a reliable indicator of ketosis in adults consuming ketogenic meals. Am J Clin Nutr 76:65–70PubMedGoogle Scholar
  87. Neal EG, Chaffe H, Schwartz RH, Lawson MS, Edwards N, Fitzsimmons G, Whitney A, Cross JH (2008) The ketogenic diet for the treatment of childhood epilepsy: a randomised controlled trial. Lancet Neurol 7:500–506PubMedCrossRefGoogle Scholar
  88. Nedergaard M, Ransom B, Goldman SA (2003) New roles for astrocytes: redefining the functional architecture of the brain. Trends Neurosci 26:523–530PubMedCrossRefGoogle Scholar
  89. Nehlig A (2004) Brain uptake and metabolism of ketone bodies in animal models. Prostaglandins Leukot Essent Fat Acids 70:265–275CrossRefGoogle Scholar
  90. Nehlig A, Pereira de Vasconcelos A (1993) Glucose and ketone body utilization by the brain of neonatal rats. Prog Neurobiol 40:163–221PubMedCrossRefGoogle Scholar
  91. Neuwelt EA, Bauer B, Fahlke C, Fricker G, Iadecola C, Janigro D, Leybaert L, Molnár Z, O’Donnell ME, Povlishock JT, Saunders NR, Sharp F, Stanimirovic D, Watts RJ, Drewes LR (2011) Engaging neuroscience to advance translational research in brain barrier biology. Nat Rev Neurosci 12(3):169–182PubMedCentralPubMedCrossRefGoogle Scholar
  92. Nitsch C, Klatzo I (1983) Regional patterns of blood–brain barrier breakdown during epileptiform seizures induced by various convulsive agents. J Neurol Sci 59:305–322PubMedCrossRefGoogle Scholar
  93. Oby E, Janigro D (2006) The blood–brain barrier and epilepsy. Epilepsia 47:1761–1774PubMedCrossRefGoogle Scholar
  94. Okada S, Nakamura M, Katoh H, Miyao T, Shimazaki T, Ishii K, Yamane J, Yoshimura A, Iwamoto Y, Toyama Y et al (2006) Conditional ablation of Stat3 or Socs3 discloses a dual role for reactive astrocytes after spinal cord injury. Nat Med 12:829–834PubMedCrossRefGoogle Scholar
  95. Owen OE, Morgan AP, Kemp HG, Sullivan JM, Herrera MG, Cahill GF Jr (1967) Brain metabolism during fasting. J Clin Invest 46:1589–1595PubMedCentralPubMedCrossRefGoogle Scholar
  96. Pan JW, Bebin EM, Chu WJ, Hetherington HP (1999) Ketosis and epilepsy: 31P spectroscopic imaging at 4.1 T. Epilepsia 40:703–707PubMedCrossRefGoogle Scholar
  97. Pan JW, de Graaf RA, Petersen KF, Shulman GI, Hetherington HP, Rothman DL (2002) [2,4-13 C2]-beta-hydroxybutyrate metabolism in human brain. J Cereb Blood Flow Metab 22:890–898PubMedCentralPubMedCrossRefGoogle Scholar
  98. Pan JW, Kim JH, Cohen-Gadol A, Pan C, Spencer DD, Hetherington HP (2005) Regional energetic dysfunction in hippocampal epilepsy. Acta Neurol Scand 111:218–224PubMedCrossRefGoogle Scholar
  99. Pellerin L, Magistretti PJ (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci USA 91:10625–10629PubMedCentralPubMedCrossRefGoogle Scholar
  100. Pellerin L, Pellegri G, Bittar PG, Charnay Y, Bouras C, Martin JL, Stella N, Magistretti PJ (1998) Evidence supporting the existence of an activity-dependent astrocyte-neuron lactate shuttle. Dev Neurosci 20:291–299PubMedCrossRefGoogle Scholar
  101. Pilegaard H, Domino K, Noland T, Juel C, Hellsten Y, Halestrap AP, Bangsbo J (1999) Effect of high-intensity exercise training on lactate/H+ transport capacity in human skeletal muscle. Am J Physiol 276:E255–E261PubMedGoogle Scholar
  102. Pollay M, Stevens FA (1980) Starvation-induced changes in transport of ketone bodies across the blood–brain barrier. J Neurosci Res 5:163–172PubMedCrossRefGoogle Scholar
  103. Pollen DA, Trachtenberg MC (1970) Neuroglia: gliosis and focal epilepsy. Science 167:1252–1253PubMedCrossRefGoogle Scholar
  104. Rafiki A, Boulland JL, Halestrap AP, Ottersen OP, Bergersen L (2003) Highly differential expression of the monocarboxylate transporters MCT2 and MCT4 in the developing rat brain. Neuroscience 122:677–688PubMedCrossRefGoogle Scholar
  105. Rigau V, Morin M, Rousset MC, de Bock F, Lebrun A, Coubes P, Picot MC, Baldy-Moulinier M, Bockaert J, Crespel A et al (2007) Angiogenesis is associated with blood–brain barrier permeability in temporal lobe epilepsy. Brain 130:1942–1956PubMedCrossRefGoogle Scholar
  106. Rolfe DF, Brown GC (1997) Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol Rev 77:731–758PubMedGoogle Scholar
  107. Rutecki PA (1995) Noradrenergic modulation of epileptiform activity in the hippocampus. Epilepsy Res 20(2):125–136PubMedCrossRefGoogle Scholar
  108. Sander JW (2003) The natural history of epilepsy in the era of new antiepileptic drugs and surgical treatment. Epilepsia 44(Suppl 1):17–20PubMedCrossRefGoogle Scholar
  109. Schurr A, West CA, Rigor BM (1988) Lactate-supported synaptic function in the rat hippocampal slice preparation. Science 240:1326–1328PubMedCrossRefGoogle Scholar
  110. Schurr A, Miller JJ, Payne RS, Rigor BM (1999) An increase in lactate output by brain tissue serves to meet the energy needs of glutamate-activated neurons. J Neurosci 19:34–39PubMedGoogle Scholar
  111. Seifert G, Carmignoto G, Steinhauser C (2010) Astrocyte dysfunction in epilepsy. Brain Res Rev 63:212–221PubMedCrossRefGoogle Scholar
  112. Sirven J, Whedon B, Caplan D, Liporace J, Glosser D, O’Dwyer J, Sperling MR (1999) The ketogenic diet for intractable epilepsy in adults: preliminary results. Epilepsia 40:1721–1726PubMedCrossRefGoogle Scholar
  113. Smith D, Pernet A, Hallett WA, Bingham E, Marsden PK, Amiel SA (2003) Lactate: a preferred fuel for human brain metabolism in vivo. J Cereb Blood Flow Metab 23:658–664PubMedCrossRefGoogle Scholar
  114. Sofroniew MV (2005) Reactive astrocytes in neural repair and protection. Neuroscientist 11:400–407PubMedCrossRefGoogle Scholar
  115. Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119:7–35PubMedCentralPubMedCrossRefGoogle Scholar
  116. Spencer DD, Spencer SS, Mattson RH, Williamson PD, Novelly RA (1984) Access to the posterior medial temporal lobe structures in the surgical treatment of temporal lobe epilepsy. Neurosurgery 15:667–671PubMedCrossRefGoogle Scholar
  117. Stittsworth JD Jr, Lanthorn TH (1993) Lactate mimics only some effects of d-glucose on epileptic depolarization and long-term synaptic failure. Brain Res 630:21–27PubMedCrossRefGoogle Scholar
  118. Sullivan PG, Rippy NA, Dorenbos K, Concepcion RC, Agarwal AK, Rho JM (2004) The ketogenic diet increases mitochondrial uncoupling protein levels and activity. Ann Neurol 55:576–580PubMedCrossRefGoogle Scholar
  119. Suzuki Y, Takahashi H, Fukuda M, Hino H, Kobayashi K, Tanaka J, Ishii E (2009) beta-Hydroxybutyrate alters GABA-transaminase activity in cultured astrocytes. Brain Res 1268:17–23PubMedCrossRefGoogle Scholar
  120. Tang CM, Dichter M, Morad M (1990) Modulation of the N-methyl-d-aspartate channel by extracellular H+. Proc Natl Acad Sci USA 87:6445–6449PubMedCentralPubMedCrossRefGoogle Scholar
  121. Theodore WH, Newmark ME, Sato S, Brooks R, Patronas N, De La Paz R, DiChiro G, Kessler RM, Margolin R, Manning RG et al (1983) [18F]fluorodeoxyglucose positron emission tomography in refractory complex partial seizures. Ann Neurol 14:429–437PubMedCrossRefGoogle Scholar
  122. Tsacopoulos M, Magistretti PJ (1996) Metabolic coupling between glia and neurons. J Neurosci 16:877–885PubMedGoogle Scholar
  123. Tschirgi RD, Inanaga K, Taylor JL, Walker RM, Sonnenschein RR (1957) Changes in cortical pH and blood flow accompanying spreading cortical depression and convulsion. Am J Physiol 190:557–562PubMedGoogle Scholar
  124. van Hall G, Stromstad M, Rasmussen P, Jans O, Zaar M, Gam C, Quistorff B, Secher NH, Nielsen HB (2009) Blood lactate is an important energy source for the human brain. J Cereb Blood Flow Metab 29:1121–1129PubMedCrossRefGoogle Scholar
  125. Waldbaum S, Patel M (2010) Mitochondria, oxidative stress, and temporal lobe epilepsy. Epilepsy Res 88:23–45PubMedCentralPubMedCrossRefGoogle Scholar
  126. Weiss N, Miller F, Cazaubon S, Couraud PO (2009) The blood–brain barrier in brain homeostasis and neurological diseases. Biochim Biophys Acta 1788:842–857PubMedCrossRefGoogle Scholar
  127. Wiebe S, Blume WT, Girvin JP, Eliasziw M (2001) A randomized, controlled trial of surgery for temporal-lobe epilepsy. N Engl J Med 345:311–318PubMedCrossRefGoogle Scholar
  128. Williamson A, Patrylo PR, Spencer DD (1999) Decrease in inhibition in dentate granule cells from patients with medial temporal lobe epilepsy. Ann Neurol 45:92–99PubMedCrossRefGoogle Scholar
  129. Williamson A, Patrylo PR, Pan J, Spencer DD, Hetherington H (2005) Correlations between granule cell physiology and bioenergetics in human temporal lobe epilepsy. Brain 128:1199–1208PubMedCrossRefGoogle Scholar
  130. Wyss MT, Jolivet R, Buck A, Magistretti PJ, Weber B (2011) In vivo evidence for lactate as a neuronal energy source. J Neurosci 31:7477–7485PubMedCrossRefGoogle Scholar
  131. Yudkoff M, Daikhin Y, Nissim I, Lazarow A (2004) Ketogenic diet, brain glutamate metabolism and seizure control. Prostaglandins Leukot Essent Fat Acids 70:277–285CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Fredrik Lauritzen
    • 1
    • 2
  • Tore Eid
    • 3
  • Linda H. Bergersen
    • 1
    • 2
  1. 1.The Brain and Muscle Energy Group, Department of Anatomy and Department of Oral BiologyUniversity of OsloOsloNorway
  2. 2.Department of Neuroscience and PharmacologyUniversity of CopenhagenCopenhagenDenmark
  3. 3.Department of Laboratory MedicineYale University School of MedicineNew HavenUSA

Personalised recommendations