Advertisement

Brain Structure and Function

, Volume 219, Issue 5, pp 1659–1672 | Cite as

Fear extinction and acute stress reactivity reveal a role of LPA1 receptor in regulating emotional-like behaviors

  • C. PedrazaEmail author
  • J. Sánchez-López
  • E. Castilla-Ortega
  • C. Rosell-Valle
  • E. Zambrana-Infantes
  • M. García-Fernández
  • F. Rodriguez de Fonseca
  • J. Chun
  • L. J. Santín
  • G. Estivill-Torrús
Original Article

Abstract

LPA1 receptor is one of the six characterized G protein-coupled receptors (LPA1–6) through which lysophosphatidic acid acts as an intercellular signaling molecule. It has been proposed that this receptor has a role in controlling anxiety-like behaviors and in the detrimental consequences of stress. Here, we sought to establish the involvement of the LPA1 receptor in emotional regulation. To this end, we examined fear extinction in LPA1-null mice, wild-type and LPA1 antagonist-treated animals. In LPA1-null mice we also characterized the morphology and GABAergic properties of the amygdala and the medial prefrontal cortex. Furthermore, the expression of c-Fos protein in the amygdala and the medial prefrontal cortex, and the corticosterone response following acute stress were examined in both genotypes. Our data indicated that the absence of the LPA1 receptor significantly inhibited fear extinction. Treatment of wild-type mice with the LPA1 antagonist Ki16425 mimicked the behavioral phenotype of LPA1-null mice, revealing that the LPA1 receptor was involved in extinction. Immunohistochemistry studies revealed a reduction in the number of neurons, GABA+ cells, calcium-binding proteins and the volume of the amygdala in LPA1-null mice. Following acute stress, LPA1-null mice showed increased corticosterone and c-Fos expression in the amygdala. In conclusion, LPA1 receptor is involved in emotional behaviors and in the anatomical integrity of the corticolimbic circuit, the deregulation of which may be a susceptibility factor for anxiety disorders and a potential therapeutic target for the treatment of these diseases.

Keywords

Lysophosphatidic acid Fear extinction Acute stress reactivity Amygdala Prefrontal cortex GABA 

Notes

Acknowledgments

We are grateful to Juan Gómez Repiso for his technical assistance, Elisa Matas-Rico for her contribution to the NeuN and calcium-binding proteins immunohistochemistry, Román Moreno and Marina Navarro for their contribution to stereological quantification of GABA+ cells, Jose Peral for his help in the pharmacological experiment, and Jose Ángel Aguirre Gómez for access to stereology. We thank the animal housing facilities of the University of Málaga for maintenance of the mice. This work was supported by grants from Spanish Ministry of Economy and Competitiveness (MEC SEJ2007-61187, co-funded by ERDF, MICINN PSI2010-16160, to L.J.S.; PI10/02514, co-funded by ERDF, to G.E-T; Red de Trastornos Adictivos RD06/001/0000, to F.R.F), Andalusian Ministries of Health and Economy, Innovation, Science and Employment (SEJ-4515, to L.J.S; CTS643 and Nicolás Monardes Programme, to G.E-T.; and SAF2010-20521, to F.R.F). E.C., J.S. and E.Z. were supported by an FPU Grant of the Spanish Ministry of Education (AP-2006-02582, AP-2007-03719, and AP-2010-2044, respectively) and University of Malaga (Ayuda para la actividad productiva del PIF, III Plan Propio) and  Postdoctoral Fellowship ‘Sara Borrell’ of the National Institute of Health Carlos III to E.C.C.R. was supported by a FPU Grant of the Andalusian Ministry of Economy, Innovation, Science and Employment (FPDI 2010).

Supplementary material

429_2013_592_MOESM1_ESM.doc (5.5 mb)
Supplementary material 1 (DOC 5592 kb)

References

  1. Akirav I, Maroun M (2007) The role of the medial prefrontal cortex–amygdala circuit in stress effects on the extinction of fear. Neural Plast 2007:1–11CrossRefGoogle Scholar
  2. Akirav I, Raizel H, Maroun M (2006) Enhancement of conditioned fear extinction by infusion of the GABA(A) agonist muscimol into the rat prefrontal cortex and amygdala. Eur J Neurosci 23:758–764PubMedCrossRefGoogle Scholar
  3. Amano T, Unal CT, Pare D (2010) Synaptic correlates of fear extinction in the amygdala. Nat Neurosci 13:489–494PubMedCentralPubMedCrossRefGoogle Scholar
  4. Bowden NA, Weidenhofer J, Scott RJ, Schall U, Todd J, Michie PT, Tooney PA (2006) Preliminary investigation of gene expression profiles in peripheral blood lymphocytes in schizophrenia. Schizophr Res 82:175–183PubMedCrossRefGoogle Scholar
  5. Brinks V, de Kloet ER, Oitzl MS (2009) Corticosterone facilitates extinction of fear memory in BALB/c mice but strengthens cue related fear in C57BL/6 mice. Exp Neurol 216:375–382PubMedCrossRefGoogle Scholar
  6. Camp M, Norcross M, Whittle N, Feyder M, D’Hanis W, Yilmazer-Hanke D et al (2009) Impaired Pavlovian fear extinction is a common phenotype across genetic lineages of the 129 inbred mouse strains. Genes Brain Behav 8:744–752PubMedCentralPubMedCrossRefGoogle Scholar
  7. Castilla-Ortega E, Sánchez-Lopez J, Hoyo-Becerra C, Matas-Rico E, Zambrana-Infantes E et al (2010) Exploratory, anxiety and spatial memory impairments are dissociated in mice lacking the LPA1 receptor. Neurobiol Learn Mem 94:73–82PubMedCentralPubMedCrossRefGoogle Scholar
  8. Castilla-Ortega E, Hoyo-Becerra C, Pedraza C, Chun J, Rodríguez de Fonseca F, Estivill-Torrús G et al (2011) Aggravation of chronic stress effects on hippocampal neurogenesis and spatial memory in LPA1 receptor knockout mice. PLoS ONE 6(9):e25522. doi: 10.1371/journal.pone.0025522 PubMedCentralPubMedCrossRefGoogle Scholar
  9. Castilla-Ortega E, Pedraza C, Chun J, Rodríguez de Fonseca F, Estivill-Torrús G, Santín LJ (2012) Hippocampal c-Fos activation in normal and LPA1-null mice after two object recognition tasks with different memory demands. Behav Brain Res 231:400–405CrossRefGoogle Scholar
  10. Choi JW, Chun J (2013) Lysophospholipids and their receptors in the central nervous system. Biochim Biophys Acta 1831:20–32PubMedCentralPubMedCrossRefGoogle Scholar
  11. Contos JJ, Ishii I, Chun J (2000) Lysophosphatidic acid receptors. Mol Pharmacol 58:1188–1196PubMedGoogle Scholar
  12. Cunningham MO, Hunt J, Middleton S, LeBeau FE, Gillies MJ, Davies CH et al (2006) Region-specific reduction in entorhinal gamma oscillations and parvalbumin-immunoreactive neurons in animal models of psychiatric illness. J Neurosci 26:2767–2776PubMedCrossRefGoogle Scholar
  13. Davis M, Rainnie D, Cassell M (1994) Neurotransmission in the rat amygdala related to fear and anxiety. Trends Neurosci 17:208–214PubMedCrossRefGoogle Scholar
  14. DeFelipe J (1993) Neocortical neuronal diversity: chemical heterogeneity revealed by colocalization studies of classic neurotransmitters, neuropeptides, calcium-binding proteins, and cell surface molecules. Cereb Cortex 3:273–289PubMedCrossRefGoogle Scholar
  15. Ehrlich I, Humeau Y, Grenier F, Ciocchi S, Herry C, Luthi A (2009) Amygdala inhibitory circuits and the control of fear memory. Neuron 62:757–771PubMedCrossRefGoogle Scholar
  16. Estivill-Torrús G, Llebrez-Zayas P, Matas-Rico E, Santín L, Pedraza C, De Diego I et al (2008) Absence of LPA1 signaling results in defective cortical development. Cereb Cortex 18:938–950PubMedCrossRefGoogle Scholar
  17. Estivill-Torrús G, Santín LJ, Pedraza C, Castilla-Ortega E, Rodriguez de Fonseca F (2013) Role of lysophosphatidic acid (LPA) in behavioral processes: implications for psychiatric disorders. in: Chun J (ed) lysophospholipid receptors: signaling and biochemistry. Wiley, New Jersey, pp 451–474Google Scholar
  18. Etkin A, Wager TD (2007) Functional neuroimaging of anxiety: a metaanalysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. Am J Psychiatry 164:1476–1488PubMedCentralPubMedCrossRefGoogle Scholar
  19. Everitt BJ, Cardinal RN, Hall J, Parkinson JA, Robbins TW (2000) Differential involvement of amygdala subsystems in appetitive conditioning and drug addiction. In: Aggleton J (ed) The amygdala, 2nd edn. Oxford University Press, Oxford, pp 353–390Google Scholar
  20. Eysenck HJ (1968) A theory of the incubation of anxiety/fear responses. Behav Res Ther 6:309–321PubMedCrossRefGoogle Scholar
  21. Gilbertson MW, Shenton ME, Ciszewski A, Kasai K, Lasko NB, Orr SP et al (2002) Smaller hippocampal volume predicts pathologic vulnerability to psychological trauma. Nat Neurosci 5:1242–1247PubMedCentralPubMedCrossRefGoogle Scholar
  22. Hartley C, Phelps E (2010) Changing fear: the neurocircuitry of emotion regulation. Neuropsychopharmacology 35:136–146PubMedCentralPubMedCrossRefGoogle Scholar
  23. Hefner K, Whittle N, Juhasz J, Norcross M, Karlsson RM, Saksida LM, Bussey TJ, Singewald N, Holmes A (2008) Impaired fear extinction learning and cortico-amygdala circuit abnormalities in a common genetic mouse strain. J Neurosci 28:8074–8085PubMedCentralPubMedCrossRefGoogle Scholar
  24. Heldt SA, Mou L, Ressler KJ (2012) In vivo knockdown of GAD67 in the amygdala disrupts fear extinction and the anxiolytic-like effect of diazepam in mice. Translat Psychiatry 2:e181. doi: 10.1038/tp.2012.101 CrossRefGoogle Scholar
  25. Herry C, Trifilieff P, Micheau J, Lüthi A, Mons N (2006) Extinction of auditory fear conditioning requires MAPK/ERK activation in the basolateral amygdala. Eur J Neurosci 24:261–269PubMedCrossRefGoogle Scholar
  26. Herry C, Ferraguti F, Singewald N, Letzkus JJ, Ehrlich I, Lüthi A (2010) Neuronal circuits of fear extinction. Eur J Neurosci 31:599–612PubMedCrossRefGoogle Scholar
  27. Holt DJ, Lebron-Milad K, Milad MR, Rauch SL, Orr SP, Cassidy BS et al (2009) Extinction memory is impaired in schizophrenia. Biol Psychiatry 65:455–463PubMedCentralPubMedCrossRefGoogle Scholar
  28. Hong I, Song B, Lee S, Kim J, Kim J, Choi S (2009) Extinction of cued fear memory involves a distinct form of depotentiation at cortical input synapses onto the lateral amygdala. Eur J Neurosci 30:2089–2099PubMedCrossRefGoogle Scholar
  29. Ji J, Maren S (2007) Hippocampal involvement in contextual modulation of fear extinction. Hippocampus 17:749–758PubMedCrossRefGoogle Scholar
  30. Konarski JZ, McIntyre RS, Soczynska JK, Kennedy SH (2007) Neuroimaging approaches in mood disorders: technique and clinical implications. Ann Clin Psychiatry 19:265–277PubMedCrossRefGoogle Scholar
  31. Maren S, Quirk GJ (2004) Neuronal signalling of fear memory. Nat Rev Neurosci 5:844–852PubMedCrossRefGoogle Scholar
  32. Matas-Rico E, García-Díaz B, Llebrez-Zayas P, López-Barroso D, Santín L, Pedraza C et al (2008) Deletion of lysophosphatidic acid receptor LPA1 reduces neurogenesis in the mouse dentate gyrus. Mol Cell Neurosci 39:342–355PubMedCentralPubMedCrossRefGoogle Scholar
  33. Meyer-Lindenberg A, Buckholtz JW, Kolachana BR, Hariri A, Pezawas L, Blasi G et al (2006) Neural mechanisms of genetic risk for impulsivity and violence in humans. Proc Natl Acad Sci USA 103:6269–6274PubMedCentralPubMedCrossRefGoogle Scholar
  34. Moustafa AA, Gilbertson MW, Orr SP, Herzallah MM, Servatius RJ, Myers CE (2013) A model of amygdala–hippocampal–prefrontal interaction in fear conditioning and extinction in animals. Brain Cogn 81(1):29–43PubMedCrossRefGoogle Scholar
  35. Musazzi L, Di Daniel E, Maycox P, Racagni G, Popoli M (2011) Abnormalities in α/β-CaMKII and related mechanisms suggest synaptic dysfunction in hippocampus of LPA1 receptor knockout mice. Int J Neuropsychopharmacol 14:941–953Google Scholar
  36. Ocaña M, Del Pozo E, Barrios M, Baeyens JM (1995) Subgroups among, μ-opioid receptor agonists distinguished by ATP-sensitive K+ channel-acting drugs. Br J Pharmacol 114:1296–1302PubMedCentralPubMedCrossRefGoogle Scholar
  37. Otha H, Sato K, Murata A, Damirin A, Malchinkhuu E et al (2003) Ki16425, a subtype-selective antagonist for EDG-family lysophosphatidic acid receptors. Mol Pharmacol 64:994–1005CrossRefGoogle Scholar
  38. Pare D, Duvarci S (2012) Amygdala microcircuits mediating fear expression and extinction. Curr Opin Neurobiol 22:717–723PubMedCentralPubMedCrossRefGoogle Scholar
  39. Quirk G, García R, González-Lima F (2006) Prefrontal mechanisms in extinction of conditioned fear. Biol Psychiatry 60:337–343PubMedCrossRefGoogle Scholar
  40. Quirk G, Paré D, Richardson R, Herry C, Monfils MH, Schiller D et al (2010) Erasing fear memories with extinction training. J Neurosci 30:14993–14997PubMedCentralPubMedCrossRefGoogle Scholar
  41. Reznikov LR, Reagan LP, Fadel JR (2008) Activation of phenotypically distinct subpopulations in the anterior subdivision of the rat basolateral amygdala following acute and repeated stress. J Comp Neurol 508:458–472PubMedCrossRefGoogle Scholar
  42. Rodríguez-Manzanares PA, Isoardi NA, Carrer HF, Molina VA (2005) Previous stress facilitates fear memory, attenuates GABAergic inhibition, and increases synaptic plasticity in the rat basolateral amygdala. J Neurosci 25:8725–8734PubMedCrossRefGoogle Scholar
  43. Sandin B, Chorot P (1989) The incubation theory of fear/anxiety: experimental investigation in a human laboratory model of Pavlovian conditioning. Behav Res Ther 27:9–18PubMedCrossRefGoogle Scholar
  44. Santin LJ, Bilbao A, Pedraza C, Matas-Rico E, López-Barroso D, Castilla-Ortega E et al (2009) Behavioural phenotype of maLPA1-null mice: increased anxiety-like behavior and spatial memory deficits. Genes Brain Behav 8:772–784PubMedCrossRefGoogle Scholar
  45. Schimanski LA, Wahlsten D, Nguyen PV (2002) Selective modification of short-term hippocampal synaptic plasticity and impaired memory extinction in mice with a congenitally reduced hippocampal commissure. J Neurosci 22:8277–8280PubMedGoogle Scholar
  46. Shepard JD, Barron KW, Myers DA (2000) Corticosterone delivery to the amygdala increases corticotrophin-releasing factor mRNA in the central amygdaloid nucleus and anxiety-like behavior. Brain Res 861:288–295PubMedCrossRefGoogle Scholar
  47. Shepard JD, Barron KW, Myers DA (2003) Stereotaxic location of corticosterone to the amygdala enhance hypothalmo-pituitary-adrenal responses to behaviorial stress. Brain Res 963:203–213PubMedCrossRefGoogle Scholar
  48. Spampanato J, Polepalli J, Sah P (2011) Interneurons in the basolateral amygdala. Neuropharmacology 60:765–773PubMedCrossRefGoogle Scholar
  49. Stafford JM, Raybuck JD, Ryabinin A, Lattal KM (2012) Increasing histone acetylation in the hippocampus–infralimbic network enhances fear extinction. Biol Psychiatry 72:25–33PubMedCentralPubMedCrossRefGoogle Scholar
  50. Wellman CL, Izquierdo A, Garrett JE, Martin KP, Carroll J, Millstein R et al (2007) Impaired stress-coping and fear extinction and abnormal corticolimbic morphology in serotonin transporter knock-out mice. J Neurosci 27:684–691PubMedCrossRefGoogle Scholar
  51. Yang RJ, Mazhui K, Karlsson RM, Cameron HA, Williams RW, Holmes A (2008) Variation in mouse basolateral amygdala volume is associated with differences in stress reactivity and fear learning. Neuropsychopharmacology 33:2595–2604PubMedCrossRefGoogle Scholar
  52. Zaitsev AV, Gonzalez-Burgos G, Povysheva NV, Kröner S, Lewis DA, Krimer LS (2005) Localization of calcium-binding proteins in physiologically and morphologically characterized interneurons of monkey dorsolateral prefrontal cortex. Cereb Cortex 15:1178–1186PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • C. Pedraza
    • 1
    Email author
  • J. Sánchez-López
    • 1
  • E. Castilla-Ortega
    • 2
  • C. Rosell-Valle
    • 1
  • E. Zambrana-Infantes
    • 1
  • M. García-Fernández
    • 3
  • F. Rodriguez de Fonseca
    • 2
  • J. Chun
    • 4
  • L. J. Santín
    • 1
  • G. Estivill-Torrús
    • 5
  1. 1.Departamento de Psicobiología y Metodología de las CCUniversidad de Málaga and Instituto de Investigación Biomédica de Málaga (IBIMA)MálagaSpain
  2. 2.Laboratorio de Medicina Regenerativa, Hospital Regional Universitario Carlos HayaInstituto de Investigación Biomédica de Málaga (IBIMA)MálagaSpain
  3. 3.Departamento de Fisiología y Medicina DeportivaUniversidad de Málaga and Instituto de Investigación Biomédica de Málaga (IBIMA)MálagaSpain
  4. 4.Department of Molecular BiologyHelen L. Dorris Child and Adolescent Neuropsychiatric Disorder Institute, The Scripps Research InstituteLa JollaUSA
  5. 5.Unidad de Microscopía and Unidad de Gestión Clínica de NeurocienciasHospital Regional Universitario Carlos Haya, Instituto de Investigación Biomédica de Malaga (IBIMA)MálagaSpain

Personalised recommendations