Brain Structure and Function

, Volume 219, Issue 6, pp 1913–1922 | Cite as

The Big Five default brain: functional evidence

  • Adriana Sampaio
  • José Miguel Soares
  • Joana Coutinho
  • Nuno Sousa
  • Óscar F. Gonçalves
Original Article


Recent neuroimaging studies have provided evidence that different dimensions of human personality may be associated with specific structural neuroanatomic correlates. Identifying brain correlates of a situation-independent personality structure would require evidence of a stable default mode of brain functioning. In this study, we investigated the correlates of the Big Five personality dimensions (Extraversion, Neuroticism, Openness/Intellect, Agreeableness, and Conscientiousness) and the default mode network (DMN). Forty-nine healthy adults completed the NEO-Five Factor. The results showed that the Extraversion (E) and Agreeableness (A) were positively correlated with activity in the midline core of the DMN, whereas Neuroticism (N), Openness (O), and Conscientiousness (C) were correlated with the parietal cortex system. Activity of the anterior cingulate cortex was positively associated with A and negatively with C. Regions of the parietal lobe were differentially associated with each personality dimension. The present study not only confirms previous functional correlates regarding the Big Five personality dimensions, but it also expands our knowledge showing the association between different personality dimensions and specific patterns of brain activation at rest.


Personality Imaging fMRI Default mode network Brain Rest 



This research was funded by PIC/IC/83290/2007, which is supported by FEDER (POFC—COMPETE) and FCT. The authors acknowledge Jaime Rocha for his discussions on neuroimaging.

Supplementary material

429_2013_610_MOESM1_ESM.docx (93 kb)
Supplementary material 1 (DOCX 93 kb)


  1. Adelstein JS, Shehzad Z, Mennes M, Deyoung CG, Zuo XN, Kelly C, Margulies DS, Bloomfield A, Gray JR, Castellanos FX, Milham MP (2011) Personality is reflected in the brain’s intrinsic functional architecture. PLoS One 6(11):e27633. doi: 10.1371/journal.pone.0027633 PubMedCentralPubMedCrossRefGoogle Scholar
  2. Andrews-Hanna JR, Reidler JS, Sepulcre J, Poulin R, Buckner RL (2010) Functional-anatomic fractionation of the brain’s default network. Neuron 65(4):550–562. doi: 10.1016/j.neuron.2010.02.005 PubMedCentralPubMedCrossRefGoogle Scholar
  3. Beckmann CF, DeLuca M, Devlin JT, Smith SM (2005) Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond B Biol Sci 360(1457):1001–1013. doi: 10.1098/rstb.2005.1634 PubMedCentralPubMedCrossRefGoogle Scholar
  4. Behrmann M, Geng JJ, Shomstein S (2004) Parietal cortex and attention. Curr Opin Neurobiol 14(2):212–217. doi: 10.1016/j.conb.2004.03.012 PubMedCrossRefGoogle Scholar
  5. Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 1124:1–38PubMedCrossRefGoogle Scholar
  6. Calhoun VD, Adali T, Pearlson GD, Pekar JJ (2001a) A method for making group inferences from functional MRI data using independent component analysis. Hum Brain Mapp 14:140–151PubMedCrossRefGoogle Scholar
  7. Calhoun VD, Adali T, Pearlson GD, Pekar JJ (2001b) Spatial and temporal independent component analysis of functional MRI data containing a pair of task-related waveforms. Hum Brain Mapp 13:43–53PubMedCrossRefGoogle Scholar
  8. Cavanna AE, Trimble MR (2006) The precuneus: a review of its functional anatomy and behavioural correlates. Brain: J Neurol 129(Pt 3):564–583. doi: 10.1093/brain/awl004 CrossRefGoogle Scholar
  9. Chan SW, Harmer CJ, Goodwin GM, Norbury R (2008) Risk for depression is associated with neural biases in emotional categorisation. Neuropsychologia 46(12):2896–2903. doi: 10.1016/j.neuropsychologia.2008.05.030 PubMedCrossRefGoogle Scholar
  10. Cherkassky VL, Kana RK, Keller TA, Just MA (2006) Functional connectivity in baseline resting-state network in autism. Neuroreport 17:1687–1690PubMedCrossRefGoogle Scholar
  11. Correa N, Adali T, Li Y, Calhoun V (2005) Comparison of blind source separation algorithms for FMRI using a new Matlab toolbox: GIFT. Proc IEEE Int Conf Acoust Speech Signal Process 5:401–404Google Scholar
  12. Costa PT, McCrae RR (1992) Revised NEO personality inventory (NEOPI- R) and the NEO five-factor inventory (NEO-FFI) professional manual. Psychological Assessment Resources, Odessa, FLGoogle Scholar
  13. Costa PT, McCrae RR (1995) Domains and facets: hierarchical personality assessment using the revised NEO personality inventory. J Pers Assess 64:21–50PubMedCrossRefGoogle Scholar
  14. Deckersbach T, Miller KK, Klibanski A, Fischman A, Dougherty DD, Blais MA, Herzog DB, Rauch SL (2006) Regional cerebral brain metabolism correlates of neuroticism and extraversion. Depress Anxiety 23(3):133–138. doi: 10.1002/da.20152 PubMedCrossRefGoogle Scholar
  15. DeYoung CG (2010) Personality neuroscience and the biology of traits. Soc Pers Psychol Compass 4(12):1165–1180CrossRefGoogle Scholar
  16. DeYoung CG, Hirsh JB, Shane MS, Papademetris X, Rajeevan N, Gray JR (2010) Testing predictions from personality neuroscience. Psychol Sci 21(6):820PubMedCentralPubMedCrossRefGoogle Scholar
  17. Fleeson W, Noftle EE (2009) In favor of the synthetic resolution to the person-situation debate. J Res Pers 43(2):150–154CrossRefGoogle Scholar
  18. Garavan H, Ross TJ, Stein EA (1999) Right hemispheric dominance of inhibitory control: an event-related functional MRI study. Proc Natl Acad Sci USA 96(14):8301–8306PubMedCentralPubMedCrossRefGoogle Scholar
  19. Greene DJ, Colich N, Iacoboni M, Zaidel E, Bookheimer SY, Dapretto M (2011) Atypical neural networks for social orienting in autism spectrum disorders. Neuroimage 56(1):354–362. doi: 10.1016/j.neuroimage.2011.02.031 PubMedCentralPubMedCrossRefGoogle Scholar
  20. Greicius MD, Krasnow B, Reiss AL, Menon V (2003) Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci USA 100(1):253–258. doi: 10.1073/pnas.0135058100 PubMedCentralPubMedCrossRefGoogle Scholar
  21. Gusnard DA, Akbudak E, Shulman GL, Raichle ME (2001) Medial prefrontal cortex and self-referential mental activity: relation to a default mode of brain function. In: Proceedings of the National Academy of Sciences of the United States of AmericaGoogle Scholar
  22. Johnson DL, Wiebe JS, Gold SM, Andreasen NC, Hichwa RD, Watkins GL, Boles Ponto LL (1999) Cerebral blood flow and personality: a positron emission tomography study. Am J Psychiatry 156(2):252–257PubMedGoogle Scholar
  23. Johnson MK, Raye CL, Mitchell KJ, Touryan SR, Greene EJ, Nolen-Hoeksema S (2006) Dissociating medial frontal and posterior cingulate activity during self-reflection. Soc Cogn Affect Neurosci 1(1):56–64. doi: 10.1093/scan/nsl004 PubMedCentralPubMedCrossRefGoogle Scholar
  24. Kehoe EG, Toomey JM, Balsters JH, Bokde AL (2011) Personality modulates the effects of emotional arousal and valence on brain activation. Soc Cogn Affect Neurosci. doi: 10.1093/scan/nsr059 PubMedCentralPubMedGoogle Scholar
  25. Kennedy DP, Courchesne E (2008) The intrinsic functional organisation of the brain is altered in autism. Neuroimage 39:1877–1885PubMedCrossRefGoogle Scholar
  26. Kim SH, Hwang JH, Park HS, Kim SE (2008) Resting brain metabolic correlates of neuroticism and extraversion in young men. Neuroreport 19(8):883–886. doi: 10.1097/WNR.0b013e328300080f PubMedCrossRefGoogle Scholar
  27. Krebs RM, Schott BH, Duzel E (2009) Personality traits are differentially associated with patterns of reward and novelty processing in the human substantia nigra/ventral tegmental area. Biol Psychiatry 65(2):103–110. doi: 10.1016/j.biopsych.2008.08.019 PubMedCrossRefGoogle Scholar
  28. Kunisato Y, Okamoto Y, Okada G, Aoyama S, Nishiyama Y, Onoda K, Yamawaki S (2011) Personality traits and the amplitude of spontaneous low-frequency oscillations during resting state. Neurosci Lett 492(2):109–113. doi: 10.1016/j.neulet.2011.01.067 PubMedCrossRefGoogle Scholar
  29. Lane RD, Reiman EM, Axelrod B, Yun LS, Holmes A, Schwartz GE (1998) Neural correlates of levels of emotional awareness. Evidence of an interaction between emotion and attention in the anterior cingulate cortex. J Cogn Neurosci 10(4):525–535PubMedCrossRefGoogle Scholar
  30. Mason MF, Norton MI, Van Horn JD, Wegner DM, Grafton ST, Macrae CN (2007) Wandering minds: the default network and stimulus independent thought. Science 315:393–395PubMedCentralPubMedCrossRefGoogle Scholar
  31. Mischel W (1968) Personality and assessment. John Wiley, New YorkGoogle Scholar
  32. Raichle ME, Snyder AZ (2007) A default mode of brain function: a brief history of an evolving idea. Neuroimage 37(4):1083–1090. doi: 10.1016/j.neuroimage.2007.02.041 (discussion 1097–1089)PubMedCrossRefGoogle Scholar
  33. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci 98:676–682PubMedCentralPubMedCrossRefGoogle Scholar
  34. Ryman SG, Gasparovic C, Bedrick EJ, Flores RA, Marshall AN, Jung RE (2011) Brain biochemistry and personality: a magnetic resonance spectroscopy study. PLoS One 6(11):e26758. doi: 10.1371/journal.pone.0026758 PubMedCentralPubMedCrossRefGoogle Scholar
  35. Sohn MH, Ursu S, Anderson JR, Stenger VA, Carter CS (2000) The role of prefrontal cortex and posterior parietal cortex in task switching. Proc Natl Acad Sci USA 97(24):13448–13453. doi: 10.1073/pnas.240460497 PubMedCentralPubMedCrossRefGoogle Scholar
  36. Sutin AR, Beason-Held LL, Resnick SM, Costa PT (2009) Sex differences in resting-state neural correlates of openness to experience among older adults. Cereb Cortex 19(12):2797–2802. doi: 10.1093/cercor/bhp066 PubMedCentralPubMedCrossRefGoogle Scholar
  37. van der Linden D, Nijenhuis J, Bakker AB (2010) The general factor of personality: a meta-analysis of big five intercorrelations and a criterion-related validity study. J Res Personal 44(3):315–327Google Scholar
  38. Volkow ND, Tomasi D, Wang GJ, Fowler JS, Telang F, Goldstein RZ, Alia-Klein N, Woicik P, Wong C, Logan J, Millard J, Alexoff D (2011) Positive emotionality is associated with baseline metabolism in orbitofrontal cortex and in regions of the default network. Mol Psychiatry. doi: 10.1038/mp.2011.30 Google Scholar
  39. Wei L, Duan X, Yang Y, Liao W, Gao Q, Ding JR, Zhang Z, Zeng W, Li Y, Lu G, Chen H (2011) The synchronization of spontaneous BOLD activity predicts extraversion and neuroticism. Brain Res 1419:68–75. doi: 10.1016/j.brainres.2011.08.060 PubMedCrossRefGoogle Scholar
  40. Wei L, Duan X, Zheng C, Wang S, Gao Q, Zhang Z, Lu G, Chen H (2012) Specific frequency bands of amplitude low-frequency oscillation encodes personality. Hum Brain Mapp. doi: 10.1002/hbm.22176 Google Scholar
  41. Wright CI, Williams D, Feczko E, Barrett LF, Dickerson BC, Schwartz CE, Wedig MM (2006) Neuroanatomical correlates of extraversion and neuroticism. Cereb Cortex 16(12):1809–1819. doi: 10.1093/cercor/bhj118 PubMedCrossRefGoogle Scholar
  42. Zhou Y, Liang M, Tian L, Wang K, Hao Y, Liu H, Liu Z, Jiang T (2007) Functional disintegration in paranoid schizophrenia using resting-state fMRI. Schizophr Res 97:194–205PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Adriana Sampaio
    • 1
  • José Miguel Soares
    • 2
    • 3
  • Joana Coutinho
    • 1
  • Nuno Sousa
    • 2
    • 3
  • Óscar F. Gonçalves
    • 1
    • 4
  1. 1.Neuropsychophysiology Lab, CIPsi, School of PsychologyUniversity of MinhoBragaPortugal
  2. 2.Life and Health Sciences Research InstituteUniversity of MinhoBragaPortugal
  3. 3.ICVS-3Bs PT Government Associate LaboratoryBraga/GuimarãesPortugal
  4. 4.Department of Counseling and Applied Educational PsychologyBouvé College of Health Sciences, Northeastern UniversityBostonUSA

Personalised recommendations