Brain Structure and Function

, Volume 219, Issue 4, pp 1251–1261 | Cite as

Self-injurious behaviours are associated with alterations in the somatosensory system in children with autism spectrum disorder

  • Emma G. Duerden
  • Dallas Card
  • S. Wendy Roberts
  • Kathleen M. Mak-Fan
  • M. Mallar Chakravarty
  • Jason P. Lerch
  • Margot J. Taylor
Original Article


Children with autism spectrum disorder (ASD) frequently engage in self-injurious behaviours, often in the absence of reporting pain. Previous research suggests that altered pain sensitivity and repeated exposure to noxious stimuli are associated with morphological changes in somatosensory and limbic cortices. Further evidence from postmortem studies with self-injurious adults has indicated alterations in the structure and organization of the temporal lobes; however, the effect of self-injurious behaviour on cortical development in children with ASD has not yet been determined. Thirty children and adolescents (mean age = 10.6 ± 2.5 years; range 7–15 years; 29 males) with a clinical diagnosis of ASD and 30 typically developing children (N = 30, mean age = 10.7 ± 2.5 years; range 7–15 years, 26 males) underwent T1-weighted magnetic resonance and diffusion tensor imaging. No between-group differences were seen in cerebral volume, surface area or cortical thickness. Within the ASD group, self-injury scores negatively correlated with thickness in the right superior parietal lobule t = 6.3, p < 0.0001, bilateral primary somatosensory cortices (SI) (right: t = 4.4, p = 0.02; left: t = 4.48, p = 0.004) and the volume of the left ventroposterior (VP) nucleus of the thalamus (r = −0.52, p = 0.008). Based on these findings, we performed an atlas-based region-of-interest diffusion tensor imaging analysis between SI and the VP nucleus and found that children who engaged in self-injury had significantly lower fractional anisotropy (r = −0.4, p = 0.04) and higher mean diffusivity (r = 0.5, p = 0.03) values in the territory of the left posterior limb of the internal capsule. Additionally, greater incidence of self-injury was associated with increased radial diffusivity values in bilateral posterior limbs of the internal capsule (left: r = 0.5, p = 0.02; right: r = 0.5, p = 0.009) and corona radiata (left: r = 0.6, p = 0.005; right: r = 0.5, p = 0.009). Results indicate that self-injury is related to alterations in somatosensory cortical and subcortical regions and their supporting white-matter pathways. Findings could reflect use-dependent plasticity in the somatosensory system or disrupted brain development that could serve as a risk marker for self-injury.


Autism Spectrum disorder Injury Grey matter White matter Pain 



The authors would like to thank Wayne Lee for MRI technical and Dr. Annie Dupuis, Hospital for Sick Children, for statistical analysis support. This research was funded by the Canadian Institutes of Health Research [grant number MOP-81161 to MJT], Research Training Competition Fellowship from the Hospital for Sick Children (EGD), and a Reva Gerstein Fellowship in Paediatric Psychology (EGD). We also sincerely thank the children and their families who participated in this study.


  1. Ameis SH, Fan J, Rockel C, Voineskos AN, Lobaugh NJ, Soorya L, Wang AT, Hollander E, Anagnostou E (2011) Impaired structural connectivity of socio-emotional circuits in autism spectrum disorders: a diffusion tensor imaging study. PLoS One 6(11):e28044PubMedCentralPubMedCrossRefGoogle Scholar
  2. Armstrong D, Matt M (1999) Autoextraction in an autistic dental patient: a case report. Spec Care Dentist 19(2):72–74PubMedCrossRefGoogle Scholar
  3. Aylward EH, Minshew NJ, Field K, Sparks BF, Singh N (2002) Effects of age on brain volume and head circumference in autism. Neurology 59(2):175–183PubMedCrossRefGoogle Scholar
  4. Baghdadli A, Pascal C, Grisi S, Aussilloux C (2003) Risk factors for self-injurious behaviours among 222 young children with autistic disorders. J Intellect Disabil Res 47(Pt 8):622–627PubMedCrossRefGoogle Scholar
  5. Baranek GT (2002) Efficacy of sensory and motor interventions for children with autism. J Autism Dev Disord 32(5):397–422PubMedCrossRefGoogle Scholar
  6. Barnea-Goraly N, Kwon H, Menon V, Eliez S, Lotspeich L, Reiss AL (2004) White matter structure in autism: preliminary evidence from diffusion tensor imaging. Biol Psychiatry 55(3):323–326PubMedCrossRefGoogle Scholar
  7. Bodfish JW, Symonds FW, Parker DE, Lewis MH (1999) The Repetitive Behavior Scale. Western Carolina Center Research ReportsGoogle Scholar
  8. Boucher M, Evans A, Siddiqi K (2009) Oriented morphometry of folds on surfaces. Inf Process Med Imaging 21:614–625PubMedGoogle Scholar
  9. Carper RA, Courchesne E (2005) Localized enlargement of the frontal cortex in early autism. Biol Psychiatry 57(2):126–133PubMedCrossRefGoogle Scholar
  10. Carper RA, Moses P, Tigue ZD, Courchesne E (2002) Cerebral lobes in autism: early hyperplasia and abnormal age effects. Neuroimage 16(4):1038–1051PubMedCrossRefGoogle Scholar
  11. Chakravarty MM, Bertrand G, Hodge CP, Sadikot AF, Collins DL (2006) The creation of a brain atlas for image guided neurosurgery using serial histological data. Neuroimage 30(2):359–376PubMedCrossRefGoogle Scholar
  12. Chakravarty MM, Sadikot AF, Germann J, Bertrand G, Collins DL (2008) Towards a validation of atlas warping techniques. Med Image Anal 12(6):713–726PubMedCrossRefGoogle Scholar
  13. Chakravarty MM, Sadikot AF, Germann J, Hellier P, Bertrand G, Collins DL (2009) Comparison of piece-wise linear, linear, and nonlinear atlas-to-patient warping techniques: analysis of the labeling of subcortical nuclei for functional neurosurgical applications. Hum Brain Mapp 30(11):3574–3595PubMedCrossRefGoogle Scholar
  14. Chang LC, Jones DK, Pierpaoli C (2005) RESTORE: robust estimation of tensors by outlier rejection. Magn Reson Med 53(5):1088–1095PubMedCrossRefGoogle Scholar
  15. Chung MK, Worsley KJ, Taylor J, Ramsay JO, Robbins S, Evans AC (2001) Diffusion smoothing on the cortical surface. Neuroimage 13S:95CrossRefGoogle Scholar
  16. Collins DL, Neelin P, Peters TM, Evans AC (1994) Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. J Comput Assist Tomogr 18(2):192–205PubMedCrossRefGoogle Scholar
  17. Cook PA, Bai Y, Nedjati-Gilani S, Seunarine KK, Hall MG, Parker GJ, Alexander DC (2006) Camino:open-source diffusion-MRI reconstruction and processing. 4th Scientific Meeting of the International Society for Magnetic Resonance in Medicine, Seattle, p 2759Google Scholar
  18. Courchesne E (2004) Brain development in autism: early overgrowth followed by premature arrest of growth. Ment Retard Dev Disabil Res Rev 10(2):106–111PubMedCrossRefGoogle Scholar
  19. Courchesne E, Pierce K (2005) Brain overgrowth in autism during a critical time in development: implications for frontal pyramidal neuron and interneuron development and connectivity. Int J Dev Neurosci 23(2–3):153–170PubMedCrossRefGoogle Scholar
  20. Courchesne E, Karns CM, Davis HR, Ziccardi R, Carper RA, Tigue ZD, Chisum HJ, Moses P, Pierce K, Lord C, Lincoln AJ, Pizzo S, Schreibman L, Haas RH, Akshoomoff NA, Courchesne RY (2001) Unusual brain growth patterns in early life in patients with autistic disorder: an MRI study. Neurology 57(2):245–254PubMedCrossRefGoogle Scholar
  21. Courchesne E, Carper R, Akshoomoff N (2003) Evidence of brain overgrowth in the first year of life in autism. JAMA 290(3):337–344PubMedCrossRefGoogle Scholar
  22. Courchesne E, Campbell K, Solso S (2011) Brain growth across the life span in autism: age-specific changes in anatomical pathology. Brain Res 1380:138–145PubMedCrossRefGoogle Scholar
  23. Delmaire C, Vidailhet M, Elbaz A, Bourdain F, Bleton JP, Sangla S, Meunier S, Terrier A, Lehericy S (2007) Structural abnormalities in the cerebellum and sensorimotor circuit in writer’s cramp. Neurology 69(4):376–380PubMedCrossRefGoogle Scholar
  24. Doyle-Thomas KA, Kushki A, Duerden EG, Taylor MJ, Lerch JP, Soorya LV, Wang AT, Fan J, Anagnostou E (2012) The effect of diagnosis, age, and symptom severity on cortical surface area in the cingulate cortex and insula in Autism spectrum disorders. J Child Neurol. doi: 10.1177/0883073812451496
  25. Duerden EG, Oatley HK, Mak-Fan KM, McGrath PA, Satzmari P, Roberts SW (2012) Risk factors associated with self-injurious behaviors in children and adolescents with autism spectrum disorders. J Autism Dev Disord 42(11):2460–2470Google Scholar
  26. Freund HJ (2001) The parietal lobe as a sensorimotor interface: a perspective from clinical and neuroimaging data. Neuroimage 14(1 Pt 2):S142–S146PubMedCrossRefGoogle Scholar
  27. Freund HJ (2003) Somatosensory and motor disturbances in patients with parietal lobe lesions. Adv Neurol 93:179–193PubMedGoogle Scholar
  28. Gaffney GR, Kuperman S, Tsai LY, Minchin S (1989) Forebrain structure in infantile autism. J Am Acad Child Adolesc Psychiatry 28(4):534–537PubMedCrossRefGoogle Scholar
  29. Grant JA, Courtemanche J, Duerden EG, Duncan GH, Rainville P (2010) Cortical thickness and pain sensitivity in zen meditators. Emotion 10(1):43–53PubMedCrossRefGoogle Scholar
  30. Hadjikhani N, Joseph RM, Snyder J, Tager-Flusberg H (2006) Anatomical differences in the mirror neuron system and social cognition network in autism. Cereb Cortex 16(9):1276–1282PubMedCrossRefGoogle Scholar
  31. Haller S, Borgwardt SJ, Schindler C, Aston J, Radue EW, Riecher-Rossler A (2009) Can cortical thickness asymmetry analysis contribute to detection of at-risk mental state and first-episode psychosis? a pilot study. Radiology 250(1):212–221PubMedCrossRefGoogle Scholar
  32. Hamilton LS, Narr KL, Luders E, Szeszko PR, Thompson PM, Bilder RM, Toga AW (2007) Asymmetries of cortical thickness: effects of handedness, sex, and schizophrenia. NeuroReport 18(14):1427–1431PubMedCentralPubMedCrossRefGoogle Scholar
  33. Hardan AY, Minshew NJ, Mallikarjuhn M, Keshavan MS (2001) Brain volume in autism. J Child Neurol 16(6):421–424PubMedCrossRefGoogle Scholar
  34. Hardan AY, Jou RJ, Keshavan MS, Varma R, Minshew NJ (2004) Increased frontal cortical folding in autism: a preliminary MRI study. Psychiatry Res 131(3):263–268PubMedCrossRefGoogle Scholar
  35. Hardan AY, Girgis RR, Adams J, Gilbert AR, Keshavan MS, Minshew NJ (2006a) Abnormal brain size effect on the thalamus in autism. Psychiatry Res Neuroimaging 147(2–3):145–151CrossRefGoogle Scholar
  36. Hardan AY, Muddasani S, Vemulapalli M, Keshavan MS, Minshew NJ (2006b) An MRI study of increased cortical thickness in autism. Am J Psychiatry 163(7):1290–1292PubMedCentralPubMedCrossRefGoogle Scholar
  37. Hildebrand C, Waxman SG (1984) Postnatal differentiation of rat optic nerve fibers: electron microscopic observations on the development of nodes of Ranvier and axoglial relations. J Comp Neurol 224(1):25–37PubMedCrossRefGoogle Scholar
  38. Hof PR, Knabe R, Bovier P, Bouras C (1991) Neuropathological observations in a case of autism presenting with self-injury behavior. Acta Neuropathol 82(4):321–326PubMedCrossRefGoogle Scholar
  39. Hüppi PS, Maier SE, Peled S, Zientara GP, Barnes PD, Jolesz FA, Volpe JJ (1998) Microstructural development of human newborn cerebral white matter assessed in vivo by diffusion tensor magnetic resonance imaging. Pediatr Research 44(4):584–590CrossRefGoogle Scholar
  40. Hyde KL, Samson F, Evans AC, Mottron L (2010) Neuroanatomical differences in brain areas implicated in perceptual and other core features of autism revealed by cortical thickness analysis and voxel-based morphometry. Hum Brain Mapp 31(4):556–566PubMedGoogle Scholar
  41. Kaas J, Nelson R, Sur M, Lin C, Merzenich M (1979) Multiple representations of the body within the primary somatosensory cortex of primates. Science 204(4392):521–523PubMedCrossRefGoogle Scholar
  42. Lam KS, Aman MG (2007) The repetitive behavior scale-revised: independent validation in individuals with autism spectrum disorders. J Autism Dev Disord 37(5):855–866PubMedCrossRefGoogle Scholar
  43. Lax ID, Duerden EG, Lin SY, Mallar Chakravarty M, Donner EJ, Lerch JP, Taylor MJ (2013) Neuroanatomical consequences of very preterm birth in middle childhood. Brain Struct Funct 218(2):575–585Google Scholar
  44. Le Couteur A, Lord C, Rutter M (2003) Autism diagnostic interview-revised (ADI-R). Western Psychological Services, Los AngelesGoogle Scholar
  45. Lerch JP, Pruessner JC, Zijdenbos A, Hampel H, Teipel SJ, Evans AC (2005) Focal decline of cortical thickness in Alzheimer’s disease identified by computational neuroanatomy. Cereb Cortex 15(7):995–1001PubMedCrossRefGoogle Scholar
  46. Lipton M, Kim N, Park Y, Hulkower M, Gardin T, Shifteh K, Kim M, Zimmerman M, Lipton R, Branch C (2012) Robust detection of traumatic axonal injury in individual mild traumatic brain injury patients: intersubject variation, change over time and bidirectional changes in anisotropy. Brain Imaging Behav 6(2):329–342Google Scholar
  47. Lord C, Risi S, Lambrecht L, Cook EH Jr, Leventhal BL, DiLavore PC, Pickles A, Rutter M (2000) The autism diagnostic observation schedule-generic: a standard measure of social and communication deficits associated with the spectrum of autism. J Autism Dev Disord 30(3):205–223PubMedCrossRefGoogle Scholar
  48. Lyttelton O, Boucher M, Robbins S, Evans A (2007) An unbiased iterative group registration template for cortical surface analysis. Neuroimage 34(4):1535–1544PubMedCrossRefGoogle Scholar
  49. Mak-Fan K, Taylor M, Roberts W, Lerch J (2012) Measures of cortical grey matter structure and development in Children with autism spectrum disorder. J Autism Develop Disord 42(3):419–427Google Scholar
  50. Medina AC, Sogbe R, Gomez-Rey AM, Mata M (2003) Factitial oral lesions in an autistic paediatric patient. Int J Paediatr Dent 13(2):130–137PubMedCrossRefGoogle Scholar
  51. Merzenich MM, Kaas JH, Sur M, Lin C-S (1978) Double representation of the body surface within cytoarchitectonic area 3b and 1 in “SI” in the owl monkey (aotus trivirgatus). J Comp Neurol 181(1):41–73PubMedCrossRefGoogle Scholar
  52. Militerni R, Bravaccio C, Falco C, Fico C, Palermo MT (2002) Repetitive behaviors in autistic disorder. Eur Child Adolesc Psychiatry 11(5):210–218PubMedCrossRefGoogle Scholar
  53. Misaki M, Wallace GL, Dankner N, Martin A, Bandettini PA (2012) Characteristic cortical thickness patterns in adolescents with autism spectrum disorders: interactions with age and intellectual ability revealed by canonical correlation analysis. Neuroimage 60(3):1890–1901PubMedCentralPubMedCrossRefGoogle Scholar
  54. Nordahl CW, Dierker D, Mostafavi I, Schumann CM, Rivera SM, Amaral DG, Van Essen DC (2007) Cortical folding abnormalities in autism revealed by surface-based morphometry. J Neurosci 27(43):11725–11735PubMedCrossRefGoogle Scholar
  55. Ornitz EM (1974) The modulation of sensory input and motor output in autistic children. J Autism Child Schizophr 4(3):197–215PubMedCrossRefGoogle Scholar
  56. Penfield W, Boldrey E (1937) Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60(4):389–443CrossRefGoogle Scholar
  57. Pons TP, Garraghty PE, Cusick CG, Kaas JH (1985) The somatotopic organization of area 2 in macaque monkeys. J Comp Neurol 241(4):445–466PubMedCrossRefGoogle Scholar
  58. Qiu D, Tan L-H, Zhou K, Khong P-L (2008) Diffusion tensor imaging of normal white matter maturation from late childhood to young adulthood: voxel-wise evaluation of mean diffusivity, fractional anisotropy, radial and axial diffusivities, and correlation with reading development. NeuroImage 41(2):223–232PubMedCrossRefGoogle Scholar
  59. Raznahan A, Toro R, Daly E, Robertson D, Murphy C, Deeley Q, Bolton PF, Paus T, Murphy DGM (2010) Cortical anatomy in autism spectrum disorder: an in vivo MRI study on the effect of age. Cereb Cortex 20(6):1332–1340PubMedCrossRefGoogle Scholar
  60. Ross-Russell M, Sloan P (2005) Autoextraction in a child with autistic spectrum disorder. Br Dent J 198(8):473–474PubMedCrossRefGoogle Scholar
  61. Scheel C, Rotarska-Jagiela A, Schilbach L, Lehnhardt FG, Krug B, Vogeley K, Tepest R (2011) Imaging derived cortical thickness reduction in high-functioning autism: key regions and temporal slope. Neuroimage 58(2):391–400PubMedCrossRefGoogle Scholar
  62. Sled JG, Zijdenbos AP, Evans AC (1998) A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 17(1):87–97PubMedCrossRefGoogle Scholar
  63. Smith SM (2002) Fast robust automated brain extraction. Hum Brain Mapp 17(3):143–155PubMedCrossRefGoogle Scholar
  64. Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, Johansen-Berg H, Bannister PR, De Luca M, Drobnjak I, Flitney DE, Niazy RK, Saunders J, Vickers J, Zhang Y, De Stefano N, Brady JM, Matthews PM (2004) Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage 23(Suppl 1):S208–S219PubMedCrossRefGoogle Scholar
  65. Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE, Watkins KE, Ciccarelli O, Cader MZ, Matthews PM, Behrens TE (2006) Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. NeuroImage 31(4):1487–1505PubMedCrossRefGoogle Scholar
  66. Song SK, Sun SW, Ramsbottom MJ, Chang C, Russell J, Cross AH (2002) Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. NeuroImage 17(3):1429–1436PubMedCrossRefGoogle Scholar
  67. Suzuki Y, Matsuzawa H, Kwee IL, Nakada T (2003) Absolute eigenvalue diffusion tensor analysis for human brain maturation. NMR Biomed 16(5):257–260PubMedCrossRefGoogle Scholar
  68. Takahashi M, Ono J, Harada K, Maeda M, Hackney DB (2000) Diffusional anisotropy in cranial nerves with maturation: quantitative evaluation with diffusion MR imaging in rats. Radiology 216:881–885PubMedCrossRefGoogle Scholar
  69. Tamura R, Kitamura H, Endo T, Hasegawa N, Someya T (2010) Reduced thalamic volume observed across different subgroups of autism spectrum disorders. Psychiatry Res 184(3):186–188PubMedCrossRefGoogle Scholar
  70. Teutsch S, Herken W, Bingel U, Schoell E, May A (2008) Changes in brain gray matter due to repetitive painful stimulation. Neuroimage 42(2):845–849PubMedCrossRefGoogle Scholar
  71. Thakkar KN, Polli FE, Joseph RM, Tuch DS, Hadjikhani N, Barton JJ, Manoach DS (2008) Response monitoring, repetitive behaviour and anterior cingulate abnormalities in autism spectrum disorders (ASD). Brain 131(Pt 9):2464–2478PubMedCentralPubMedCrossRefGoogle Scholar
  72. Tohka J, Zijdenbos A, Evans A (2004) Fast and robust parameter estimation for statistical partial volume models in brain MRI. Neuroimage 23(1):84–97PubMedCrossRefGoogle Scholar
  73. Tordjman S, Anderson GM, Botbol M, Brailly-Tabard S, Perez-Diaz F, Graignic R, Carlier M, Schmit G, Rolland AC, Bonnot O, Trabado S, Roubertoux P, Bronsard G (2009) Pain reactivity and plasma beta-endorphin in children and adolescents with autistic disorder. PLoS One 4(8):e5289PubMedCentralPubMedCrossRefGoogle Scholar
  74. Tsatsanis KD, Rourke BP, Klin A, Volkmar FR, Cicchetti D, Schultz RT (2003) Reduced thalamic volume in high-functioning individuals with autism. Biol Psychiatry 53(2):121–129PubMedCrossRefGoogle Scholar
  75. Wallace GL, Dankner N, Kenworthy L, Giedd JN, Martin A (2010) Age-related temporal and parietal cortical thinning in autism spectrum disorders. Brain 133(Pt 12):3745–3754PubMedCentralPubMedCrossRefGoogle Scholar
  76. Wegiel J, Kuchna I, Nowicki K, Imaki H, Marchi E, Ma SY, Chauhan A, Chauhan V, Bobrowicz TW, de Leon M, Louis LA, Cohen IL, London E, Brown WT, Wisniewski T (2010) The neuropathology of autism: defects of neurogenesis and neuronal migration, and dysplastic changes. Acta Neuropathol 119(6):755–770PubMedCentralPubMedCrossRefGoogle Scholar
  77. Wolpert DM, Goodbody SJ, Husain M (1998) Maintaining internal representations: the role of the human superior parietal lobe. Nat Neurosci 1(6):529–533PubMedCrossRefGoogle Scholar
  78. Worsley KJ, Marrett S, Neelin P, Vandal AC, Friston KJ, Evans AC (1996) A unified statistical approach for determining significant signals in images of cerebral activation. Hum Brain Mapp 4(1):58–73PubMedCrossRefGoogle Scholar
  79. Worsley KJ, Taylor JE, Carbonell F, Chung MK, Duerden E, Bernhardt B, Lyttelton O, Boucher M, Evans AC (2009) SurfStat: a Matlab toolbox for the statistical analysis of univariate and multivariate surface and volumetric data using linear mixed effects models and random field theory. Proceedings of the15th Annual Meeting of the Organization for Human Brain Mapping. Neuroimage, San FranciscoGoogle Scholar
  80. Zhang HQ, Murray GM, Coleman GT, Turman AB, Zhang SP, Rowe MJ (2001) Functional characteristics of the parallel SI- and SII-projecting neurons of the thalamic ventral posterior nucleus in the marmoset. J Neurophysiol 85(5):1805–1822PubMedGoogle Scholar
  81. Zijdenbos AP, Forghani R, Evans AC (2002) Automatic “pipeline” analysis of 3-D MRI data for clinical trials: application to multiple sclerosis. IEEE Trans Med Imaging 21(10):1280–1291PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Emma G. Duerden
    • 1
    • 6
  • Dallas Card
    • 1
  • S. Wendy Roberts
    • 1
  • Kathleen M. Mak-Fan
    • 1
    • 2
  • M. Mallar Chakravarty
    • 3
    • 4
  • Jason P. Lerch
    • 5
    • 6
  • Margot J. Taylor
    • 1
    • 2
    • 6
  1. 1.Department of Diagnostic ImagingHospital for Sick ChildrenTorontoCanada
  2. 2.Department of PsychologyUniversity of TorontoTorontoCanada
  3. 3.Kimel Family Translational Imaging-Genetics Research Laboratory, Research Imaging CentreCentre for Addiction and Mental HealthTorontoCanada
  4. 4.Department of Psychiatry and Institute of Biomaterials and Biomedical EngineeringUniversity of TorontoTorontoCanada
  5. 5.Department of Medical BiophysicsUniversity of TorontoTorontoCanada
  6. 6.Program in Neurosciences and Mental Health, Hospital for Sick ChildrenTorontoCanada

Personalised recommendations