Advertisement

Brain Structure and Function

, Volume 220, Issue 1, pp 229–247 | Cite as

Effects of postnatal hyperoxia exposure on the rat dentate gyrus and subventricular zone

  • Andrea Porzionato
  • Veronica Macchi
  • Patrizia Zaramella
  • Gloria Sarasin
  • Davide Grisafi
  • Arben Dedja
  • Lino Chiandetti
  • Raffaele De CaroEmail author
Original Article

Abstract

Premature newborns may be exposed to hyperoxia in the first postnatal period, but clinical and experimental works have raised the question of oxygen toxicity for the developing brain. However, specific analysis of hyperoxia exposure on neurogenesis is still lacking. Thus, the aim of the present study was to evaluate possible changes in the morphometric parameters of the main neurogenic sites in newborn rats exposed to 60 or 95 % oxygen for the first 14 postnatal days. The optical disector, a morphometric method based upon unbiased sampling principles of stereology, was applied to analyse cell densities, total volumes, and total cell numbers of the dentate gyrus (DG) and subventricular zone (SVZ). Apoptosis and proliferation were also studied by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling method and anti-ki67 immunohistochemistry, respectively. Severe hyperoxia increased the percentage of apoptotic cells in the DG. Moderate and severe hyperoxia induced a proliferative response both in the DG and SVZ, but the two neurogenic sites showed different changes in their morphometric parameters. The DG of both the hyperoxic groups showed lower volume and total cell number than that of the normoxic one. Conversely, the SVZ of newborn rats exposed to 95 % hyperoxia showed statistically significant higher volume and total cell number than SVZ of rats raised in normoxia. Our findings indicate that hyperoxia exposure in the first postnatal period affects both the neurogenic areas, although in different ways, i.e. reduction of DG and expansion of SVZ.

Keywords

Apoptosis Neurogenesis Optical disector Hyperoxia Dentate gyrus Subventricular zone 

Notes

Acknowledgments

The authors are grateful to Anna Rambaldo for skilful technical assistance.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Allam A, El-Ghareeb AA, Abdul-Hamid M, Baikry A, Sabri MI (2011) Prenatal and perinatal acrylamide disrupts the development of cerebellum in rat: biochemical and morphological studies. Toxicol Ind Health 27:291–306PubMedGoogle Scholar
  2. Andersen BB, Gundersen HJ (1999) Pronounced loss of cell nuclei and anisotropic deformation of thick sections. J Microsc 196:69–73PubMedGoogle Scholar
  3. Aslan H, Songur A, Tunc AT, Ozen OA, Bas O, Yagmurca M, Turgut M, Sarsilmaz M, Kaplan S (2006) Effects of formaldehyde exposure on granule cell number and volume of dentate gyrus: a histopathological and stereological study. Brain Res 1122:191–200PubMedGoogle Scholar
  4. Aydin K, Cokluk C, Ayas B, Onger ME, Keskin I, Ozyasar A, Aslan H, Kaplan S (2011) Hippocampal cell loss after an anterior and posterior anastomotic vein occlusion model in rats. Int J Dev Neurosci 29:717–722PubMedGoogle Scholar
  5. Balasubramaniam V, Mervis CF, Maxey AM, Markham NE, Abman SH (2007) Hyperoxia reduces bone marrow, circulating, and lung endothelial progenitor cells in the developing lung: implications for the pathogenesis of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 292:L1073–L1084PubMedGoogle Scholar
  6. Bayer SA (1982) Changes in the total number of dentate granule cells in juvenile and adult rats: a correlated volumetric and 3H-thymidine autoradiographic study. Exp Brain Res 46:315–323PubMedGoogle Scholar
  7. Bayer SA, Yackel JW, Puri PS (1982) Neurons in the rat dentate gyrus granular layer substantially increase during juvenile and adult life. Science 216:890–892PubMedGoogle Scholar
  8. Benderro GF, Sun X, Kuang Y, Lamanna JC (2012) Decreased VEGF expression and microvascular density, but increased HIF-1 and 2α accumulation and EPO expression in chronic moderate hyperoxia in the mouse brain. Brain Res 1471:46–55PubMedCentralPubMedGoogle Scholar
  9. Boyce RW, Dorph-Petersen KA, Lyck L, Gundersen HJ (2010) Design-based stereology: introduction to basic concepts and practical approaches for estimation of cell number. Toxicol Pathol 38:1011–1025PubMedGoogle Scholar
  10. Braendgaard H, Gundersen HJ (1986) The impact of recent stereological advances on quantitative studies of the nervous system. J Neurosci Methods 18:39–78PubMedGoogle Scholar
  11. Braendgaard H, Evans SM, Howard CV, Gundersen HJ (1990) The total number of neurons in the human neocortex unbiasedly estimated using optical disectors. J Microsc 157:285–304PubMedGoogle Scholar
  12. Bulte DP, Chiarelli PA, Wise RG, Jezzard P (2007) Cerebral perfusion response to hyperoxia. J Cereb Blood Flow Metab 27:69–75PubMedGoogle Scholar
  13. Buonocore G, Perrone S, Bracci R (2001) Free radicals and brain damage in the newborn. Biol Neonate 79:180–186PubMedGoogle Scholar
  14. Chavez JC, Baranova O, Lin J, Pichiule P (2006) The transcriptional activator hypoxia inducible factor 2 (HIF-2/EPAS-1) regulates the oxygen-dependent expression of erythropoietin in cortical astrocytes. J Neurosci 26:9471–9481PubMedGoogle Scholar
  15. Chen CM, Wang LF, Chou HC, Lang YD, Lai YP (2007a) Up-regulation of connective tissue growth factor in hyperoxia-induced lung fibrosis. Pediatr Res 62:128–133PubMedGoogle Scholar
  16. Chen ZY, Asavaritikrai P, Prchal JT, Noguchi CT (2007b) Endogenous erythropoietin signaling is required for normal neural progenitor cell proliferation. J Biol Chem 282:25875–25883PubMedGoogle Scholar
  17. Christensen JR, Larsen KB, Lisanby SH, Scalia J, Arango V, Dwork AJ, Pakkenberg B (2007) Neocortical and hippocampal neuron and glial cell numbers in the rhesus monkey. Anat Rec 290:330–340Google Scholar
  18. Coggeshall RE (1992) A consideration of neural counting methods. Trends Neurosci 15:9–13PubMedGoogle Scholar
  19. Collins MP, Lorenz JM, Jetton JR, Paneth N (2001) Hypocapnia and other ventilation-related risk factors for cerebral palsy in low birth weight infants. Pediatr Res 50:712–719PubMedGoogle Scholar
  20. Cruz-Orive LM (1990) On the empirical variance of a fractionator estimate. J Microsc 160:89–95Google Scholar
  21. Cruz-Orive LM (1999) Precision of Cavalieri sections and slices with local errors. J Microsc 193:182–198PubMedGoogle Scholar
  22. Cruz-Orive LM (2004) Precision of the fractionator from Cavalieri designs. J Microsc 213:205–211PubMedGoogle Scholar
  23. Cruz-Orive LM (2006) A general variance predictor for Cavalieri slices. J Microsc 222:158–165PubMedGoogle Scholar
  24. Daval JL, Vert P (2004) Apoptosis and neurogenesis after transient hypoxia in the developing rat brain. Semin Perinatol 28:257–263PubMedGoogle Scholar
  25. Deuber C, Terhaar M (2011) Hyperoxia in very preterm infants: a systematic review of the literature. J Perinatol Neonatal Nurs 25:268–274Google Scholar
  26. Deulofeut R, Critz A, Adams-Chapman I, Sola A (2006) Avoiding hyperoxia in infants < or = 1,250 g is associated with improved short- and long-term outcomes. J Perinatol 26:700–705PubMedGoogle Scholar
  27. Dobbing J, Sands J (1979) Comparative aspects of the brain growth spurt. Early Hum Dev 3:79–83PubMedGoogle Scholar
  28. Dorph-Petersen KA, Lewis DA (2011) Stereological approaches to identifying neuropathology in psychosis. Biol Psychiatry 69:113–126PubMedCentralPubMedGoogle Scholar
  29. Dorph-Petersen KA, Nyengaard JR, Gundersen HJ (2001) Tissue shrinkage and unbiased stereological estimation of particle number and size. J Microsc 204:232–246PubMedGoogle Scholar
  30. Dorph-Petersen KA, Caric D, Saghafi R, Zhang W, Sampson AR, Lewis DA (2009) Volume and neuron number of the lateral geniculate nucleus in schizophrenia and mood disorders. Acta Neuropathol 117:369–384PubMedCentralPubMedGoogle Scholar
  31. Duong TQ, Iadecola C, Kim SG (2001) Effect of hyperoxia, hypercapnia, and hypoxia on cerebral interstitial oxygen tension and cerebral blood flow. Magn Reson Med 45:61–70PubMedGoogle Scholar
  32. Eriksen N, Pakkenberg B (2007) Total neocortical cell number in the mysticete brain. Anat Rec 290:83–95Google Scholar
  33. Fabricius K, Wörtwein G, Pakkenberg B (2008) The impact of maternal separation on adult mouse behaviour and on the total neuron number in the mouse hippocampus. Brain Struct Funct 212:403–416PubMedCentralPubMedGoogle Scholar
  34. Felderhoff-Mueser U, Bittigau P, Sifringer M, Jarosz B, Korobowicz E, Mahler L, Piening T, Moysich A, Grune T, Thor F, Heumann R, Bührer C, Ikonomidou C (2004) Oxygen causes cell death in the developing brain. Neurobiol Dis 17:273–282PubMedGoogle Scholar
  35. Felderhoff-Mueser U, Sifringer M, Polley O, Dzietko M, Leineweber B, Mahler L, Baier M, Bittigau P, Obladen M, Ikonomidou C, Bührer C (2005) Caspase-1-processed interleukins in hyperoxia-induced cell death in the developing brain. Ann Neurol 57:50–59PubMedGoogle Scholar
  36. Fukui K, Onodera K, Shinkai T, Suzuki S, Urano S (2001) Impairment of learning and memory in rats caused by oxidative stress and aging, and changes in antioxidative defense systems. Ann N Y Acad Sci 928:168–175PubMedGoogle Scholar
  37. Furuta M, Bridges RS (2005) Gestation-induced cell proliferation in the rat brain. Brain Res Dev Brain Res 156:61–66PubMedGoogle Scholar
  38. Gil JM, Mohapel P, Araújo IM, Popovic N, Li JY, Brundin P, Petersén A (2005) Reduced hippocampal neurogenesis in R6/2 transgenic Huntington’s disease mice. Neurobiol Dis 20:744–751PubMedGoogle Scholar
  39. Gokcimen A, Rağbetli MC, Baş O, Tunc AT, Aslan H, Yazici AC, Kaplan S (2007) Effect of prenatal exposure to an anti-inflammatory drug on neuron number in cornu ammonis and dentate gyrus of the rat hippocampus: a stereological study. Brain Res 1127:185–192PubMedGoogle Scholar
  40. González-Burgos I, Velázquez-Zamora DA, Beas-Zárate C (2009) Damage and plasticity in adult rat hippocampal trisynaptic circuit neurons after neonatal exposure to glutamate excitotoxicity. Int J Dev Neurosci 27:741–745PubMedGoogle Scholar
  41. Gotts JE, Chesselet MF (2005) Mechanisms of subventricular zone expansion after focal cortical ischemic injury. J Comp Neurol 488:201–214PubMedGoogle Scholar
  42. Grisafi D, Tassone E, Dedja A, Oselladore B, Masola V, Guzzardo V, Porzionato A, Salmaso R, Albertin G, Artusi C, Zaninotto M, Onisto M, Milan A, Macchi V, De Caro R, Fassina A, Bordigato MA, Chiandetti L, Filippone M, Zaramella P (2012) L-citrulline prevents alveolar and vascular derangement in a rat model of moderate hyperoxia-induced lung injury. Lung 190:419–430PubMedGoogle Scholar
  43. Grisafi D, Pozzobon M, Dedja A, Vanzo V, Tomanin R, Porzionato A, Macchi V, Salmaso R, Scarpa M, Cozzi E, Fassina A, Navaglia F, Maran C, Onisto M, Caenazzo L, De Coppi P, De Caro R, Chiandetti L, Zaramella P (2013) Human amniotic fluid stem cells protect rat lungs exposed to moderate hyperoxia. Pediatr Pulmonol (Epub ahead of print)Google Scholar
  44. Gual-Arnau X, Cruz-Orive LM (2006) New variance expressions for systematic sampling: the filtering approach. J Microsc 222:217–227PubMedGoogle Scholar
  45. Gundersen HJG (1977) Notes on the estimation of the numerical density of arbitrary profiles: the edge effect. J Microsc 111:219–223Google Scholar
  46. Gundersen HJ (1986) Stereology of arbitrary particles. A review of unbiased number and size estimators and the presentation of some new ones, in memory of William R. Thompson. J Microsc 143:3–45PubMedGoogle Scholar
  47. Gundersen HJG, Jensen EB (1987) The efficiency of systematic sampling in stereology and its prediction. J Microsc 147:229–263PubMedGoogle Scholar
  48. Gundersen HJG, Bagger P, Bendtsen TF, Evans SM, Korbo L, Marcussen N, Moller A, Nielsen K, Nyengaard JR, Pakkenberg B, Sorensen FB, Vesterby A, West MJ (1988) The new stereological tools: disector, fractionator, nucleator and point sampled intercepts and their use in pathological research and diagnosis. APMIS 96:857–881PubMedGoogle Scholar
  49. Gundersen HJG, Jensen EBV, Kieu K, Nielsen J (1999) The efficiency of systematic sampling in stereology—reconsidered. J Microsc 193:199–211PubMedGoogle Scholar
  50. Guntinas-Lichius O, Neiss WF (1996) Comparison of empirical efficiency in neuron counting by the fractionator method and in volume measurement by Cavalieri’s method. Acta Stereologica 15:131–139Google Scholar
  51. Handley S, Sola A, Wang X, Wen TC, Genetta T, Moore J, Rogido M (2006) Hyperoxia causes oxidative stress and increases neural stem cells proliferation in the murine developing brain. In: Pediatric academic societies 2006 annual meeting, San Francisco, California. E-PAS 59:5168.6 (abstract), April 29—May 2, 2006Google Scholar
  52. Hays SL, McPherson RJ, Juul SE, Wallace G, Schindler AG, Chavkin C, Gleason CA (2012) Long-term effects of neonatal stress on adult conditioned place preference (CPP) and hippocampal neurogenesis. Behav Brain Res 227:7–11PubMedCentralPubMedGoogle Scholar
  53. Hellström NA, Björk-Eriksson T, Blomgren K, Kuhn HG (2009) Differential recovery of neural stem cells in the subventricular zone and dentate gyrus after ionizing radiation. Stem Cells 27:634–641PubMedGoogle Scholar
  54. Hosseini-Sharifabad M, Nyengaard JR (2007) Design-based estimation of neuronal number and individual neuronal volume in the rat hippocampus. J Neurosci Methods 162:206–214PubMedGoogle Scholar
  55. Hosseini-Sharifabad M, Esfandiari E, Hosseini-Sharifabad A (2012) The effect of prenatal exposure to restraint stress on hippocampal granule neurons of adult rat offspring. Iran J Basic Med Sci 15:1060–1067PubMedCentralPubMedGoogle Scholar
  56. Hu X, Qiu J, Grafe MR, Rea HC, Rassin DK, Perez-Polo JR (2003) Bcl-2 family members make different contributions to cell death in hypoxia and/or hyperoxia in rat cerebral cortex. Int J Dev Neurosci 21:371–377PubMedGoogle Scholar
  57. Ikonomidou C, Kaindl AM (2011) Neuronal death and oxidative stress in the developing brain. Antioxid Redox Signal 14:1535–1550PubMedGoogle Scholar
  58. Ismail ZI, Bedi KS (2007) Rats exposed to cocaine during late gestation and early postnatal life show deficits in hippocampal pyramidal and granule cells in later life. J Anat 210:749–760PubMedCentralPubMedGoogle Scholar
  59. Jin K, Minami M, Lan JQ, Mao XO, Batteur S, Simon RP, Greenberg DA (2001) Neurogenesis in dentate subgranular zone and rostral subventricular zone after focal cerebral ischemia in the rat. Proc Natl Acad Sci USA 98:4710–4715PubMedCentralPubMedGoogle Scholar
  60. Jin K, Zhu Y, Sun Y, Mao XO, Xie L, Greenberg DA (2002) Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc Natl Acad Sci USA 99:11946–11950PubMedCentralPubMedGoogle Scholar
  61. Jin K, Wang X, Xie L, Mao XO, Zhu W, Wang Y, Shen J, Mao Y, Banwait S, Greenberg DA (2006) Evidence for stroke-induced neurogenesis in the human brain. Proc Natl Acad Sci USA 103:13198–13202PubMedCentralPubMedGoogle Scholar
  62. Joelving FC, Billeskov R, Christensen JR, West M, Pakkenberg B (2006) Hippocampal neuron and glial cell numbers in Parkinson’s disease–a stereological study. Hippocampus 16:826–833PubMedGoogle Scholar
  63. Kaindl AM, Sifringer M, Zabel C, Nebrich G, Wacker MA, Felderhoff-Mueser U, Endesfelder S, von der Hagen M, Stefovska V, Klose J, Ikonomidou C (2006) Acute and long-term proteome changes induced by oxidative stress in the developing brain. Cell Death Differ 13:1097–1109PubMedGoogle Scholar
  64. Kanagawa T, Fukuda H, Tsubouchi H, Komoto Y, Hayashi S, Fukui O, Shimoya K, Murata Y (2006) A decrease of cell proliferation by hypothermia in the hippocampus of the neonatal rat. Brain Res 1111:36–40PubMedGoogle Scholar
  65. Kee NJ, Preston E, Wojtowicz JM (2001) Enhanced neurogenesis after transient global ischemia in the dentate gyrus of the rat. Exp Brain Res 136:313–320PubMedGoogle Scholar
  66. Kieu K, Souchet S, Istas J (1999) Precision of systematic sampling and transitive methods. J Statist Plan Inf 77:263–279Google Scholar
  67. Klinger G, Beyene J, Shah P, Perlman M (2005) Do hyperoxaemia and hypocapnia add to the risk of brain injury after intrapartum asphyxia? Arch Dis Child Fetal Neonatal Ed 90:F49–F52PubMedCentralPubMedGoogle Scholar
  68. Lazic SE, Grote H, Armstrong RJ, Blakemore C, Hannan AJ, van Dellen A, Barker RA (2004) Decreased hippocampal cell proliferation in R6/1 Huntington’s mice. NeuroReport 15:811–813PubMedGoogle Scholar
  69. Ling EA, Paterson JA, Privat A, Mori S, Leblond CP (1973) Investigation of glial cells in semithin sections. I. Identification of glial cells in the brain of young rats. J Comp Neurol 149:43–71PubMedGoogle Scholar
  70. Liu J, Solway K, Messing RO, Sharp FR (1998) Increased neurogenesis in the dentate gyrus after transient global ischemia in gerbils. J Neurosci 18:7768–7778PubMedGoogle Scholar
  71. Macas J, Nern C, Plate KH, Momma S (2006) Increased generation of neuronal progenitors after ischemic injury in the aged adult human forebrain. J Neurosci 26:13114–13119PubMedGoogle Scholar
  72. Madeira MD, Paula-Barbosa M, Cadete-Leite A (1988) Tavares MA (1988) Unbiased estimate of hippocampal granule cell numbers in hypothyroid and in sex-age-matched control rats. J Hirnforsch 29:643–650PubMedGoogle Scholar
  73. Milosevic J, Adler I, Manaenko A, Schwarz SC, Walkinshaw G, Arend M, Flippin LA, Storch A, Schwarz J (2009) Non-hypoxic stabilization of hypoxia-inducible factor alpha (HIF-alpha): relevance in neural progenitor/stem cells. Neurotox Res 15:367–380PubMedGoogle Scholar
  74. Minger SL, Ekonomou A, Carta EM, Chinoy A, Perry RH, Ballard CG (2007) Endogenous neurogenesis in the human brain following cerebral infarction. Regen Med 2:69–74PubMedGoogle Scholar
  75. Morales P, Reyes P, Klawitter V, Huaiquín P, Bustamante D, Fiedler J, Herrera-Marschitz M (2005) Effects of perinatal asphyxia on cell proliferation and neuronal phenotype evaluated with organotypic hippocampal cultures. Neuroscience 135:421–431PubMedGoogle Scholar
  76. Morales P, Fiedler JL, Andrés S, Berrios C, Huaiquín P, Bustamante D, Cardenas S, Parra E, Herrera-Marschitz M (2008) Plasticity of hippocampus following perinatal asphyxia: effects on postnatal apoptosis and neurogenesis. J Neurosci Res 86:2650–2662PubMedGoogle Scholar
  77. Nishida A, Misaki Y, Kuruta H, Takashima S (1994) Developmental expression of copper, zinc-superoxide dismutase in human brain by chemiluminescence. Brain Dev 16:40–43PubMedGoogle Scholar
  78. Odaci E, Bas O, Kaplan S (2008) Effects of prenatal exposure to a 900 MHz electromagnetic field on the dentate gyrus of rats: a stereological and histopathological study. Brain Res 1238:224–229PubMedGoogle Scholar
  79. Onodera K, Omoi NO, Fukui K, Hayasaka T, Shinkai T, Suzuki S, Abe K, Urano S (2003) Oxidative damage of rat cerebral cortex and hippocampus, and changes in antioxidative defense systems caused by hyperoxia. Free Radic Res 37:367–372PubMedGoogle Scholar
  80. Pakkenberg B, Gundersen HJG (1988) Total number of neurons and glial cells in human brain nuclei estimated by the disector and the fractionator. J Microsc 150:1–20PubMedGoogle Scholar
  81. Pakkenberg B, Gundersen HJ (1997) Neocortical neuron number in humans: effect of sex and age. J Comp Neurol 384:312–320PubMedGoogle Scholar
  82. Pakkenberg B, Møller A, Gundersen HJ, Mouritzen Dam A, Pakkenberg H (1991) The absolute number of nerve cells in substantia nigra in normal subjects and in patients with Parkinson’s disease estimated with an unbiased stereological method. J Neurol Neurosurg Psychiatry 54:30–33Google Scholar
  83. Parent JM, Vexler ZS, Gong C, Derugin N, Ferriero DM (2002) Rat forebrain neurogenesis and striatal neuron replacement after focal stroke. Ann Neurol 52:802–813PubMedGoogle Scholar
  84. Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates, 6th edn. Academic Press, SidneyGoogle Scholar
  85. Porzionato A, Macchi V, Guidolin D, Sarasin G, Parenti A, De Caro R (2008) Anatomic distribution of apoptosis in medulla oblongata of infants and adults. J Anat 212:106–113PubMedCentralPubMedGoogle Scholar
  86. Porzionato A, Macchi V, Parenti A, De Caro R (2009) Morphometric analysis of infant and adult medullary nuclei through optical disector method. Anat Rec 292:1619–1629Google Scholar
  87. Porzionato A, Zaramella P, Macchi V, Grisafi D, Salmaso R, Baraldi M, Fornaro E, Tassone E, Masola V, Onisto M, Chiandetti L, De Caro R (2012) Fluoxetine may worsen hyperoxia-induced lung damage in neonatal rats. Histol Histopathol 27:1599–1610PubMedGoogle Scholar
  88. Porzionato A, Zaramella P, Macchi V, Sarasin G, Di Giulio C, Rigon A, Grisafi D, Dedja A, Chiandetti L, De Caro R (2013) Cyclosporine and hyperoxia-induced lung damage in neonatal rats. Respir Physiol Neurobiol 187:41–46Google Scholar
  89. Rapp PR, Gallagher M (1996) Preserved neuron number in the hippocampus of aged rats with spatial learning deficits. Proc Natl Acad Sci U S A 93:9926–9930PubMedCentralPubMedGoogle Scholar
  90. Saugstad OD (2005) Oxidative stress in the newborn–a 30-year perspective. Biol Neonate 88:228–236PubMedGoogle Scholar
  91. Scheepens A, Wassink G, Piersma MJ, Van de Berg WD, Blanco CE (2003) A delayed increase in hippocampal proliferation following global asphyxia in the neonatal rat. Brain Res Dev Brain Res 142:67–76PubMedGoogle Scholar
  92. Schmitz C, Rhodes ME, Bludau M, Kaplan S, Ong P, Ueffing I, Vehoff J, Korr H, Frye CA (2002) Depression: reduced number of granule cells in the hippocampus of female, but not male, rats due to prenatal restraint stress. Mol Psychiatry 7:810–813PubMedGoogle Scholar
  93. Schmitz T, Endesfelder S, Reinert MC, Klinker F, Müller S, Bührer C, Liebetanz D (2012) Adolescent hyperactivity and impaired coordination after neonatal hyperoxia. Exp Neurol 235:374–379PubMedGoogle Scholar
  94. Semenza GL (2007) Life with oxygen. Science 318:62–64PubMedGoogle Scholar
  95. Sifringer M, Bendix I, Börner C, Endesfelder S, von Haefen C, Kalb A, Holifanjaniaina S, Prager S, Schlager GW, Keller M, Jacotot E, Felderhoff-Mueser U (2012) Prevention of neonatal oxygen-induced brain damage by reduction of intrinsic apoptosis. Cell Death Dis 3:e250PubMedCentralPubMedGoogle Scholar
  96. Smith AM, Pappalardo D, Chen WJ (2008) Estimation of neuronal numbers in rat hippocampus following neonatal amphetamine exposure: a stereology study. Neurotoxicol Teratol 30:495–502PubMedGoogle Scholar
  97. Sousa N, Madeira MD, Paula-Barbosa MM (1997) Structural alterations of the hippocampal formation of adrenalectomized rats: an unbiased stereological study. J Neurocytol 26:423–438PubMedGoogle Scholar
  98. Sousa N, Madeira MD, Paula-Barbosa MM (1998) Effects of corticosterone treatment and rehabilitation on the hippocampal formation of neonatal and adult rats. An unbiased stereological study. Brain Res 794:199–210PubMedGoogle Scholar
  99. Sterio DC (1984) The unbiased estimation of number and sizes of arbitrary particles using the disector. J Microsc 134:127–136PubMedGoogle Scholar
  100. Sturman JA, Gaull G, Raiha NC (1970) Absence of cystathionase in human fetal liver: is cystine essential? Science 169:74–76PubMedGoogle Scholar
  101. Taglialatela G, Perez-Polo JR, Rassin DK (1998) Induction of apoptosis in the CNS during development by the combination of hyperoxia and inhibition of glutathione synthesis. Free Radic Biol Med 25:936–942PubMedGoogle Scholar
  102. Tang Y, Nyengaard JR (1997) A stereological method for estimating the total length and size of myelin fibers in human brain white matter. J Neurosci Methods 73:193–200PubMedGoogle Scholar
  103. Tang JR, Seedorf GJ, Muehlethaler V, Walker DL, Markham NE, Balasubramaniam V, Abman SH (2010) Moderate postnatal hyperoxia accelerates lung growth and attenuates pulmonary hypertension in infant rats after exposure to intra-amniotic endotoxin. Am J Physiol Lung Cell Mol Physiol 299:L735–L748PubMedCentralPubMedGoogle Scholar
  104. Tatarkova Z, Engler I, Calkovska A, Mokra D, Drgova A, Hodas P, Lehotsky J, Dobrota D, Kaplan P (2011) Effect of long-term normobaric hyperoxia on oxidative stress in mitochondria of the guinea pig brain. Neurochem Res 36:1475–1481PubMedGoogle Scholar
  105. Tonchev AB, Yamashima T, Zhao L, Okano HJ, Okano H (2003) Proliferation of neural and neuronal progenitors after global brain ischemia in young adult macaque monkeys. Mol Cell Neurosci 23:292–301PubMedGoogle Scholar
  106. Tuzun F, Kumral A, Ozbal S, Dilek M, Tugyan K, Duman N, Ozkan H (2012) Maternal prenatal omega-3 fatty acid supplementation attenuates hyperoxia-induced apoptosis in the developing rat brain. Int J Dev Neurosci 30:315–323PubMedGoogle Scholar
  107. Vazquez-Valls E, Flores-Soto ME, Chaparro-Huerta V, Torres-Mendoza BM, Gudiño-Cabrera G, Rivera-Cervantes MC, Pallas M, Camins A, Armendáriz-Borunda J, Beas-Zarate C (2011) HIF-1α expression in the hippocampus and peripheral macrophages after glutamate-induced excitotoxicity. J Neuroimmunol 238:12–18PubMedGoogle Scholar
  108. Vottier G, Pham H, Pansiot J, Biran V, Gressens P, Charriaut-Marlangue C, Baud O (2011) Deleterious effect of hyperoxia at birth on white matter damage in the newborn rat. Dev Neurosci 33:261–269PubMedGoogle Scholar
  109. Wang H, Gondré-Lewis MC (2013) Prenatal nicotine and maternal deprivation stress de-regulate the development of CA1, CA3, and dentate gyrus neurons in hippocampus of infant rats. PLoS One 8:e65517PubMedCentralPubMedGoogle Scholar
  110. West MJ (1993) New stereological methods for counting neurons. Neurobiol Aging 14:275–285PubMedGoogle Scholar
  111. West MJ, Slomianka L, Gundersen HJ (1991) Unbiased stereological estimation of the total number of neurons in the subdivisions of the rat hippocampus using the optical fractionator. Anat Rec 231:482–497PubMedGoogle Scholar
  112. Winner B, Desplats P, Hagl C, Klucken J, Aigner R, Ploetz S, Laemke J, Karl A, Aigner L, Masliah E, Buerger E, Winkler J (2009) Dopamine receptor activation promotes adult neurogenesis in an acute Parkinson model. Exp Neurol 219:543–552PubMedGoogle Scholar
  113. Yang YJ, Wang XL, Yu XH, Wang X, Xie M, Liu CT (2008) Hyperbaric oxygen induces endogenous neural stem cells to proliferate and differentiate in hypoxic-ischemic brain damage in neonatal rats. Undersea Hyperb Med 35:113–129PubMedGoogle Scholar
  114. Yiş U, Kurul SH, Kumral A, Cilaker S, Tuğyan K, Genç S, Yilmaz O (2008a) Hyperoxic exposure leads to cell death in the developing brain. Brain Dev 30:556–562PubMedGoogle Scholar
  115. Yiş U, Kurul SH, Kumral A, Tuğyan K, Cilaker S, Yilmaz O, Genç S, Genç K (2008b) Effect of erythropoietin on oxygen-induced brain injury in the newborn rat. Neurosci Lett 448:245–249PubMedGoogle Scholar
  116. Zaghloul N, Nasim M, Patel H, Codipilly C, Marambaud P, Dewey S, Schiffer WK, Ahmed M (2012) Overexpression of extracellular superoxide dismutase has a protective role against hyperoxia-induced brain injury in neonatal mice. FEBS J 279:871–881PubMedGoogle Scholar
  117. Zara S, Macchi V, De Caro R, Rapino M, Cataldi A, Porzionato A (2012) pPKCα mediated-HIF-1α activation related to the morphological modifications occurring in neonatal myocardial tissue in response to severe and mild hyperoxia. Eur J Histochem 56:e2PubMedCentralPubMedGoogle Scholar
  118. Zara S, De Colli M, Rapino M, Di Valerio V, Marconi GD, Cataldi A, Macchi V, De Caro R, Porzionato A (2013) NF-κB involvement in hyperoxia-induced myocardial damage in newborn rat hearts. Histochem Cell Biol (Epub ahead of print)Google Scholar
  119. Zhang W, Li C, Yang S, Xu C, Wang W, Nyengaard JR, Tang Y (2008) A stereological method for estimating the total length and size of myelinated fibers in rat cerebral cortex. J Neurosci Methods 172:21–26PubMedGoogle Scholar
  120. Zhang L, Blomgren K, Kuhn HG, Cooper-Kuhn CM (2009) Effects of postnatal thyroid hormone deficiency on neurogenesis in the juvenile and adult rat. Neurobiol Dis 34:366–374PubMedGoogle Scholar
  121. Zhu LL, Wu LY, Yew DT, Fan M (2005) Effects of hypoxia on the proliferation and differentiation of NSCs. Mol Neurobiol 31:231–242PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Andrea Porzionato
    • 1
  • Veronica Macchi
    • 1
  • Patrizia Zaramella
    • 2
  • Gloria Sarasin
    • 1
  • Davide Grisafi
    • 2
  • Arben Dedja
    • 2
  • Lino Chiandetti
    • 2
  • Raffaele De Caro
    • 1
    Email author
  1. 1.Section of Anatomy, Department of Molecular MedicineUniversity of PadovaPaduaItaly
  2. 2.Neonatal Intensive Care Unit, Women’s and Children’s Health DepartmentUniversity of PadovaPaduaItaly

Personalised recommendations