Brain Structure and Function

, Volume 220, Issue 1, pp 571–584 | Cite as

Onset-related differences in neural substrates of tinnitus-related distress: the anterior cingulate cortex in late-onset tinnitus, and the frontal cortex in early-onset tinnitus

  • Jae-Jin Song
  • Sven Vanneste
  • Winfried Schlee
  • Paul Van de Heyning
  • Dirk De Ridder
Original Article


Recent findings regarding differences in tinnitus-related neural activity according to onset age have raised a question on possible onset age-related differences in neural substrates of distress. Hence we collected quantitative electroencephalography (qEEG) findings of 28 late-onset tinnitus (LOT) and 29 early-onset tinnitus (EOT) (mean onset age 52.3 and 29.0 years, respectively) participants. According to the tinnitus questionnaire (TQ) score grade, LOTs were then subdivided into 13 high distress (HD; TQ grade 3 or 4) and 15 low distress (LD; TQ grade 1 or 2), while EOTs into 14 HD and 15 LD. Compared to the EOT group, the LOT group demonstrated increased qEEG source-localized activity and functional connectivity primarily in the anterior cingulate cortex (ACC) and parahippocampus. In subgroup comparisons, the ACC was activated more in HD–LOT participants than in LD–LOT participants for the beta 1, beta 2 and gamma frequency bands, while the left orbitofrontal cortex and left dorsolateral prefrontal cortex were activated more in HD–EOT than in LD–EOT for the delta/beta and gamma frequency bands, respectively. Even with the same amount of tinnitus-related distress level, responsible neural substrates are different according to the onset age. These differences may be important for exploring different target areas of treatment according to tinnitus onset age, as well as for conducting similar studies on other pathologies, such as depression or pain.


Tinnitus Anxiety Aging Electroencephalography Gyrus cinguli Prefrontal cortex 



The authors thank Jan Ost, Bram Van Achteren, Bjorn Devree, Pieter van Looy for their help in preparing this manuscript. Also, the first author thanks to Dr. DY Yoon for giving precious support to the study. This work was supported by Research Foundation Flanders (FWO), Tinnitus Research Initiative, The Neurological Foundation of New Zealand, TOP project University Antwerp, the Korean Science and Engineering Foundation (KOSEF) grant funded by the Korean government (MOST) (no. 2012-0030102), and Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2012R1A6A3A03038293).


  1. Andreescu C, Butters M, Lenze EJ, Venkatraman VK, Nable M, Reynolds CF 3rd, Aizenstein HJ (2009) fMRI activation in late-life anxious depression: a potential biomarker. Int J Geriatr Psychiatry 24:820–828PubMedCentralPubMedCrossRefGoogle Scholar
  2. Andreescu C, Wu M, Butters MA, Figurski J, Reynolds CF 3rd, Aizenstein HJ (2011) The default mode network in late-life anxious depression. Am J Geriatr Psychiatry 19:980–983PubMedCentralPubMedCrossRefGoogle Scholar
  3. Angrilli A, Bianchin M, Radaelli S, Bertagnoni G, Pertile M (2008) Reduced startle reflex and aversive noise perception in patients with orbitofrontal cortex lesions. Neuropsychologia 46:1179–1184PubMedCrossRefGoogle Scholar
  4. Awata S, Ito H, Konno M, Ono S, Kawashima R, Fukuda H, Sato M (1998) Regional cerebral blood flow abnormalities in late-life depression: relation to refractoriness and chronification. Psychiatry Clin Neurosci 52:97–105PubMedCrossRefGoogle Scholar
  5. Axelsson A, Ringdahl A (1989) Tinnitus—a study of its prevalence and characteristics. Br J Audiol 23:53–62PubMedCrossRefGoogle Scholar
  6. Bachevalier J, Machado CJ, Kazama A (2011) Behavioral outcomes of late-onset or early-onset orbital frontal cortex (areas 11/13) lesions in rhesus monkeys. Ann N Y Acad Sci 1239:71–86PubMedCentralPubMedCrossRefGoogle Scholar
  7. Bjelland I, Dahl AA, Haug TT, Neckelmann D (2002) The validity of the Hospital Anxiety and Depression Scale. An updated literature review. J Psychosom Res 52:69–77PubMedCrossRefGoogle Scholar
  8. Blood AJ, Zatorre RJ, Bermudez P, Evans AC (1999) Emotional responses to pleasant and unpleasant music correlate with activity in paralimbic brain regions. Nat Neurosci 2:382–387PubMedCrossRefGoogle Scholar
  9. Bruder GE, Bansal R, Tenke CE, Liu J, Hao X, Warner V, Peterson BS, Weissman MM (2012) Relationship of resting EEG with anatomical MRI measures in individuals at high and low risk for depression. Hum Brain Mapp 33:1325–1333PubMedCentralPubMedCrossRefGoogle Scholar
  10. Damasio AR (1996) The somatic marker hypothesis and the possible functions of the prefrontal cortex. Philos Trans R Soc Lond B Biol Sci 351:1413–1420PubMedCrossRefGoogle Scholar
  11. Davis SW, Dennis NA, Daselaar SM, Fleck MS, Cabeza R (2008) Que PASA? The posterior-anterior shift in aging. Cereb Cortex 18:1201–1209PubMedCentralPubMedCrossRefGoogle Scholar
  12. De Ridder D, Elgoyhen AB, Romo R, Langguth B (2011) Phantom percepts: tinnitus and pain as persisting aversive memory networks. Proc Natl Acad Sci USA 108:8075–8080PubMedCentralPubMedCrossRefGoogle Scholar
  13. De Ridder D, Vanneste S, Plazier M, Menovsky T, van de Heyning P, Kovacs S, Sunaert S (2012) Dorsolateral prefrontal cortex transcranial magnetic stimulation and electrode implant for intractable tinnitus. World Neurosurg 77:778–784PubMedCrossRefGoogle Scholar
  14. De Ridder D, Song JJ, Vanneste S (2013) Frontal cortex TMS for tinnitus. Brain Stimul 6:355–362PubMedCrossRefGoogle Scholar
  15. Dias R, Robbins TW, Roberts AC (1996) Dissociation in prefrontal cortex of affective and attentional shifts. Nature 380:69–72PubMedCrossRefGoogle Scholar
  16. Dierks T, Jelic V, Pascual-Marqui RD, Wahlund L, Julin P, Linden DE, Maurer K, Winblad B, Nordberg A (2000) Spatial pattern of cerebral glucose metabolism (PET) correlates with localization of intracerebral EEG-generators in Alzheimer’s disease. Clin Neurophysiol 111:1817–1824PubMedCrossRefGoogle Scholar
  17. Fabricius K, Jacobsen JS, Pakkenberg B (2013) Effect of age on neocortical brain cells in 90+ year old human females—a cell counting study. Neurobiol Aging 34:91–99PubMedCrossRefGoogle Scholar
  18. Farrior JB (1956) Fenestration operation in the poor candidates; 44 cases selected from 637 operations. Laryngoscope 66:566–573PubMedCrossRefGoogle Scholar
  19. Fuchs M, Kastner J, Wagner M, Hawes S, Ebersole JS (2002) A standardized boundary element method volume conductor model. Clin Neurophysiol 113:702–712PubMedCrossRefGoogle Scholar
  20. Gates GA, Cooper JC (1991) Incidence of hearing decline in the elderly. Acta Otolaryngol 111:240–248PubMedCrossRefGoogle Scholar
  21. Goebel G, Hiller W (1994) The tinnitus questionnaire. A standard instrument for grading the degree of tinnitus. Results of a multicenter study with the tinnitus questionnaire. HNO 42:166–172PubMedGoogle Scholar
  22. Golm D, Schmidt-Samoa C, Dechent P, Kroner-Herwig B (2013) Neural correlates of tinnitus related distress: an fMRI-study. Hear Res 295:87–99PubMedCrossRefGoogle Scholar
  23. Holmes AP, Blair RC, Watson JD, Ford I (1996) Nonparametric analysis of statistic images from functional mapping experiments. J Cereb Blood Flow Metab 16:7–22PubMedCrossRefGoogle Scholar
  24. Hwang JH, Chou PH, Wu CW, Chen JH, Liu TC (2009) Brain activation in patients with idiopathic hyperacusis. Am J Otolaryngol 30:432–434PubMedCrossRefGoogle Scholar
  25. Jastreboff PJ (1990) Phantom auditory perception (tinnitus): mechanisms of generation and perception. Neurosci Res 8:221–254PubMedCrossRefGoogle Scholar
  26. Jurcak V, Tsuzuki D, Dan I (2007) 10/20, 10/10, and 10/5 systems revisited: their validity as relative head-surface-based positioning systems. Neuroimage 34:1600–1611PubMedCrossRefGoogle Scholar
  27. Khedr EM, Ahmed MA, Shawky OA, Mohamed ES, El Attar GS, Mohammad KA (2010) Epidemiological study of chronic tinnitus in Assiut, Egypt. Neuroepidemiology 35:45–52PubMedCrossRefGoogle Scholar
  28. Kringelbach ML (2005) The human orbitofrontal cortex: linking reward to hedonic experience. Nat Rev Neurosci 6:691–702PubMedCrossRefGoogle Scholar
  29. Lane RD, Reiman EM, Axelrod B, Yun LS, Holmes A, Schwartz GE (1998) Neural correlates of levels of emotional awareness. Evidence of an interaction between emotion and attention in the anterior cingulate cortex. J Cogn Neurosci 10:525–535PubMedCrossRefGoogle Scholar
  30. Lee HY, Yoo SD, Ryu EW, Byun JY, Yeo SG, Park MS (2013) Short term effects of repetitive transcranial magnetic stimulation in patients with catastrophic intractable tinnitus: preliminary report. Clin Exp Otorhinolaryngol 6:63–67PubMedCentralPubMedCrossRefGoogle Scholar
  31. Levitin DJ, Menon V, Schmitt JE, Eliez S, White CD, Glover GH, Kadis J, Korenberg JR, Bellugi U, Reiss AL (2003) Neural correlates of auditory perception in Williams syndrome: an fMRI study. Neuroimage 18:74–82PubMedCrossRefGoogle Scholar
  32. Logan JM, Sanders AL, Snyder AZ, Morris JC, Buckner RL (2002) Under-recruitment and nonselective recruitment: dissociable neural mechanisms associated with aging. Neuron 33:827–840PubMedCrossRefGoogle Scholar
  33. Mahoney CJ, Rohrer JD, Goll JC, Fox NC, Rossor MN, Warren JD (2011) Structural neuroanatomy of tinnitus and hyperacusis in semantic dementia. J Neurol Neurosurg Psychiatry 82:1274–1278PubMedCentralPubMedCrossRefGoogle Scholar
  34. Mann SL, Hazlett EA, Byne W, Hof PR, Buchsbaum MS, Cohen BH, Goldstein KE, Haznedar MM, Mitsis EM, Siever LJ, Chu KW (2011) Anterior and posterior cingulate cortex volume in healthy adults: effects of aging and gender differences. Brain Res 1401:18–29PubMedCentralPubMedCrossRefGoogle Scholar
  35. Marano CM, Workman CI, Kramer E, Hermann CR, Ma Y, Dhawan V, Chaly T, Eidelberg D, Smith GS (2013) Longitudinal studies of cerebral glucose metabolism in late-life depression and normal aging. Int J Geriatr Psychiatry 28:417–423PubMedCentralPubMedCrossRefGoogle Scholar
  36. Marner L, Nyengaard JR, Tang Y, Pakkenberg B (2003) Marked loss of myelinated nerve fibers in the human brain with age. J Comp Neurol 462:144–152PubMedCrossRefGoogle Scholar
  37. Meeus O, Blaivie C, Van de Heyning P (2007) Validation of the Dutch and the French version of the Tinnitus Questionnaire. B-ENT 3(Suppl 7):11–17PubMedGoogle Scholar
  38. Meeus O, Heyndrickx K, Lambrechts P, De Ridder D, Van de Heyning P (2010) Phase-shift treatment for tinnitus of cochlear origin. Eur Arch Otorhinolaryngol 267:881–888PubMedCrossRefGoogle Scholar
  39. Mirandola P, Gobbi G, Malinverno C, Carubbi C, Ferne FM, Artico M, Vitale M, Vaccarezza M (2013) Impact of sulphurous water politzer inhalation on audiometric parameters in children with otitis media with effusion. Clin Exp Otorhinolaryngol 6:7–11PubMedCentralPubMedCrossRefGoogle Scholar
  40. Moazami-Goudarzi M, Michels L, Weisz N, Jeanmonod D (2010) Temporo-insular enhancement of EEG low and high frequencies in patients with chronic tinnitus. QEEG study of chronic tinnitus patients. BMC Neurosci 11:40PubMedCentralPubMedCrossRefGoogle Scholar
  41. Mulert C, Jager L, Schmitt R, Bussfeld P, Pogarell O, Moller HJ, Juckel G, Hegerl U (2004) Integration of fMRI and simultaneous EEG: towards a comprehensive understanding of localization and time-course of brain activity in target detection. Neuroimage 22:83–94PubMedCrossRefGoogle Scholar
  42. Nichols TE, Holmes AP (2002) Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp 15:1–25PubMedCrossRefGoogle Scholar
  43. Nondahl DM, Cruickshanks KJ, Huang GH, Klein BE, Klein R, Tweed TS, Zhan W (2012) Generational differences in the reporting of tinnitus. Ear Hear 33:640–644PubMedCentralPubMedCrossRefGoogle Scholar
  44. Pardo JV, Lee JT, Sheikh SA, Surerus-Johnson C, Shah H, Munch KR, Carlis JV, Lewis SM, Kuskowski MA, Dysken MW (2007) Where the brain grows old: decline in anterior cingulate and medial prefrontal function with normal aging. Neuroimage 35:1231–1237PubMedCentralPubMedCrossRefGoogle Scholar
  45. Pascual-Marqui RD (2002) Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find Exp Clin Pharmacol 24 Suppl D:5–12Google Scholar
  46. Pascual-Marqui RD (2007) Instantaneous and lagged measurements of linear and nonlinear dependence between groups of multivariate time series: frequency decomposition. Arxiv preprint arXiv:07111455Google Scholar
  47. Pizzagalli D, Pascual-Marqui RD, Nitschke JB, Oakes TR, Larson CL, Abercrombie HC, Schaefer SM, Koger JV, Benca RM, Davidson RJ (2001) Anterior cingulate activity as a predictor of degree of treatment response in major depression: evidence from brain electrical tomography analysis. Am J Psychiatry 158:405–415PubMedCrossRefGoogle Scholar
  48. Pizzagalli DA, Oakes TR, Fox AS, Chung MK, Larson CL, Abercrombie HC, Schaefer SM, Benca RM, Davidson RJ (2004) Functional but not structural subgenual prefrontal cortex abnormalities in melancholia. Mol Psychiatry 9(325):393–405CrossRefGoogle Scholar
  49. Rolls ET (2004) The functions of the orbitofrontal cortex. Brain Cogn 55:11–29PubMedCrossRefGoogle Scholar
  50. Schecklmann M, Landgrebe M, Poeppl TB, Kreuzer P, Manner P, Marienhagen J, Wack DS, Kleinjung T, Hajak G, Langguth B (2013) Neural correlates of tinnitus duration and distress: a positron emission tomography study. Hum Brain Mapp 34:233–240PubMedCrossRefGoogle Scholar
  51. Schlee W, Kleinjung T, Hiller W, Goebel G, Kolassa IT, Langguth B (2011) Does tinnitus distress depend on age of onset? PLoS ONE 6:e27379PubMedCentralPubMedCrossRefGoogle Scholar
  52. Segrave RA, Cooper NR, Thomson RH, Croft RJ, Sheppard DM, Fitzgerald PB (2011) Individualized alpha activity and frontal asymmetry in major depression. Clin EEG Neurosci 42:45–52PubMedCrossRefGoogle Scholar
  53. Shargorodsky J, Curhan GC, Farwell WR (2010) Prevalence and characteristics of tinnitus among US adults. Am J Med 123:711–718PubMedCrossRefGoogle Scholar
  54. Sherlin L, Congedo M (2005) Obsessive-compulsive dimension localized using low-resolution brain electromagnetic tomography (LORETA). Neurosci Lett 387:72–74PubMedCrossRefGoogle Scholar
  55. Song JJ, Choi HG, Oh SH, Chang SO, Kim CS, Lee JH (2009) Unilateral sensorineural hearing loss in children: the importance of temporal bone computed tomography and audiometric follow-up. Otol Neurotol 30:604–608PubMedCrossRefGoogle Scholar
  56. Song JJ, De Ridder D, Van de Heyning P, Vanneste S (2012a) Mapping tinnitus-related brain activation: an activation-likelihood estimation metaanalysis of PET studies. J Nucl Med 53:1550–1557PubMedCrossRefGoogle Scholar
  57. Song JJ, Hong SK, Kim JS, Koo JW (2012b) Enlarged vestibular aqueduct may precipitate benign paroxysmal positional vertigo in children. Acta Otolaryngol 132(Suppl 1):S109–S117PubMedCrossRefGoogle Scholar
  58. Song JJ, De Ridder D, Schlee W, Van de Heyning P, Vanneste S (2013a) “Distressed aging”: the differences in brain activity between early- and late-onset tinnitus. Neurobiol Aging 34:1853–1863PubMedCrossRefGoogle Scholar
  59. Song JJ, Punte AK, De Ridder D, Vanneste S, Van de Heyning P (2013b) Neural substrates predicting improvement of tinnitus after cochlear implantation in patients with single-sided deafness. Hear Res 299:1–9PubMedCrossRefGoogle Scholar
  60. Song JJ, De Ridder D, Weisz N, Schlee W, Van de Heyning P, Vanneste S (2013b) Hyperacusis-associated pathological resting-state brain oscillations in the tinnitus brain: a hyperresponsiveness network with paradoxically inactive auditory cortex. Brain Struct FunctGoogle Scholar
  61. Stark AK, Toft MH, Pakkenberg H, Fabricius K, Eriksen N, Pelvig DP, Moller M, Pakkenberg B (2007) The effect of age and gender on the volume and size distribution of neocortical neurons. Neuroscience 150:121–130PubMedCrossRefGoogle Scholar
  62. Taki Y, Thyreau B, Kinomura S, Sato K, Goto R, Wu K, Kawashima R, Fukuda H (2012) A longitudinal study of age- and gender-related annual rate of volume changes in regional gray matter in healthy adults. Hum Brain MappGoogle Scholar
  63. Terribilli D, Schaufelberger MS, Duran FL, Zanetti MV, Curiati PK, Menezes PR, Scazufca M, Amaro E Jr, Leite CC, Busatto GF (2011) Age-related gray matter volume changes in the brain during non-elderly adulthood. Neurobiol Aging 32:354–368PubMedCentralPubMedCrossRefGoogle Scholar
  64. Thambisetty M, Wan J, Carass A, An Y, Prince JL, Resnick SM (2010) Longitudinal changes in cortical thickness associated with normal aging. Neuroimage 52:1215–1223PubMedCentralPubMedCrossRefGoogle Scholar
  65. Vanneste S, De Ridder D (2012) The use of alcohol as a moderator for tinnitus-related distress. Brain Topogr 25:97–105PubMedCrossRefGoogle Scholar
  66. Vanneste S, Plazier M, der Loo E, de Heyning PV, Congedo M, De Ridder D (2010a) The neural correlates of tinnitus-related distress. Neuroimage 52:470–480PubMedCrossRefGoogle Scholar
  67. Vanneste S, Plazier M, Ost J, van der Loo E, Van de Heyning P, De Ridder D (2010b) Bilateral dorsolateral prefrontal cortex modulation for tinnitus by transcranial direct current stimulation: a preliminary clinical study. Exp Brain Res 202:779–785PubMedCrossRefGoogle Scholar
  68. Vanneste S, Plazier M, van der Loo E, Van de Heyning P, De Ridder D (2010c) The differences in brain activity between narrow band noise and pure tone tinnitus. PLoS ONE 5:e13618PubMedCentralPubMedCrossRefGoogle Scholar
  69. Varela F, Lachaux JP, Rodriguez E, Martinerie J (2001) The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci 2:229–239PubMedCrossRefGoogle Scholar
  70. Vitacco D, Brandeis D, Pascual-Marqui R, Martin E (2002) Correspondence of event-related potential tomography and functional magnetic resonance imaging during language processing. Hum Brain Mapp 17:4–12PubMedCrossRefGoogle Scholar
  71. Volkow ND, Logan J, Fowler JS, Wang GJ, Gur RC, Wong C, Felder C, Gatley SJ, Ding YS, Hitzemann R, Pappas N (2000) Association between age-related decline in brain dopamine activity and impairment in frontal and cingulate metabolism. Am J Psychiatry 157:75–80PubMedCrossRefGoogle Scholar
  72. Volpe U, Mucci A, Bucci P, Merlotti E, Galderisi S, Maj M (2007) The cortical generators of P3a and P3b: a LORETA study. Brain Res Bull 73:220–230PubMedCrossRefGoogle Scholar
  73. Volz KG, von Cramon DY (2009) How the orbitofrontal cortex contributes to decision making—a view from neuroscience. Prog Brain Res 174:61–71PubMedCrossRefGoogle Scholar
  74. Worrell GA, Lagerlund TD, Sharbrough FW, Brinkmann BH, Busacker NE, Cicora KM, O’Brien TJ (2000) Localization of the epileptic focus by low-resolution electromagnetic tomography in patients with a lesion demonstrated by MRI. Brain Topogr 12:273–282PubMedCrossRefGoogle Scholar
  75. Zumsteg D, Wennberg RA, Treyer V, Buck A, Wieser HG (2005) H2(15)O or 13NH3 PET and electromagnetic tomography (LORETA) during partial status epilepticus. Neurology 65:1657–1660PubMedCrossRefGoogle Scholar
  76. Zumsteg D, Lozano AM, Wennberg RA (2006a) Depth electrode recorded cerebral responses with deep brain stimulation of the anterior thalamus for epilepsy. Clin Neurophysiol 117:1602–1609PubMedCrossRefGoogle Scholar
  77. Zumsteg D, Lozano AM, Wennberg RA (2006b) Mesial temporal inhibition in a patient with deep brain stimulation of the anterior thalamus for epilepsy. Epilepsia 47:1958–1962PubMedCrossRefGoogle Scholar
  78. Zumsteg D, Lozano AM, Wieser HG, Wennberg RA (2006c) Cortical activation with deep brain stimulation of the anterior thalamus for epilepsy. Clin Neurophysiol 117:192–207PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jae-Jin Song
    • 1
  • Sven Vanneste
    • 2
  • Winfried Schlee
    • 3
  • Paul Van de Heyning
    • 2
    • 4
  • Dirk De Ridder
    • 5
  1. 1.Department of Otorhinolaryngology-Head and Neck SurgerySeoul National University HospitalSeoulKorea
  2. 2.Department of Translational Neuroscience, Faculty of MedicineUniversity of AntwerpAntwerpBelgium
  3. 3.Institute for Psychology and EducationUniversity of UlmUlmGermany
  4. 4.Department of Otorhinolaryngology and Head and Neck SurgeryUniversity Hospital AntwerpEdegemBelgium
  5. 5.Section of Neurosurgery, Department of Surgical Sciences, Dunedin School of MedicineUniversity of OtagoDunedinNew Zealand

Personalised recommendations