Advertisement

Brain Structure and Function

, Volume 219, Issue 5, pp 1841–1868 | Cite as

Impact of a multi-nutrient diet on cognition, brain metabolism, hemodynamics, and plasticity in apoE4 carrier and apoE knockout mice

  • Diane Jansen
  • Valerio Zerbi
  • Carola I. F. Janssen
  • Daan van Rooij
  • Bastian Zinnhardt
  • Pieter J. Dederen
  • Alan J. Wright
  • Laus M. Broersen
  • Dieter Lütjohann
  • Arend Heerschap
  • Amanda J. KiliaanEmail author
Original Article

Abstract

Lipid metabolism and genetic background together strongly influence the development of both cardiovascular and neurodegenerative diseases like Alzheimer’s disease (AD). A non-pharmacological way to prevent the genotype-induced occurrence of these pathologies is given by dietary behavior. In the present study, we tested the effects of long-term consumption of a specific multi-nutrient diet in two models for atherosclerosis and vascular risk factors in AD: the apolipoprotein ε4 (apoE4) and the apoE knockout (apoE ko) mice. This specific multi-nutrient diet was developed to support neuronal membrane synthesis and was expected to contribute to the maintenance of vascular health. At 12 months of age, both genotypes showed behavioral changes compared to control mice and we found increased neurogenesis in apoE ko mice. The specific multi-nutrient diet decreased anxiety-related behavior in the open field, influenced sterol composition in serum and brain tissue, and increased the concentration of omega-3 fatty acids in the brain. Furthermore, we found that wild-type and apoE ko mice fed with this multi-nutrient diet showed locally increased cerebral blood volume and decreased hippocampal glutamate levels. Taken together, these data suggest that a specific dietary intervention has beneficial effects on early pathological consequences of hypercholesterolemia and vascular risk factors for AD.

Keywords

Alzheimer’s disease Amyloid Apolipoprotein E Blood volume Cerebrovascular circulation Cholesterol Doublecortin Exploratory behavior Fatty acids Magnetic resonance spectroscopy Maze learning Memory Nutrition Synaptophysin Transgenic mice 

Notes

Acknowledgments

We would like to thank Nick van Wijk and Martin Balvers for supplying the diets and for the analysis of the brain fatty acids. The authors would also like to acknowledge Ilse Arnoldussen, Xiaotian Fang, Maartje Mutsaers, Anne Rijpma and Maximilian Wiesmann for their laboratory work. Furthermore, we would like to thank Andor Veltien and Sjaak van Asten for their technical support with the MR experiments. The authors would also like to acknowledge Janneke Mulders and Denise Tax for their excellent care giving of our mice. The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement no211696 (LipidiDiet) and was supported by NWO investment grants nr 91106021 and BIG (VISTA).

Conflict of interest

LMB is an employee of Nutricia Advanced Medical Nutrition, Danone Research. There are no actual or potential conflicts of interest to report for any of the other authors.

References

  1. Abrous DN, Koehl M, Le Moal M (2005) Adult neurogenesis: from precursors to network and physiology. Physiol Rev 85(2):523–569. doi: 10.1152/physrev.00055.2003 PubMedGoogle Scholar
  2. Arendash GW, Jensen MT, Salem N Jr, Hussein N, Cracchiolo J, Dickson A, Leighty R, Potter H (2007) A diet high in omega-3 fatty acids does not improve or protect cognitive performance in Alzheimer’s transgenic mice. Neuroscience 149(2):286–302PubMedGoogle Scholar
  3. Arendt T (2001) Alzheimer’s disease as a disorder of mechanisms underlying structural brain self-organization. Neuroscience 102(4):723–765PubMedGoogle Scholar
  4. Arsenault D, Julien C, Tremblay C, Calon F (2011) DHA improves cognition and prevents dysfunction of entorhinal cortex neurons in 3xTg-AD mice. PLoS ONE 6(2):e17397. doi: 10.1371/journal.pone.0017397 PubMedCentralPubMedGoogle Scholar
  5. Artham SM, Lavie CJ, Milani RV, Anand RG, O’Keefe JH, Ventura HO (2008) Fish oil in primary and secondary cardiovascular prevention. Ochsner J 8(2):49–60PubMedCentralPubMedGoogle Scholar
  6. Ashburner J, Friston KJ (2000) Voxel-based morphometry—the methods. NeuroImage 11(6 Pt 1):805–821PubMedGoogle Scholar
  7. Avants BB, Epstein CL, Grossman M, Gee JC (2008) Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med Image Anal 12(1):26–41PubMedCentralPubMedGoogle Scholar
  8. Barberger-Gateau P, Samieri C, Feart C, Plourde M (2011) Dietary omega 3 polyunsaturated fatty acids and Alzheimer’s disease: interaction with apolipoprotein E genotype. Curr Alzheimer Res 8(5):479–491PubMedCentralPubMedGoogle Scholar
  9. Bell RD, Winkler EA, Singh I, Sagare AP, Deane R, Wu Z, Holtzman DM, Betsholtz C, Armulik A, Sallstrom J, Berk BC, Zlokovic BV (2012) Apolipoprotein E controls cerebrovascular integrity via cyclophilin A. Nature 485(7399):512–516. doi: 10.1038/nature11087 PubMedCentralPubMedGoogle Scholar
  10. Belliveau JW, Rosen BR, Kantor HL, Rzedzian RR, Kennedy DN, McKinstry RC, Vevea JM, Cohen MS, Pykett IL, Brady TJ (1990) Functional cerebral imaging by susceptibility-contrast NMR. Magn Reson Med 14(3):538–546PubMedGoogle Scholar
  11. Bhatia HS, Agrawal R, Sharma S, Huo YX, Ying Z, Gomez-Pinilla F (2011) Omega-3 fatty acid deficiency during brain maturation reduces neuronal and behavioral plasticity in adulthood. PLoS ONE 6(12):e28451. doi: 10.1371/journal.pone.0028451 PubMedCentralPubMedGoogle Scholar
  12. Boekhoorn K, Joels M, Lucassen PJ (2006) Increased proliferation reflects glial and vascular-associated changes, but not neurogenesis in the presenile Alzheimer hippocampus. Neurobiol Dis 24(1):1–14. doi: 10.1016/j.nbd.2006.04.017 PubMedGoogle Scholar
  13. Bonnet E, Touyarot K, Alfos S, Pallet V, Higueret P, Abrous DN (2008) Retinoic acid restores adult hippocampal neurogenesis and reverses spatial memory deficit in vitamin A deprived rats. PLoS ONE 3(10):e3487. doi: 10.1371/journal.pone.0003487 PubMedCentralPubMedGoogle Scholar
  14. Bour A, Grootendorst J, Vogel E, Kelche C, Dodart JC, Bales K, Moreau PH, Sullivan PM, Mathis C (2008) Middle-aged human apoE4 targeted-replacement mice show retention deficits on a wide range of spatial memory tasks. Behav Brain Res 193(2):174–182PubMedGoogle Scholar
  15. Bourre JM, Francois M, Youyou A, Dumont O, Piciotti M, Pascal G, Durand G (1989) The effects of dietary alpha-linolenic acid on the composition of nerve membranes, enzymatic activity, amplitude of electrophysiological parameters, resistance to poisons and performance of learning tasks in rats. J Nutr 119(12):1880–1892PubMedGoogle Scholar
  16. Bourre JM, Dumont O, Piciotti M, Clement M, Chaudiere J, Bonneil M, Nalbone G, Lafont H, Pascal G, Durand G (1991) Essentiality of omega 3 fatty acids for brain structure and function. World Rev Nutr Diet 66:103–117PubMedGoogle Scholar
  17. Boxerman JL, Hamberg LM, Rosen BR, Weisskoff RM (1995) MR contrast due to intravascular magnetic susceptibility perturbations. Magn Reson Med 34(4):555–566PubMedGoogle Scholar
  18. Breslow JL (1996) Mouse models of atherosclerosis. Science 272(5265):658–688Google Scholar
  19. Breteler MM (2000) Vascular risk factors for Alzheimer’s disease: an epidemiologic perspective. Neurobiol Aging 21(2):153–160PubMedGoogle Scholar
  20. Briones TL, Suh E, Hattar H, Wadowska M (2005) Dentate gyrus neurogenesis after cerebral ischemia and behavioral training. Biol Res Nurs 6(3):167–179. doi: 10.1177/1099800404271328 PubMedGoogle Scholar
  21. Calder PC (2001) Polyunsaturated fatty acids, inflammation, and immunity. Lipids 36(9):1007–1024PubMedGoogle Scholar
  22. Carrie I, Smirnova M, Clement M, De JD, Frances H, Bourre JM (2002) Docosahexaenoic acid-rich phospholipid supplementation: effect on behavior, learning ability, and retinal function in control and n-3 polyunsaturated fatty acid deficient old mice. Nutr Neurosci 5(1):43–52PubMedGoogle Scholar
  23. Caselli RJ, Graff-Radford NR, Reiman EM, Weaver A, Osborne D, Lucas J, Uecker A, Thibodeau SN (1999) Preclinical memory decline in cognitively normal apolipoprotein E-epsilon4 homozygotes. Neurology 53(1):201–207PubMedGoogle Scholar
  24. Cavassila S, Deval S, Huegen C, van Ormondt D, Graveron-Demilly D (2001) Cramer-Rao bounds: an evaluation tool for quantitation. NMR Biomed 14(4):278–283PubMedGoogle Scholar
  25. Chen PE, Specht CG, Morris RGM, Schoepfer R (2002) Spatial learning is unimpaired in mice containing a deletion of the alpha-synuclein locus. Eur J Neurosci 16(1):154–158PubMedGoogle Scholar
  26. Chiu CC, Su KP, Cheng TC, Liu HC, Chang CJ, Dewey ME, Stewart R, Huang SY (2008) The effects of omega-3 fatty acids monotherapy in Alzheimer’s disease and mild cognitive impairment: a preliminary randomized double-blind placebo-controlled study. Prog Neuropsychopharmacol Biol Psychiatry 32(6):1538–1544. doi: 10.1016/j.pnpbp.2008.05.015 PubMedGoogle Scholar
  27. Claassen V (1994) Neglected factors in pharmacology and neuroscience research: focus on : biopharmaceutics, animal characteristics, maintenance, testing conditions. Elsevier, AmsterdamGoogle Scholar
  28. Cole GM, Frautschy SA (2006) Docosahexaenoic acid protects from amyloid and dendritic pathology in an Alzheimer’s disease mouse model. Nutr Health (Berkhamsted, Hertfordshire) 18(3):249–259Google Scholar
  29. Cole GM, Frautschy SA (2010) DHA may prevent age-related dementia. J Nutr 140(4):869–874. doi: 10.3945/jn.109.113910 PubMedCentralPubMedGoogle Scholar
  30. Cole GM, Ma QL, Frautschy SA (2009) Omega-3 fatty acids and dementa. Prostaglandins Leukot Essent Fatty Acids 81(2–3):213–221Google Scholar
  31. Conte V, Uryu K, Fujimoto S, Yao Y, Rokach J, Longhi L, Trojanowski JQ, Lee VM, McIntosh TK, Praticò D (2004) Vitamin E reducs amyloidosis and improves cognitive function in Tg2576 mice following repetitive concussive brain injury. J Neurochem 90(3):758–764PubMedGoogle Scholar
  32. Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, Roses AD, Haines JL, Pericak-Vance MA (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261(5123):921–923Google Scholar
  33. Crupi R, Cambiaghi M, Deckelbaum R, Hansen I, Mindes J, Spina E, Battaglia F (2012) n-3 fatty acids prevent impairment of neurogenesis and synaptic plasticity in B-cell activating factor (BAFF) transgenic mice. Prevent Med 54(Suppl):S103–S108. doi: 10.1016/j.ypmed.2011.12.019 Google Scholar
  34. Cuppini R, Ciaroni S, Cecchini T, Ambrogini P, Ferri P, Cuppini C, Ninfali P, Del Grande P (2002) Tocopherols enhance neurogenesis in dentate gyrus of adult rats. Int J Vitam Nutr Res (Internationale Zeitschrift fur Vitamin- und Ernahrungsforschung Journal international de vitaminologie et de nutrition) 72(3):170–176Google Scholar
  35. Curtis MA, Penney EB, Pearson AG, van Roon-Mom WM, Butterworth NJ, Dragunow M, Connor B, Faull RL (2003) Increased cell proliferation and neurogenesis in the adult human Huntington’s disease brain. Proc Natl Acad Sci USA 100(15):9023–9027. doi: 10.1073/pnas.1532244100 PubMedCentralPubMedGoogle Scholar
  36. Dangour AD, Allen E, Elbourne D, Fasey N, Fletcher AE, Hardy P, Holder GE, Knight R, Letley L, Richards M, Uauy R (2010) Effect of 2-y n-3 long-chain polyunsaturated fatty acid supplementation on cognitive function in older people: a randomized, double-blind, controlled trial. Am J Clin Nutr 91(6):1725–1732. doi: 10.3945/ajcn.2009.29121 PubMedGoogle Scholar
  37. Das UN (2008) Folic acid and polyunsaturated fatty acids improve cognitive function and prevent depression, dementia, and Alzheimer’s disease–but how and why? Prostaglandins Leukot Essent Fatty Acids 78(1):11–19. doi: 10.1016/j.plefa.2007.10.006 PubMedGoogle Scholar
  38. Davignon J (2005) Apolipoprotein E and atherosclerosis: beyond lipid effect. Arterioscler Thromb Vasc Biol 25(2):267–269PubMedGoogle Scholar
  39. Davignon J, Gregg RE, Sing CF (1988) Apolipoprotein E polymorphism and atherosclerosis. Arteriosclerosis 8(1):1–21Google Scholar
  40. de Bruin JP, Sanchez-Santed F, Heinsbroek RP, Donker A, Postmes P (1994) A behavioural analysis of rats with damage to the medial prefrontal cortex using the Morris water maze: evidence for behavioural flexibility, but not for impaired spatial navigation. Brain Res 652(2):323–333PubMedGoogle Scholar
  41. De Bruin NM, Kiliaan AJ, De Wilde MC, Broersen LM (2003) Combined uridine and choline administration improves cognitive deficits in spontaneously hypertensive rats. Neurobiol Learn Mem 80(1):63–79PubMedGoogle Scholar
  42. DeKosky ST, Scheff SW, Styren SD (1996) Structural correlates of cognition in dementia: quantification and assessment of synapse change. Neurodegeneration 5(4):417–421PubMedGoogle Scholar
  43. Demars M, Hu YS, Gadadhar A, Lazarov O (2010) Impaired neurogenesis is an early event in the etiology of familial Alzheimer’s disease in transgenic mice. J Neurosci Res 88(10):2103–2117. doi: 10.1002/jnr.22387 PubMedCentralPubMedGoogle Scholar
  44. Dennie J, Mandeville JB, Boxerman JL, Packard SD, Rosen BR, Weisskoff RM (1998) NMR imaging of changes in vascular morphology due to tumor angiogenesis. Magn Reson Med 40(6):793–799PubMedGoogle Scholar
  45. Dong H, Martin MV, Chambers S, Csernansky JG (2007) Spatial relationship between synapse loss and beta-amyloid deposition in Tg2576 mice. J Comp Neurol 500(2):311–321PubMedCentralPubMedGoogle Scholar
  46. Dyall SC, Michael GJ, Michael-Titus AT (2010) Omega-3 fatty acids reverse age-related decreases in nuclear receptors and increase neurogenesis in old rats. J Neurosci Res 88(10):2091–2102. doi: 10.1002/jnr.22390 PubMedGoogle Scholar
  47. Ercan M, Koksal C, Konukoglu D, Bozkurt AK, Onen S (2003) Impaired plasma viscosity via increased cholesterol levels in peripheral occlusive arterial disease [correction of disase]. Clin Hemorheol Microcirc 29(1):3–9PubMedGoogle Scholar
  48. Farkas E, de Wilde MC, Kiliaan AJ, Meijer J, Keijser JN, Luiten PG (2002) Dietary long chain PUFAs differentially affect hippocampal muscarinic 1 and serotonergic 1A receptors in experimental cerebral hypoperfusion. Brain Res 954(1):32–41PubMedGoogle Scholar
  49. Fedorova I, Salem N Jr (2006) Omega-3 fatty acids and rodent behavior. Prostaglandins Leukot Essent Fatty Acids 75(4–5):271–289PubMedGoogle Scholar
  50. Ferretti L, McCurry SM, Logsdon R, Gibbons L, Teri L (2001) Anxiety and Alzheimer’s disease. J Geriatr Psychiatry Neurol 14(1):52–58PubMedGoogle Scholar
  51. Fontani G, Corradeschi F, Felici A, Alfatti F, Migliorini S, Lodi L (2005) Cognitive and physiological effects of Omega-3 polyunsaturated fatty acid supplementation in healthy subjects. Eur J Clin Invest 35(11):691–699PubMedGoogle Scholar
  52. Francis F, Koulakoff A, Boucher D, Chafey P, Schaar B, Vinet MC, Friocourt G, McDonnell N, Reiner O, Kahn A, McConnell SK, Berwald-Netter Y, Denoulet P, Chelly J (1999) Doublecortin is a developmentally regulated, microtubule-associated protein expressed in migrating and differentiating neurons. Neuron 23(2):247–256PubMedGoogle Scholar
  53. Franklin KBJ, Paxinos G (1997) The mouse brain in stereotaxic coordinates. Academic Press, San DiegoGoogle Scholar
  54. Freund-Levi Y, Eriksdotter-Jonhagen M, Cederholm T, Basun H, Faxen-Irving G, Garlind A, Vedin I, Vessby B, Wahlund LO, Palmblad J (2006) Omega-3 fatty acid treatment in 174 patients with mild to moderate Alzheimer disease: OmegAD study: a randomized double-blind trial. Arch Neurol 63(10):1402–1408PubMedGoogle Scholar
  55. Freund-Levi Y, Basun H, Cederholm T, Faxen-Irving G, Garlind A, Grut M, Vedin I, Palmblad J, Wahlund LO, Eriksdotter-Jonhagen M (2008) Omega-3 supplementation in mild to moderate Alzheimer’s disease: effects on neuropsychiatric symptoms. Int J Geriatr Psychiatry 23(2):161–169. doi: 10.1002/gps.1857 PubMedGoogle Scholar
  56. Fujii A, Matsumoto H, Yamamoto H (1996) Effect of vitamin B complex on neurotransmission and neurite outgrowth. Gen Pharmacol 27(6):995–1000PubMedGoogle Scholar
  57. Geleijnse JM, Giltay EJ, Grobbee DE, Donders AR, Kok FJ (2002) Blood pressure response to fish oil supplementation: metaregression analysis of randomized trials. J Hypertens 20(8):1493–1499PubMedGoogle Scholar
  58. Gleeson JG, Lin PT, Flanagan LA, Walsh CA (1999) Doublecortin is a microtubule-associated protein and is expressed widely by migrating neurons. Neuron 23(2):257–271PubMedGoogle Scholar
  59. Goodfellow J, Bellamy MF, Ramsey MW, Jones CJ, Lewis MJ (2000) Dietary supplementation with marine omega-3 fatty acids improve systemic large artery endothelial function in subjects with hypercholesterolemia. J Am Coll Cardiol 35(2):265–270PubMedGoogle Scholar
  60. Gordon I, Grauer E, Genis I, Sehayek E, Michaelson DM (1995) Memory deficits and cholinergic impairments in apolipoprotein E-deficient mice. Neurosci Lett 199(1):1–4PubMedGoogle Scholar
  61. Gould E, Beylin A, Tanapat P, Reeves A, Shors TJ (1999) Learning enhances adult neurogenesis in the hippocampal formation. Nat Neurosci 2(3):260–265. doi: 10.1038/6365 PubMedGoogle Scholar
  62. Green KN, Steffan JS, Martinez-Coria H, Sun X, Schreiber SS, Thompson LM, LaFerla FM (2008) Nicotinamide restores cognition in Alzheimer’s disease transgenic mice via a mechanisms involving sirtuin inhibition and selective reduction of Thr231-phosphotau. J Neurosci 28(45):11500–11510PubMedCentralPubMedGoogle Scholar
  63. Greenberg DA, Jin K (2006) Neurodegeneration and neurogenesis: focus on Alzheimer’s disease. Curr Alzheimer Res 3(1):25–28PubMedGoogle Scholar
  64. Grootendorst J, de Kloet ER, Dalm S, Oitzl MS (2001a) Reversal of cognitive deficit of apolipoprotein E knockout mice after repeated exposure to a common environmental experience. Neuroscience 108(2):237–247PubMedGoogle Scholar
  65. Grootendorst J, de Kloet ER, Vossen C, Dalm S, Oitzl MS (2001b) Repeated exposure to rats has persistent genotype-dependent effects on learning and locomotor activity of apolipoprotein E knockout and C57Bl/6 mice. Behav Brain Res 125(1–2):249–259PubMedGoogle Scholar
  66. Grootendorst J, Kempes MM, Lucassen PJ, Dalm S, de Kloet ER, Oitzl MS (2002) Differential effect of corticosterone on spatial learning abilities in apolipoprotein E knockout and C57BL/6J mice. Brain Res 953(1–2):281–285PubMedGoogle Scholar
  67. Grootendorst J, Bour A, Vogel E, Kelche C, Sullivan PM, Dodart JC, Bales K, Mathis C (2005) Human apoE targeted replacement mouse lines: h-apoE4 and h-apoE3 mice differ on spatial memory performance and avoidance behavior. Behav Brain Res 159(1):1–14. doi: 10.1016/j.bbr.2004.09.019 PubMedGoogle Scholar
  68. Grossberg GT (2003) Diagnosis and treatment of Alzheimer’s disease. J Clin Psychiatry 64(Suppl 9):3–6PubMedGoogle Scholar
  69. Guerrero AL, Dorado-Martinez C, Rodriguez A, Pedroza-Rios K, Borgonio-Perez G, Rivas-Arancibia S (1999) Effects of vitamin E on ozone-induced memory deficits and lipid peroxidation in rats. NeuroReport 10(8):1689–1692PubMedGoogle Scholar
  70. Gupta A, Guyomard V, Zaman MJ, Rehman HU, Myint PK (2010) Systematic review on evidence of the effectiveness of cholesterol-lowering drugs. Adv Therapy 27(6):348–364. doi: 10.1007/s12325-010-0033-6 Google Scholar
  71. Gureviciene I, Gurevicius K, Tanila H (2007) Role of alpha-synuclein in synaptic glutamate release. Neurobiol Dis 28(1):83–89PubMedGoogle Scholar
  72. Haag MD, Hofman A, Koudstaal PJ, Stricker BH, Breteler MM (2009) Statins are associated with a reduced risk of Alzheimer disease regardless of lipophilicity. The Rotterdam Study. J Neurol Neurosurg Psychiatry 80(1):13–17PubMedGoogle Scholar
  73. Hamilton A, Holscher C (2012) The effect of ageing on neurogenesis and oxidative stress in the APP(swe)/PS1(deltaE9) mouse model of Alzheimer’s disease. Brain Res 1449:83–93. doi: 10.1016/j.brainres.2012.02.015 PubMedGoogle Scholar
  74. Hamos JE, DeGennaro LJ, Drachman DA (1989) Synaptic loss in Alzheimer’s disease and other dementias. Neurology 39(3):355–361PubMedGoogle Scholar
  75. Harris WS (1997a) n-3 fatty acids and serum lipoproteins: animal studies. Am J Clin Nutr 65(5 Suppl):1611S–1616SPubMedGoogle Scholar
  76. Harris WS (1997b) n-3 fatty acids and serum lipoproteins: human studies. Am J Clin Nutr 65(5 Suppl):1645S–1654SPubMedGoogle Scholar
  77. Hartman RE, Wozniak DF, Nardi A, Olney JW, Sartorius L, Holtzman DM (2001) Behavioral phenotyping of GFAP-apoE3 and -apoE4 transgenic mice: apoE4 mice show profound working memory impairments in the absence of Alzheimer’s-like neuropathology. Exp Neurol 170(2):326–344. doi: 10.1006/exnr.2001.7715 PubMedGoogle Scholar
  78. Hirsch-Reinshagen V, Burgess BL, Wellington CL (2009) Why lipids are important for Alzheimer disease? Mol Cell Biochem 326(1–2):121–129PubMedGoogle Scholar
  79. Holscher C (1999) Stress impairs performance in spatial water maze learning tasks. Behav Brain Res 100(1–2):225–235PubMedGoogle Scholar
  80. Hooijmans CR, Van der Zee CE, Dederen PJ, Brouwer KM, Reijmer YD, van Groen T, Broersen LM, Lutjohann D, Heerschap A, Kiliaan AJ (2009) DHA and cholesterol containing diets influence Alzheimer-like pathology, cognition and cerebral vasculature in APPswe/PS1dE9 mice. Neurobiol Dis 33(3):482–498PubMedGoogle Scholar
  81. Huang Y (2006) Apolipoprotein E and Alzheimer disease. Neurology 66 (2 Suppl 1):S79–S85Google Scholar
  82. Huang Y (2010) Mechanisms linking apolipoprotein E isoforms with cardiovascular and neurological diseases. Curr Opin Lipidol 21(4):337–345. doi: 10.1097/MOL.0b013e32833af368 PubMedGoogle Scholar
  83. Huang TL, Zandi PP, Tucker KL, Fitzpatrick AL, Kuller LH, Fried LP, Burke GL, Carlson MC (2005) Benefits of fatty fish on dementia risk are stronger for those without APOE epsilon4. Neurology 65(9):1409–1414. doi: 10.1212/01.wnl.0000183148.34197.2e PubMedGoogle Scholar
  84. Irizarry MC, Soriano F, McNamara M, Page KJ, Schenk D, Games D, Hyman BT (1997) Abeta deposition is associated with neuropil changes, but not with overt neuronal loss in the human amyloid precursor protein V717F (PDAPP) transgenic mouse. J Neurosci 17(18):7053–7059PubMedGoogle Scholar
  85. Isik T, Ayhan E, Uyarel H, Ergelen M, Tanboga IH, Kurt M, Korkmaz AF, Kaya A, Aksakal E, Sevimli S (2012) Increased mean platelet volume associated with extent of slow coronary flow. Cardiol J 19(4):355–362PubMedGoogle Scholar
  86. Ito T, Azuma J (2004) Taurine is a possible anti-atherosclerotic agent. Nihon Yakurigaku Zasshi 123(5):311–317PubMedGoogle Scholar
  87. Jahn R, Sudhof TC (1993) Synaptic vesicle traffic: rush hour in the nerve terminal. J Neurochem 61(1):12–21PubMedGoogle Scholar
  88. Jankowsky JL, Slunt HH, Ratovitski T, Jenkins NA, Copeland NG, Borchelt DR (2001) Co-expression of multiple transgenes in mouse CNS: a comparison of strategies. Biomol Eng 17(6):157–165PubMedGoogle Scholar
  89. Jankowsky JL, Fadale DJ, Anderson J, Xu GM, Gonzales V, Jenkins NA, Copeland NG, Lee MK, Younkin LH, Wagner SL, Younkin SG, Borchelt DR (2004) Mutant presenilins specifically elevate the levels of the 42 residue beta-amyloid peptide in vivo: evidence for augmentation of a 42-specific gamma secretase. Hum Mol Genet 13(3):159–170PubMedGoogle Scholar
  90. Jansen D, Janssen CI, Vanmierlo T, Dederen PJ, van Rooij D, Zinnhardt B, Nobelen CL, Janssen AL, Hafkemeijer A, Mutsaers MP, Doedee AM, Kuipers AA, Broersen LM, Mulder M, Kiliaan AJ (2012) Cholesterol and synaptic compensatory mechanisms in Alzheimer’s disease mice brain during aging. J Alzheimers Dis 31(4):813–826. doi: 10.3233/JAD-2012-120298 PubMedGoogle Scholar
  91. Jicha GA, Markesbery WR (2010) Omega-3 fatty acids: potential role in the management of early Alzheimer’s disease. Clin Interv Aging 5:45–61PubMedCentralPubMedGoogle Scholar
  92. Jick H, Zornberg GL, Jick SS, Seshadri S, Drachman DA (2000) Statins and the risk of dementia. Lancet 356(9242):1627–1631PubMedGoogle Scholar
  93. Jin K, Galvan V, Xie L, Mao XO, Gorostiza OF, Bredesen DE, Greenberg DA (2004a) Enhanced neurogenesis in Alzheimer’s disease transgenic (PDGF-APPSw, Ind) mice. Proc Natl Acad Sci USA 101(36):13363–13367PubMedCentralPubMedGoogle Scholar
  94. Jin K, Peel AL, Mao XO, Xie L, Cottrell BA, Henshall DC, Greenberg DA (2004b) Increased hippocampal neurogenesis in Alzheimer’s disease. Proc Natl Acad Sci USA 101(1):343–347PubMedCentralPubMedGoogle Scholar
  95. Joseph JA, Shukitt-Hale B, Denisova NA, Prior RL, Cao G, Martin A, Taglialatela G, Bickford PC (1998) Long-term dietary strawberry, spinach, or vitamin E supplementation retards the onset of age-related neuronal signal-transduction and cognitive behavioral deficits. J Neurosci 18(19):8047–8055PubMedGoogle Scholar
  96. Kamphuis PJ, Scheltens P (2010) Can nutrients prevent or delay onset of Alzheimer’s disease? J Alzheimers Dis 20(3):765–775PubMedGoogle Scholar
  97. Kamphuis PJ, Verhey FR, Olde Rikkert MG, Twisk JW, Swinkels SH, Scheltens P (2011) Efficacy of a medical food on cognition in Alzheimer’s disease: results from secondary analyses of a randomized, controlled trial. J Nutr Health Aging 15(8):720–724PubMedGoogle Scholar
  98. Kandiah N, Feldman HH (2009) Therapeutic potential of statins in Alzheimer’s disease. J Neurol Sci 283(1–2):230–234PubMedGoogle Scholar
  99. Kaneto H (1997) Learning/memory processes under stress conditions. Behav Brain Res 83(1–2):71–74PubMedGoogle Scholar
  100. Kariv-Inbal Z, Yacobson S, Berkecz R, Peter M, Janaky T, Lutjohann D, Broersen LM, Hartmann T, Michaelson DM (2012) The isoform-specific pathological effects of apoE4 in vivo are prevented by a fish oil (DHA) diet and are modified by cholesterol. J Alzheimers Dis 28(3):667–683. doi: 10.3233/JAD-2011-111265 PubMedGoogle Scholar
  101. Kato H, Kogure K (1999) Biochemical and molecular characteristics of the brain with developing cerebral infarction. Cell Mol Neurobiol 19(1):93–108PubMedGoogle Scholar
  102. Kawakita E, Hashimoto M, Shido O (2006) Docosahexaenoic acid promotes neurogenesis in vitro and in vivo. Neuroscience 139(3):991–997PubMedGoogle Scholar
  103. Kee NJ, Preston E, Wojtowicz JM (2001) Enhanced neurogenesis after transient global ischemia in the dentate gyrus of the rat. Exp Brain Res Experimentelle Hirnforschung 136(3):313–320Google Scholar
  104. Kennan RP, Zhong J, Gore JC (1994) Intravascular susceptibility contrast mechanisms in tissues. Magn Reson Med 31(1):9–21PubMedGoogle Scholar
  105. Kim J, Basak JM, Holtzman DM (2009) The role of apolipoprotein E in Alzheimer’s disease. Neuron 63(3):287–303PubMedCentralPubMedGoogle Scholar
  106. King DL, Arendash GW (2002) Maintained synaptophysin immunoreactivity in Tg2576 transgenic mice during aging: correlations with cognitive impairment. Brain Res 926(1–2):58–68PubMedGoogle Scholar
  107. Kivipelto M, Helkala EL, Laakso MP, Hanninen T, Hallikainen M, Alhainen K, Soininen H, Tuomilehto J, Nissinen A (2001) Midlife vascular risk factors and Alzheimer’s disease in later life: longitudinal, population based study. BMJ Clin Res 322(7300):1447–1451Google Scholar
  108. Kivipelto M, Ngandu T, Fratiglioni L, Viitanen M, Kareholt I, Winblad B, Helkala EL, Tuomilehto J, Soininen H, Nissinen A (2005) Obesity and vascular risk factors at midlife and the risk of dementia and Alzheimer disease. Arch Neurol 62(10):1556–1560PubMedGoogle Scholar
  109. Knouff C, Hinsdale ME, Mezdour H, Altenburg MK, Watanabe M, Quarfordt SH, Sullivan PM, Maeda N (1999) ApoE structure determines VLDL clearance and atherosclerosis risk in mice. J Clin Invest 103(11):1579–1586PubMedCentralPubMedGoogle Scholar
  110. Kondo Y, Murakami S, Oda H, Nagate T (2000) Taurine reduces atherosclerotic lesion development in apolipoprotein E-deficient mice. Adv Exp Med Biol 483:193–202PubMedGoogle Scholar
  111. Kotani S, Sakaguchi E, Warashina S, Matsukawa N, Ishikura Y, Kiso Y, Sakakibara M, Yoshimoto T, Guo J, Yamashima T (2006) Dietary supplementation of arachidonic and docosahexaenoic acids improves cognitive dysfunction. Neurosci Res 56(2):159–164PubMedGoogle Scholar
  112. Krzywkowski P, Ghribi O, Gagne J, Chabot C, Kar S, Rochford J, Massicotte G, Poirier J (1999) Cholinergic systems and long-term potentiation in memory-impaired apolipoprotein E-deficient mice. Neuroscience 92(4):1273–1286PubMedGoogle Scholar
  113. Langheinrich AC, Michniewicz A, Bohle RM, Ritman EL (2007) Vasa vasorum neovascularization and lesion distribution among different vascular beds in ApoE−/−/LDL−/− double knockout mice. Atherosclerosis 191(1):73–81. doi: 10.1016/j.atherosclerosis.2006.05.021 PubMedGoogle Scholar
  114. LaRosa JC, Hunninghake D, Bush D, Criqui MH, Getz GS, Gotto AM Jr, Grundy SM, Rakita L, Robertson RM, Weisfeldt ML et al (1990) The cholesterol facts. A summary of the evidence relating dietary fats, serum cholesterol, and coronary heart disease. A joint statement by the American Heart Association and the National Heart, Lung, and Blood Institute. The Task Force on Cholesterol Issues, American Heart Association. Circulation 81(5):1721–1733Google Scholar
  115. Lavie CJ, Milani RV, Mehra MR, Ventura HO (2009) Omega-3 polyunsaturated fatty acids and cardiovascular diseases. J Am Coll Cardiol 54(7):585–594PubMedGoogle Scholar
  116. Lazarov O, Marr RA (2010) Neurogenesis and Alzheimer’s disease: at the crossroads. Exp Neurol 223(2):267–281. doi: 10.1016/j.expneurol.2009.08.009 PubMedCentralPubMedGoogle Scholar
  117. Lazarov O, Mattson MP, Peterson DA, Pimplikar SW, van Praag H (2010) When neurogenesis encounters aging and disease. Trends Neurosci 33(12):569–579. doi: 10.1016/j.tins.2010.09.003 PubMedCentralPubMedGoogle Scholar
  118. Leaf A, Kang JX, Xiao YF, Billman GE (2003) Clinical prevention of sudden cardiac death by n-3 polyunsaturated fatty acids and mechanism of prevention of arrhythmias by n-3 fish oils. Circulation 107(21):2646–2652PubMedGoogle Scholar
  119. Lekieffre D, Callebert J, Plotkine M, Boulu RG (1992) Concomitant increases in the extracellular concentrations of excitatory and inhibitory amino acids in the rat hippocampus during forebrain ischemia. Neurosci Lett 137(1):78–82PubMedGoogle Scholar
  120. Leuba G, Savioz A, Vernay A, Carnal B, Kraftsik R, Tardif E, Riederer I, Riederer BM (2008) Differential changes in synaptic proteins in the Alzheimer frontal cortex with marked increase in PSD-95 postsynaptic protein. J Alzheimers Dis 15(1):139–151PubMedGoogle Scholar
  121. Levi O, Michaelson DM (2007) Environmental enrichment stimulates neurogenesis in apolipoprotein E3 and neuronal apoptosis in apolipoprotein E4 transgenic mice. J Neurochem 100(1):202–210PubMedGoogle Scholar
  122. Levi O, Jongen-Relo AL, Feldon J, Michaelson DM (2005) Brain area- and isoform-specific inhibition of synaptic plasticity by apoE4. J Neurol Sci 229–230:241–248PubMedGoogle Scholar
  123. Li Y, Yu SP, Mohamad O, Genetta T, Wei L (2010) Sublethal Transient Global Ischemia Stimulates Migration of Neuroblasts and Neurogenesis in Mice. Transl Stroke Res 1(3):184–196. doi: 10.1007/s12975-010-0016-6 PubMedCentralPubMedGoogle Scholar
  124. Lutjohann D, Brzezinka A, Barth E, Abramowski D, Staufenbiel M, von Bergmann K, Beyreuther K, Multhaup G, Bayer TA (2002) Profile of cholesterol-related sterols in aged amyloid precursor protein transgenic mouse brain. J Lipid Res 43(7):1078–1085PubMedGoogle Scholar
  125. Lutjohann D, Stroick M, Bertsch T, Kuhl S, Lindenthal B, Thelen K, Andersson U, Bjorkhem I, Bergmann Kv K, Fassbender K (2004) High doses of simvastatin, pravastatin, and cholesterol reduce brain cholesterol synthesis in guinea pigs. Steroids 69(6):431–438Google Scholar
  126. Lynch JR, Morgan D, Mance J, Matthew WD, Laskowitz DT (2001) Apolipoprotein E modulates glial activation and the endogenous central nervous system inflammatory response. J Neuroimmunol 114(1–2):107–113PubMedGoogle Scholar
  127. Mahley RW (1988) Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science 240(4852):622–630Google Scholar
  128. Masliah E, Mallory M, Ge N, Alford M, Veinbergs I, Roses AD (1995) Neurodegeneration in the central nervous system of apoE-deficient mice. Exp Neurol 136(2):107–122. doi: 10.1006/exnr.1995.1088 PubMedGoogle Scholar
  129. Masliah E, Sisk A, Mallory M, Mucke L, Schenk D, Games D (1996) Comparison of neurodegenerative pathology in transgenic mice overexpressing V717F beta-amyloid precursor protein and Alzheimer’s disease. J Neurosci 16(18):5795–5811PubMedGoogle Scholar
  130. Mauch DH, Nagler K, Schumacher S, Goritz C, Muller EC, Otto A, Pfrieger FW (2001) CNS synaptogenesis promoted by glia-derived cholesterol. Science 294(5545):1354–1357Google Scholar
  131. Mayeux R, Small SA, Tang M, Tycko B, Stern Y (2001) Memory performance in healthy elderly without Alzheimer’s disease: effects of time and apolipoprotein-E. Neurobiol Aging 22(4):683–689PubMedGoogle Scholar
  132. McGuinness B, Craig D, Bullock R, Passmore P (2009) Statins for the prevention of dementia. Cochrane Database System Rev (Online) (2):CD003160Google Scholar
  133. Methia N, Andre P, Hafezi-Moghadam A, Economopoulos M, Thomas KL, Wagner DD (2001) ApoE deficiency compromises the blood brain barrier especially after injury. Mol Med 7(12):810–815PubMedCentralPubMedGoogle Scholar
  134. Miyata M, Smith JD (1996) Apolipoprotein E allele-specific antioxidant activity and effects on cytotoxicity by oxidative insults and beta-amyloid peptides. Nat Genet 14(1):55–61PubMedGoogle Scholar
  135. Mu Y, Gage FH (2011) Adult hippocampal neurogenesis and its role in Alzheimer’s disease. Mol Neurodegener 6:85. doi: 10.1186/1750-1326-6-85 PubMedCentralPubMedGoogle Scholar
  136. Mucke L, Masliah E, Yu GQ, Mallory M, Rockenstein EM, Tatsuno G, Hu K, Kholodenko D, Johnson-Wood K, McConlogue L (2000) High-level neuronal expression of abeta 1-42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation. J Neurosci 20(11):4050–4058PubMedGoogle Scholar
  137. Mulder M, Koopmans G, Wassink G, Al Mansouri G, Simard ML, Havekes LM, Prickaerts J, Blokland A (2007) LDL receptor deficiency results in decreased cell proliferation and presynaptic bouton density in the murine hippocampus. Neurosci Res 59(3):251–256PubMedGoogle Scholar
  138. Nagy Z, Esiri MM, Jobst KA, Johnston C, Litchfield S, Sim E, Smith AD (1995) Influence of the apolipoprotein E genotype on amyloid deposition and neurofibrillary tangle formation in Alzheimer’s disease. Neuroscience 69(3):757–761PubMedGoogle Scholar
  139. Nakashima Y, Plump AS, Raines EW, Breslow JL, Ross R (1994) ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree. Arterioscler Thromb 14(1):133–140PubMedGoogle Scholar
  140. Naliwaiko K, Araujo RL, da Fonseca RV, Castilho JC, Andreatini R, Bellissimo MI, Oliveira BH, Martins EF, Curi R, Fernandes LC, Ferraz AC (2004) Effects of fish oil on the central nervous system: a new potential antidepressant? Nutr Neurosci 7(2):91–99PubMedGoogle Scholar
  141. Noga JT, Hyde TM, Herman MM, Spurney CF, Bigelow LB, Weinberger DR, Kleinman JE (1997) Glutamate receptors in the postmortem striatum of schizophrenic, suicide, and control brains. Synapse 27(3):168–176. doi: 10.1002/(SICI)1098-2396(199711)27:3<168:AID-SYN2>3.0.CO;2-B PubMedGoogle Scholar
  142. Ohm TG, Scharnagl H, Marz W, Bohl J (1999) Apolipoprotein E isoforms and the development of low and high Braak stages of Alzheimer’s disease-related lesions. Acta Neuropathol 98(3):273–280PubMedGoogle Scholar
  143. Oitzl MS, Mulder M, Lucassen PJ, Havekes LM, Grootendorst J, de Kloet ER (1997) Severe learning deficits in apolipoprotein E-knockout mice in a water maze task. Brain Res 752(1–2):189–196PubMedGoogle Scholar
  144. Oja SS, Saransaari P (1996) Taurine as osmoregulator and neuromodulator in the brain. Metab Brain Dis 11(2):153–164PubMedGoogle Scholar
  145. Oksman M, Iivonen H, Hogyes E, Amtul Z, Penke B, Leenders I, Broersen L, Lutjohann D, Hartmann T, Tanila H (2006) Impact of different saturated fatty acid, polyunsaturated fatty acid and cholesterol containing diets on beta-amyloid accumulation in APP/PS1 transgenic mice. Neurobiol Dis 23(3):563–572PubMedGoogle Scholar
  146. Okuda N, Ueshima H, Okayama A, Saitoh S, Nakagawa H, Rodriguez BL, Sakata K, Choudhury SR, Curb JD, Stamler J (2005) Relation of long chain n-3 polyunsaturated fatty acid intake to serum high density lipoprotein cholesterol among Japanese men in Japan and Japanese-American men in Hawaii: the INTERLIPID study. Atherosclerosis 178(2):371–379PubMedGoogle Scholar
  147. Patterson MB, Schnell AH, Martin RJ, Mendez MF, Smyth KA, Whitehouse PJ (1990) Assessment of behavioral and affective symptoms in Alzheimer’s disease. J Geriatr Psychiatry Neurol 3(1):21–30PubMedGoogle Scholar
  148. Pfrieger FW (2003) Cholesterol homeostasis and function in neurons of the central nervous system. Cell Mol Life Sci 60(6):1158–1171PubMedGoogle Scholar
  149. Piedrahita JA, Zhang SH, Hagaman JR, Oliver PM, Maeda N (1992) Generation of mice carrying a mutant apolipoprotein E gene inactivated by gene targeting in embryonic stem cells. Proc Natl Acad Sci USA 89(10):4471–4475PubMedCentralPubMedGoogle Scholar
  150. Plump AS, Smith JD, Hayek T, Aalto-Setala K, Walsh A, Verstuyft JG, Rubin EM, Breslow JL (1992) Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell 71(2):343–353PubMedGoogle Scholar
  151. Poirier J, Minnich A, Davignon J (1995) Apolipoprotein E, synaptic plasticity and Alzheimer’s disease. Ann Med 27(6):663–670PubMedGoogle Scholar
  152. Premkumar DR, Cohen DL, Hedera P, Friedland RP, Kalaria RN (1996) Apolipoprotein E-epsilon4 alleles in cerebral amyloid angiopathy and cerebrovascular pathology associated with Alzheimer’s disease. Am J Pathol 148(6):2083–2095PubMedCentralPubMedGoogle Scholar
  153. Pugh PL, Richardson JC, Bate ST, Upton N, Sunter D (2007) Non-cognitive behaviours in an APP/PS1 transgenic model of Alzheimer’s disease. Behav Brain Res 178(1):18–28PubMedGoogle Scholar
  154. Raber J, Wong D, Buttini M, Orth M, Bellosta S, Pitas RE, Mahley RW, Mucke L (1998) Isoform-specific effects of human apolipoprotein E on brain function revealed in ApoE knockout mice: increased susceptibility of females. Proc Natl Acad Sci USA 95(18):10914–10919PubMedCentralPubMedGoogle Scholar
  155. Raber J, Akana SF, Bhatnagar S, Dallman MF, Wong D, Mucke L (2000) Hypothalamic-pituitary-adrenal dysfunction in Apoe(−/−) mice: possible role in behavioral and metabolic alterations. J Neurosci 20(5):2064–2071PubMedGoogle Scholar
  156. Reeves PG, Nielsen FH, Fahey GC Jr (1993) AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 123(11):1939–1951PubMedGoogle Scholar
  157. Revett TJ, Baker GB, Jhamandas J, Kar S (2013) Glutamate system, amyloid ss peptides and tau protein: functional interrelationships and relevance to Alzheimer disease pathology. J Psychiatry Neurosci 38(1):6–23. doi: 10.1503/jpn.110190 PubMedCentralPubMedGoogle Scholar
  158. Rijpma A, Jansen D, Arnoldussen IAC, Fang XT, Wiesmann M, Mutsaers MPC, Dederen PJ, Janssen CIF, Kiliaan AJ (2013) Sex Differences in Presynaptic Density and Neurogenesis in Middle-Aged ApoE4 and ApoE Knockout Mice. J Neurodegener Dis 2013:9. doi: 10.1155/2013/531326 Google Scholar
  159. Robertson J, Curley J, Kaye J, Quinn J, Pfankuch T, Raber J (2005) apoE isoforms and measures of anxiety in probable AD patients and Apoe-/- mice. Neurobiol Aging 26(5):637–643. doi: 10.1016/j.neurobiolaging.2004.06.003 PubMedGoogle Scholar
  160. Rogers PJ, Appleton KM, Kessler D, Peters TJ, Gunnell D, Hayward RC, Heatherley SV, Christian LM, McNaughton SA, Ness AR (2008) No effect of n-3 long-chain polyunsaturated fatty acid (EPA and DHA) supplementation on depressed mood and cognitive function: a randomised controlled trial. Br J Nutr 99(2):421–431. doi: 10.1017/S0007114507801097 PubMedGoogle Scholar
  161. Rutten BP, Wirths O, Van de Berg WD, Lichtenthaler SF, Vehoff J, Steinbusch HW, Korr H, Beyreuther K, Multhaup G, Bayer TA, Schmitz C (2003) No alterations of hippocampal neuronal number and synaptic bouton number in a transgenic mouse model expressing the beta-cleaved C-terminal APP fragment. Neurobiol Dis 12(2):110–120PubMedGoogle Scholar
  162. Rutten BP, Van der Kolk NM, Schafer S, van Zandvoort MA, Bayer TA, Steinbusch HW, Schmitz C (2005) Age-related loss of synaptophysin immunoreactive presynaptic boutons within the hippocampus of APP751SL, PS1M146L, and APP751SL/PS1M146L transgenic mice. Am J Pathol 167(1):161–173PubMedCentralPubMedGoogle Scholar
  163. Sacks FM, Katan M (2002) Randomized clinical trials on the effects of dietary fat and carbohydrate on plasma lipoproteins and cardiovascular disease. Am J Med 113(Suppl 9B):13S–24SGoogle Scholar
  164. Saransaari P, Oja SS (1997) Enhanced taurine release in cell-damaging conditions in the developing and ageing mouse hippocampus. Neuroscience 79(3):847–854PubMedGoogle Scholar
  165. Savelkoul PJ, Janickova H, Kuipers AA, Hageman RJ, Kamphuis PJ, Dolezal V, Broersen LM (2012) A specific multi-nutrient formulation enhances M1 muscarinic acetylcholine receptor responses in vitro. J Neurochem 120(4):631–640PubMedGoogle Scholar
  166. Savitz J, Solms M, Ramesar R (2006) Apolipoprotein E variants and cognition in healthy individuals: a critical opinion. Brain Res Rev 51(1):125–135. doi: 10.1016/j.brainresrev.2005.10.006 PubMedGoogle Scholar
  167. Sawiak SJ, Wood NI, Williams GB, Morton AJ, Carpenter TA (2009) Voxel-based morphometry in the R6/2 transgenic mouse reveals differences between genotypes not seen with manual 2D morphometry. Neurobiol Dis 33(1):20–27PubMedGoogle Scholar
  168. Schaefer EJ, Bongard V, Beiser AS, Lamon-Fava S, Robins SJ, Au R, Tucker KL, Kyle DJ, Wilson PW, Wolf PA (2006) Plasma phosphatidylcholine docosahexaenoic acid content and risk of dementia and Alzheimer disease: the Framingham Heart Study. Arch Neurol 63(11):1545–1550PubMedGoogle Scholar
  169. Scheff SW, Price DA (1998) Synaptic density in the inner molecular layer of the hippocampal dentate gyrus in Alzheimer disease. J Neuropathol Exp Neurol 57(12):1146–1153PubMedGoogle Scholar
  170. Scheff SW, Price DA (2003) Synaptic pathology in Alzheimer’s disease: a review of ultrastructural studies. Neurobiol Aging 24(8):1029–1046PubMedGoogle Scholar
  171. Scheff SW, Sparks DL, Price DA (1996) Quantitative assessment of synaptic density in the outer molecular layer of the hippocampal dentate gyrus in Alzheimer’s disease. Dementia (Basel, Switzerland) 7(4):226–232Google Scholar
  172. Scheff SW, Price DA, Schmitt FA, Mufson EJ (2006) Hippocampal synaptic loss in early Alzheimer’s disease and mild cognitive impairment. Neurobiol Aging 27(10):1372–1384PubMedGoogle Scholar
  173. Scheff SW, Price DA, Schmitt FA, DeKosky ST, Mufson EJ (2007) Synaptic alterations in CA1 in mild Alzheimer disease and mild cognitive impairment. Neurology 68(18):1501–1508. doi: 10.1212/01.wnl.0000260698.46517.8f PubMedGoogle Scholar
  174. Scheltens P, Kamphuis PJ, Verhey FR, Olde Rikkert MG, Wurtman RJ, Wilkinson D, Twisk JW, Kurz A (2010) Efficacy of a medical food in mild Alzheimer’s disease: A randomized, controlled trial. Alzheimers Dement 6(1):1–10 e11. doi: 10.1016/j.jalz.2009.10.003 Google Scholar
  175. Scheltens P, Twisk JW, Blesa R, Scarpini E, von Arnim CA, Bongers A, Harrison J, Swinkels SH, Stam CJ, de Waal H, Wurtman RJ, Wieggers RL, Vellas B, Kamphuis PJ (2012) Efficacy of Souvenaid in mild Alzheimer’s disease: results from a randomized, controlled trial. J Alzheimers Dis 31(1):225–236. doi: 10.3233/JAD-2012-121189 PubMedGoogle Scholar
  176. Schipper HM (2011) Apolipoprotein E: implications for AD neurobiology, epidemiology and risk assessment. Neurobiol Aging 32(5):778–790PubMedGoogle Scholar
  177. Schipper P, Kiliaan AJ, Homberg JR (2011) A mixed polyunsaturated fatty acid diet normalizes hippocampal neurogenesis and reduces anxiety in serotonin transporter knockout rats. Behav Pharmacol 22(4):324–334PubMedGoogle Scholar
  178. Schmechel DE, Saunders AM, Strittmatter WJ, Crain BJ, Hulette CM, Joo SH, Pericak-Vance MA, Goldgaber D, Roses AD (1993) Increased amyloid beta-peptide deposition in cerebral cortex as a consequence of apolipoprotein E genotype in late-onset Alzheimer disease. Proc Natl Acad Sci USA 90(20):9649–9653PubMedCentralPubMedGoogle Scholar
  179. Selkoe DJ (2002) Alzheimer’s disease is a synaptic failure. Science 298(5594):789–791Google Scholar
  180. Shrivastava R, Vincent B, Gobron S, Cucuat N, John GW (2005) Evidence for growth-promoting effects of omega n-3 fatty acids alone and in combination with a specific vitamin and mineral complex in rat neuroblastoma cells. Nutr Neurosci 8(5–6):317–321PubMedGoogle Scholar
  181. Shukla C, Bridges LR (1999) Regional distribution of tau, beta-amyloid and beta-amyloid precursor protein in the Alzheimer’s brain: a quantitative immunolabelling study. NeuroReport 10(18):3785–3789PubMedGoogle Scholar
  182. Simon P, Dupuis R, Costentin J (1994) Thigmotaxis as an index of anxiety in mice. Influence of dopaminergic transmissions. Behav Brain Res 61(1):59–64PubMedGoogle Scholar
  183. Skoog I, Gustafson D (2006) Update on hypertension and Alzheimer’s disease. Neurol Res 28(6):605–611PubMedGoogle Scholar
  184. Socci DJ, Crandall BM, Arendash GW (1995) Chronic antioxidant treatment improves the cognitive performance of aged rats. Brain Res 693(1–2):88–94PubMedGoogle Scholar
  185. Sparks DL, Sabbagh MN, Connor DJ, Lopez J, Launer LJ, Browne P, Wasser D, Johnson-Traver S, Lochhead J, Ziolwolski C (2005) Atorvastatin for the treatment of mild to moderate Alzheimer disease: preliminary results. Arch Neurol 62(5):753–757PubMedGoogle Scholar
  186. Specht CG, Schoepfer R (2001) Deletion of the alpha-synuclein locus in a subpopulation of C57BL/6 J inbred mice. BMC Neurosci 2:11PubMedCentralPubMedGoogle Scholar
  187. Streijger F, Oerlemans F, Ellenbroek BA, Jost CR, Wieringa B, Van der Zee CE (2005) Structural and behavioural consequences of double deficiency for creatine kinases BCK and UbCKmit. Behav Brain Res 157(2):219–234PubMedGoogle Scholar
  188. Sutula T, Cascino G, Cavazos J, Parada I, Ramirez L (1989) Mossy fiber synaptic reorganization in the epileptic human temporal lobe. Ann Neurol 26(3):321–330. doi: 10.1002/ana.410260303 PubMedGoogle Scholar
  189. Takeuchi T, Iwanaga M, Harada E (2003) Possible regulatory mechanism of DHA-induced anti-stress reaction in rats. Brain Res 964(1):136–143PubMedGoogle Scholar
  190. Tanabe Y, Hashimoto M, Sugioka K, Maruyama M, Fujii Y, Hagiwara R, Hara T, Hossain SM, Shido O (2004) Improvement of spatial cognition with dietary docosahexaenoic acid is associated with an increase in Fos expression in rat CA1 hippocampus. Clin Exp Pharmacol Physiol 31(10):700–703PubMedGoogle Scholar
  191. Taniuchi N, Niidome T, Goto Y, Akaike A, Kihara T, Sugimoto H (2007) Decreased proliferation of hippocampal progenitor cells in APPswe/PS1dE9 transgenic mice. NeuroReport 18(17):1801–1805PubMedGoogle Scholar
  192. Teather LA, Wurtman RJ (2003) Dietary cytidine (5′)-diphosphocholine supplementation protects against development of memory deficits in aging rats. Prog Neuropsychopharmacol Biol Psychiatry 27(4):711–717PubMedGoogle Scholar
  193. Teri L, Ferretti LE, Gibbons LE, Logsdon RG, McCurry SM, Kukull WA, McCormick WC, Bowen JD, Larson EB (1999) Anxiety of Alzheimer’s disease: prevalence, and comorbidity. J Gerontol 54(7):M348–M352Google Scholar
  194. Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R, Hansen LA, Katzman R (1991) Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30(4):572–580PubMedGoogle Scholar
  195. Thelen KM, Rentsch KM, Gutteck U, Heverin M, Olin M, Andersson U, von Eckardstein A, Bjorkhem I, Lutjohann D (2006) Brain cholesterol synthesis in mice is affected by high dose of simvastatin but not of pravastatin. J Pharmacol Exp Therapeut 316(3):1146–1152Google Scholar
  196. Tous M, Ferre N, Vilella E, Riu F, Camps J, Joven J (2004) Circulating blood cells modulate the atherosclerotic process in apolipoprotein E-deficient mice. Metab Clin Exp 53(1):95–100Google Scholar
  197. Troen AM, Shea-Budgell M, Shukitt-Hale B, Smith DE, Selhub J, Rosenberg IH (2008) B-vitamin deficiency causes hyperhomocysteinemia and vascular cognitive impairment in mice. Proc Natl Acad Sci USA 105(34):12474–12479PubMedCentralPubMedGoogle Scholar
  198. Tsukada H, Kakiuchi T, Fukumoto D, Nishiyama S, Koga K (2000) Docosahexaenoic acid (DHA) improves the age-related impairment of the coupling mechanism between neuronal activation and functional cerebral blood flow response: a PET study in conscious monkeys. Brain Res 862(1–2):180–186PubMedGoogle Scholar
  199. Valente T, Hidalgo J, Bolea I, Ramirez B, Angles N, Reguant J, Morello JR, Gutierrez C, Boada M, Unzeta M (2009) A diet enriched in polyphenols and polyunsaturated fatty acids, LMN diet, induces neurogenesis in the subventricular zone and hippocampus of adult mouse brain. J Alzheimers Dis 18(4):849–865. doi: 10.3233/JAD-2009-1188 PubMedGoogle Scholar
  200. van de Rest O, Geleijnse JM, Kok FJ, van Staveren WA, Dullemeijer C, Olderikkert MG, Beekman AT, de Groot CP (2008) Effect of fish oil on cognitive performance in older subjects: a randomized, controlled trial. Neurology 71(6):430–438. doi: 10.1212/01.wnl.0000324268.45138.86 PubMedGoogle Scholar
  201. Veinbergs I, Mallory M, Mante M, Rockenstein E, Gilbert JR, Masliah E (1999) Differential neurotrophic effects of apolipoprotein E in aged transgenic mice. Neurosci Lett 265(3):218–222PubMedGoogle Scholar
  202. Wang SH, Zhang ZJ, Guo YJ, Teng GJ, Chen BA (2008) Hippocampal neurogenesis and behavioural studies on adult ischemic rat response to chronic mild stress. Behav Brain Res 189(1):9–16. doi: 10.1016/j.bbr.2007.11.028 PubMedGoogle Scholar
  203. Wang D, Zhao Y, Zhang Y, Zhang T, Shang X, Wang J, Liu Y, Kong Q, Sun B, Lili M, Liu X, Wang G, Li H (2013) Hypothermia protects against oxygen-glucose deprivation-induced neuronal injury by down-regulating the reverse transport of glutamate by astrocytes as mediated by neurons. Neuroscience. doi: 10.1016/j.neuroscience.2013.01.056 Google Scholar
  204. Weisgraber KH (1994) Apolipoprotein E: structure-function relationships. Adv Protein Chem 45:249–302PubMedGoogle Scholar
  205. Whalley LJ, Deary IJ, Starr JM, Wahle KW, Rance KA, Bourne VJ, Fox HC (2008) n-3 Fatty acid erythrocyte membrane content, APOE varepsilon4, and cognitive variation: an observational follow-up study in late adulthood. Am J Clin Nutr 87(2):449–454PubMedGoogle Scholar
  206. Yagita Y, Kitagawa K, Ohtsuki T, Takasawa K, Miyata T, Okano H, Hori M, Matsumoto M (2001) Neurogenesis by progenitor cells in the ischemic adult rat hippocampus. Stroke J Cereb Circul 32(8):1890–1896Google Scholar
  207. Yamada K, Tanaka T, Han D, Senzaki K, Kameyama T, Nabeshima T (1999) Protective effects of idebenone and alpha-tocopherol on beta-amyloid-(1-42)-induced learning and memory deficits in rats: implication of oxidative stress in beta-amyloid-induced neurotoxicity in vivo. Eur J Neurosci 11(1):83–90PubMedGoogle Scholar
  208. Yao PJ, Bushlin I, Furukawa K (2005) Preserved synaptic vesicle recycling in hippocampal neurons in a mouse Alzheimer’s disease model. Biochem Biophys Res Commun 330(1):34–38PubMedGoogle Scholar
  209. Yavich L, Tanila H, Vepsäläinen S, Jäkälä P (2004) Role of alpha-synuclein in presynaptic dopamine recruitment. J Neurosci 24(49):11165–11170PubMedGoogle Scholar
  210. Yavich L, Jäkälä P, Tanila H (2006) Abnormal compartmentalization of norepinephrine in mouse dentate gyrus in alpha-synuclein knockout and A30P transgenic mice. J Neurochem 99(3):724–732PubMedGoogle Scholar
  211. Yip AG, McKee AC, Green RC, Wells J, Young H, Cupples LA, Farrer LA (2005) APOE, vascular pathology, and the AD brain. Neurology 65(2):259–265. doi: 10.1212/01.wnl.0000168863.49053.4d PubMedGoogle Scholar
  212. Yu Y, He J, Zhang Y, Luo H, Zhu S, Yang Y, Zhao T, Wu J, Huang Y, Kong J, Tan Q, Li XM (2009) Increased hippocampal neurogenesis in the progressive stage of Alzheimer’s disease phenotype in an APP/PS1 double transgenic mouse model. Hippocampus 19(12):1247–1253PubMedGoogle Scholar
  213. Yurko-Mauro K, McCarthy D, Rom D, Nelson EB, Ryan AS, Blackwell A, Salem N Jr, Stedman M, Investigators M (2010) Beneficial effects of docosahexaenoic acid on cognition in age-related cognitive decline. Alzheimers Dement 6(6):456–464. doi: 10.1016/j.jalz.2010.01.013 PubMedGoogle Scholar
  214. Zerbi V, Jansen D, Dederen PJ, Veltien A, Hamans B, Liu Y, Heerschap A, Kiliaan AJ (2012) Microvascular cerebral blood volume changes in aging APP(swe)/PS1 (dE9) AD mouse model: a voxel-wise approach. Brain Struct Funct. doi: 10.1007/s00429-012-0448-8 PubMedGoogle Scholar
  215. Zhang X, Huang G, Liu H, Chang H, Wilson JX (2012) Folic acid enhances Notch signaling, hippocampal neurogenesis, and cognitive function in a rat model of cerebral ischemia. Nutrition Neurosci 15(2):55–61. doi: 10.1179/1476830511Y.0000000025 Google Scholar
  216. Zhou Y, Elkins PD, Howell LA, Ryan DH, Harris RB (1998) Apolipoprotein-E deficiency results in an altered stress responsiveness in addition to an impaired spatial memory in young mice. Brain Res 788(1–2):151–159PubMedGoogle Scholar
  217. Zhou B, Teramukai S, Fukushima M (2007) Prevention and treatment of dementia or Alzheimer’s disease by statins: a meta-analysis. Dement Geriatr Cogn Disord 23(3):194–201PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Diane Jansen
    • 1
  • Valerio Zerbi
    • 1
  • Carola I. F. Janssen
    • 1
  • Daan van Rooij
    • 1
  • Bastian Zinnhardt
    • 1
  • Pieter J. Dederen
    • 1
  • Alan J. Wright
    • 2
  • Laus M. Broersen
    • 3
  • Dieter Lütjohann
    • 4
  • Arend Heerschap
    • 2
  • Amanda J. Kiliaan
    • 1
    Email author
  1. 1.Department of AnatomyRadboud University Nijmegen Medical Centre, Donders Institute for Brain, Cognition and BehaviourNijmegenThe Netherlands
  2. 2.Department of RadiologyRadboud University Nijmegen Medical CentreNijmegenThe Netherlands
  3. 3.Nutricia Advanced Medical Nutrition, Danone Research, Centre for Specialised NutritionWageningenThe Netherlands
  4. 4.Institute for Clinical Chemistry and Clinical PharmacologyUniversity Clinics BonnBonnGermany

Personalised recommendations