Brain Structure and Function

, Volume 219, Issue 3, pp 1113–1128 | Cite as

Hyperacusis-associated pathological resting-state brain oscillations in the tinnitus brain: a hyperresponsiveness network with paradoxically inactive auditory cortex

  • Jae-Jin SongEmail author
  • Dirk De Ridder
  • Nathan Weisz
  • Winfried Schlee
  • Paul Van de Heyning
  • Sven Vanneste
Original Article


Although hyperacusis, a hyperresponsiveness to non-noxious auditory stimuli, is a sound-evoked symptom, possible resting-state pathologic oscillations in hyperacusis brain have never been explored. By comparing 17 tinnitus participants with hyperacusis (T+H+) and 17 without hyperacusis (T+H−), we aimed to explore characteristic resting-state cortical activity of hyperacusis. The T+H+ and T+H− groups, strictly matched for all tinnitus sound characteristics to exclude tinnitus-related cortical changes, were compared using resting-state electroencephalography source-localized activity complemented by functional connectivity analyses. Correlation analysis revealed that hyperacusis questionnaire score was positively correlated with the orbitofrontal cortex (OFC) beta power, the right auditory cortex (AC) alpha1 power, and the dorsal anterior cingulate cortex (dACC) beta1 power. Compared to the T+H− group, the T+H+ group demonstrated increased beta power in the dACC and OFC, and increased alpha power in the right AC. Region of interest analyses including 17 normal controls further confirmed that these differences originated solely from relatively increased power of the T+H+ group, not from a relative power decrease of the T+H− group. Also, the T+H+ group showed increased connectivity between the OFC/dACC and the AC as compared to the T+H− group. The beta power increase in the OFC/dACC may indicate increased resting-state vigilance in tinnitus patients with hyperacusis. In addition, increased alpha power in the AC may reflect an adaptive top-down inhibition against sound stimuli probably mediated by the increased beta power of the OFC. The OFC/dACC, also frequently found to be activated in analogous diseases such as allodynia/hyperalgesia, may compose a hyperresponsiveness network.


Hyperacusis Hyperalgesia Electroencephalography Neural networks 



Hyperacusis questionnaire


Quantitative electroencephalography


Tinnitus questionnaire


Numeric rating scale


Standardized low-resolution brain electromagnetic tomography


Montreal Neurological Institute


Region of interest


Auditory cortex


Secondary auditory cortex


Primary auditory cortex


Dorsal anterior cingulate cortex


Orbitofrontal cortex


Statistical non-parametric mapping


Supplementary motor area


Dorsal premotor cortex



The authors thank Jan Ost, Bram Van Achteren, Bjorn Devree, Pieter van Looy and James Hartzell for their help in preparing this manuscript and thank Thomas Hartmann and Nadia Muller for their import comments. Also, the first author thanks Dr. DY Yoon for giving invaluable support to this study. This work was supported by Research Foundation Flanders (FWO), Tinnitus Research Initiative, The Neurological Foundation of New Zealand, TOP project University Antwerp, and the Korean Science and Engineering Foundation (KOSEF) grant funded by the Korean government (MOST) (No. 2012-0030102).


  1. Alper KR, John ER, Brodie J, Gunther W, Daruwala R, Prichep LS (2006) Correlation of PET and qEEG in normal subjects. Psychiatry Res 146:271–282PubMedGoogle Scholar
  2. Anari M, Axelsson A, Eliasson A, Magnusson L (1999) Hypersensitivity to sound-questionnaire data, audiometry and classification. Scand Audiol 28:219–230PubMedGoogle Scholar
  3. Andersson G, Lindvall N, Hursti T, Carlbring P (2002) Hypersensitivity to sound (hyperacusis): a prevalence study conducted via the Internet and post. Int J Audiol 41:545–554PubMedGoogle Scholar
  4. Atlas LY, Bolger N, Lindquist MA, Wager TD (2010) Brain mediators of predictive cue effects on perceived pain. J Neurosci 30:12964–12977PubMedCentralPubMedGoogle Scholar
  5. Baguley DM (2003) Hyperacusis. J R Soc Med 96:582–585PubMedCentralPubMedGoogle Scholar
  6. Boly M, Balteau E, Schnakers C, Degueldre C, Moonen G, Luxen A, Phillips C, Peigneux P, Maquet P, Laureys S (2007) Baseline brain activity fluctuations predict somatosensory perception in humans. Proc Natl Acad Sci USA 104:12187–12192PubMedCentralPubMedGoogle Scholar
  7. Bruder GE, Bansal R, Tenke CE, Liu J, Hao X, Warner V, Peterson BS, Weissman MM (2012) Relationship of resting EEG with anatomical MRI measures in individuals at high and low risk for depression. Hum Brain Mapp 33:1325–1333PubMedCentralPubMedGoogle Scholar
  8. Cunnington R, Windischberger C, Moser E (2005) Premovement activity of the pre-supplementary motor area and the readiness for action: studies of time-resolved event-related functional MRI. Hum Mov Sci 24:644–656PubMedGoogle Scholar
  9. Damasio AR (1996) The somatic marker hypothesis and the possible functions of the prefrontal cortex. Philos Trans R Soc Lond B Biol Sci 351:1413–1420PubMedGoogle Scholar
  10. Dauman R, Bouscau-Faure F (2005) Assessment and amelioration of hyperacusis in tinnitus patients. Acta Otolaryngol 125:503–509PubMedGoogle Scholar
  11. Davis SW, Dennis NA, Daselaar SM, Fleck MS, Cabeza R (2008) Que PASA? The posterior-anterior shift in aging. Cereb Cortex 18:1201–1209PubMedCentralPubMedGoogle Scholar
  12. De Ridder D, Elgoyhen AB, Romo R, Langguth B (2011) Phantom percepts: tinnitus and pain as persisting aversive memory networks. Proc Natl Acad Sci USA 108:8075–8080PubMedCentralPubMedGoogle Scholar
  13. Dias R, Robbins TW, Roberts AC (1996) Dissociation in prefrontal cortex of affective and attentional shifts. Nature 380:69–72PubMedGoogle Scholar
  14. Dosenbach NU, Fair DA, Miezin FM, Cohen AL, Wenger KK, Dosenbach RA, Fox MD, Snyder AZ, Vincent JL, Raichle ME, Schlaggar BL, Petersen SE (2007) Distinct brain networks for adaptive and stable task control in humans. Proc Natl Acad Sci USA 104:11073–11078PubMedCentralPubMedGoogle Scholar
  15. Eggermont JJ (2013) Hearing loss, hyperacusis, or tinnitus: What is modeled in animal research? Hear Res 295:140–149PubMedGoogle Scholar
  16. Farrior JB (1956) Fenestration operation in the poor candidates; 44 cases selected from 637 operations. Laryngoscope 66:566–573PubMedGoogle Scholar
  17. Formby C, Sherlock LP, Gold SL (2003) Adaptive plasticity of loudness induced by chronic attenuation and enhancement of the acoustic background. J Acoust Soc Am 114:55–58PubMedGoogle Scholar
  18. Freunberger R, Fellinger R, Sauseng P, Gruber W, Klimesch W (2009) Dissociation between phase-locked and nonphase-locked alpha oscillations in a working memory task. Hum Brain Mapp 30:3417–3425PubMedGoogle Scholar
  19. Frey S, Kostopoulos P, Petrides M (2004) Orbitofrontal contribution to auditory encoding. Neuroimage 22:1384–1389PubMedGoogle Scholar
  20. Fu MJ, Daly JJ, Cavusoglu MC (2006) A detection scheme for frontalis and temporalis muscle EMG contamination of EEG data. Conf Proc IEEE Eng Med Biol Soc 1:4514–4518PubMedGoogle Scholar
  21. Fuchs M, Kastner J, Wagner M, Hawes S, Ebersole JS (2002) A standardized boundary element method volume conductor model. Clin Neurophysiol 113:702–712PubMedGoogle Scholar
  22. Garbarini F, Adenzato M (2004) At the root of embodied cognition: cognitive science meets neurophysiology. Brain Cogn 56:100–106PubMedGoogle Scholar
  23. Golm D, Schmidt-Samoa C, Dechent P, Kroner-Herwig B (2013) Neural correlates of tinnitus related distress: an fMRI-study. Hear Res 295:87–99PubMedGoogle Scholar
  24. Goncharova II, McFarland DJ, Vaughan TM, Wolpaw JR (2003) EMG contamination of EEG: spectral and topographical characteristics. Clin Neurophysiol 114:1580–1593PubMedGoogle Scholar
  25. Gothelf D, Farber N, Raveh E, Apter A, Attias J (2006) Hyperacusis in Williams syndrome: characteristics and associated neuroaudiologic abnormalities. Neurology 66:390–395PubMedGoogle Scholar
  26. Grabenhorst F, Rolls ET, Bilderbeck A (2008) How cognition modulates affective responses to taste and flavor: top-down influences on the orbitofrontal and pregenual cingulate cortices. Cereb Cortex 18:1549–1559PubMedGoogle Scholar
  27. Gu JW, Halpin CF, Nam EC, Levine RA, Melcher JR (2010) Tinnitus, diminished sound-level tolerance, and elevated auditory activity in humans with clinically normal hearing sensitivity. J Neurophysiol 104:3361–3370PubMedCentralPubMedGoogle Scholar
  28. Hall DA, Haggard MP, Summerfield AQ, Akeroyd MA, Palmer AR, Bowtell RW (2001) Functional magnetic resonance imaging measurements of sound-level encoding in the absence of background scanner noise. J Acoust Soc Am 109:1559–1570PubMedGoogle Scholar
  29. Hamm AO, Vaitl D (1996) Affective learning: awareness and aversion. Psychophysiology 33:698–710PubMedGoogle Scholar
  30. Hamm AO, Weike AI (2005) The neuropsychology of fear learning and fear regulation. Int J Psychophysiol 57:5–14PubMedGoogle Scholar
  31. Herraiz C, Plaza G, Aparicio JM (2006) Mechanisms and management of hyperacusis (decreased sound tolerance). Acta Otorrinolaringol Esp 57:373–377PubMedGoogle Scholar
  32. Hiller W, Goebel G (2006) Factors influencing tinnitus loudness and annoyance. Arch Otolaryngol Head Neck Surg 132:1323–1330PubMedGoogle Scholar
  33. Hiller W, Goebel G, Rief W (1994) Reliability of self-rated tinnitus distress and association with psychological symptom patterns. Br J Clin Psychol 33(Pt 2):231–239PubMedGoogle Scholar
  34. Holmes AP, Blair RC, Watson JD, Ford I (1996) Nonparametric analysis of statistic images from functional mapping experiments. J Cereb Blood Flow Metab 16:7–22PubMedGoogle Scholar
  35. Holtz K, Pane-Farre CA, Wendt J, Lotze M, Hamm AO (2012) Brain activation during anticipation of interoceptive threat. Neuroimage 61:857–865PubMedGoogle Scholar
  36. Hwang JH, Chou PH, Wu CW, Chen JH, Liu TC (2009) Brain activation in patients with idiopathic hyperacusis. Am J Otolaryngol 30:432–434PubMedGoogle Scholar
  37. Jastreboff PJ (1990) Phantom auditory perception (tinnitus): mechanisms of generation and perception. Neurosci Res 8:221–254PubMedGoogle Scholar
  38. Jones AK, Derbyshire SW (1997) Reduced cortical responses to noxious heat in patients with rheumatoid arthritis. Ann Rheum Dis 56:601–607PubMedCentralPubMedGoogle Scholar
  39. Jurcak V, Tsuzuki D, Dan I (2007) 10/20, 10/10, and 10/5 systems revisited: their validity as relative head-surface-based positioning systems. Neuroimage 34:1600–1611PubMedGoogle Scholar
  40. Kalisch R, Wiech K, Critchley HD, Seymour B, O’Doherty JP, Oakley DA, Allen P, Dolan RJ (2005) Anxiety reduction through detachment: subjective, physiological, and neural effects. J Cogn Neurosci 17:874–883PubMedGoogle Scholar
  41. Kalisch R, Wiech K, Herrmann K, Dolan RJ (2006) Neural correlates of self-distraction from anxiety and a process model of cognitive emotion regulation. J Cogn Neurosci 18:1266–1276PubMedCentralPubMedGoogle Scholar
  42. Katzenell U, Segal S (2001) Hyperacusis: review and clinical guidelines. Otol Neurotol 22:321–326 (discussion 326–327)PubMedGoogle Scholar
  43. Keren AS, Yuval-Greenberg S, Deouell LY (2010) Saccadic spike potentials in gamma-band EEG: characterization, detection and suppression. Neuroimage 49:2248–2263PubMedGoogle Scholar
  44. Khalfa S, Dubal S, Veuillet E, Perez-Diaz F, Jouvent R, Collet L (2002) Psychometric normalization of a hyperacusis questionnaire. ORL J Otorhinolaryngol Relat Spec 64:436–442PubMedGoogle Scholar
  45. Klavir O, Genud-Gabai R, Paz R (2012) Low-frequency stimulation depresses the primate anterior-cingulate-cortex and prevents spontaneous recovery of aversive memories. J Neurosci 32:8589–8597PubMedGoogle Scholar
  46. Klimesch W (1999) EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Brain Res Rev 29:169–195PubMedGoogle Scholar
  47. Koprivova J, Congedo M, Horacek J, Prasko J, Raszka M, Brunovsky M, Kohutova B, Hoschl C (2011) EEG source analysis in obsessive-compulsive disorder. Clin Neurophysiol 122:1735–1743PubMedGoogle Scholar
  48. Kramer HH, Stenner C, Seddigh S, Bauermann T, Birklein F, Maihofner C (2008) Illusion of pain: pre-existing knowledge determines brain activation of ‘imagined allodynia’. J Pain 9:543–551PubMedGoogle Scholar
  49. Kringelbach ML (2005) The human orbitofrontal cortex: linking reward to hedonic experience. Nat Rev Neurosci 6:691–702PubMedGoogle Scholar
  50. Lanz S, Seifert F, Maihofner C (2011) Brain activity associated with pain, hyperalgesia and allodynia: an ALE meta-analysis. J Neural Transm 118:1139–1154PubMedGoogle Scholar
  51. Lehtela L, Salmelin R, Hari R (1997) Evidence for reactive magnetic 10-Hz rhythm in the human auditory cortex. Neurosci Lett 222:111–114PubMedGoogle Scholar
  52. Levitin DJ, Menon V, Schmitt JE, Eliez S, White CD, Glover GH, Kadis J, Korenberg JR, Bellugi U, Reiss AL (2003) Neural correlates of auditory perception in Williams syndrome: an fMRI study. Neuroimage 18:74–82PubMedGoogle Scholar
  53. Logan JM, Sanders AL, Snyder AZ, Morris JC, Buckner RL (2002) Under-recruitment and nonselective recruitment: dissociable neural mechanisms associated with aging. Neuron 33:827–840PubMedGoogle Scholar
  54. Mahoney CJ, Rohrer JD, Goll JC, Fox NC, Rossor MN, Warren JD (2011) Structural neuroanatomy of tinnitus and hyperacusis in semantic dementia. J Neurol Neurosurg Psychiatry 82:1274–1278PubMedCentralPubMedGoogle Scholar
  55. Marriage J, Barnes NM (1995) Is central hyperacusis a symptom of 5-hydroxytryptamine (5-HT) dysfunction? J Laryngol Otol 109:915–921PubMedGoogle Scholar
  56. McMenamin BW, Shackman AJ, Maxwell JS, Bachhuber DR, Koppenhaver AM, Greischar LL, Davidson RJ (2010) Validation of ICA-based myogenic artifact correction for scalp and source-localized EEG. Neuroimage 49:2416–2432PubMedCentralPubMedGoogle Scholar
  57. Mechias ML, Etkin A, Kalisch R (2010) A meta-analysis of instructed fear studies: implications for conscious appraisal of threat. Neuroimage 49:1760–1768PubMedGoogle Scholar
  58. Meeus O, Blaivie C, Van de Heyning P (2007) Validation of the Dutch and the French version of the Tinnitus Questionnaire. B-ENT 3(Suppl 7):11–17PubMedGoogle Scholar
  59. Meeus O, Heyndrickx K, Lambrechts P, De Ridder D, Van de Heyning P (2010a) Phase-shift treatment for tinnitus of cochlear origin. Eur Arch Otorhinolaryngol 267:881–888PubMedGoogle Scholar
  60. Meeus OM, Spaepen M, Ridder DD, Heyning PH (2010b) Correlation between hyperacusis measurements in daily ENT practice. Int J Audiol 49:7–13PubMedGoogle Scholar
  61. Mirandola P, Gobbi G, Malinverno C, Carubbi C, Ferne FM, Artico M, Vitale M, Vaccarezza M (2013) Impact of sulphurous water politzer inhalation on audiometric parameters in children with otitis media with effusion. Clin Exp Otorhinolaryngol 6:7–11PubMedCentralPubMedGoogle Scholar
  62. Moazami-Goudarzi M, Michels L, Weisz N, Jeanmonod D (2010) Temporo-insular enhancement of EEG low and high frequencies in patients with chronic tinnitus. QEEG study of chronic tinnitus patients. BMC Neurosci 11:40PubMedCentralPubMedGoogle Scholar
  63. Moisset X, Bouhassira D (2007) Brain imaging of neuropathic pain. Neuroimage 37(Suppl 1):S80–S88PubMedGoogle Scholar
  64. Moller AR (2006) Neural plasticity in tinnitus. Prog Brain Res 157:365–372PubMedGoogle Scholar
  65. Moller AR (2007a) Tinnitus and pain. Prog Brain Res 166:47–53PubMedGoogle Scholar
  66. Moller AR (2007b) Tinnitus: presence and future. Prog Brain Res 166:3–16PubMedGoogle Scholar
  67. Moller AR (2009) Plasticity diseases. Neurol Res 31:1023–1030PubMedGoogle Scholar
  68. Mulert C, Jager L, Schmitt R, Bussfeld P, Pogarell O, Moller HJ, Juckel G, Hegerl U (2004) Integration of fMRI and simultaneous EEG: towards a comprehensive understanding of localization and time-course of brain activity in target detection. Neuroimage 22:83–94PubMedGoogle Scholar
  69. Nichols TE, Holmes AP (2002) Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp 15:1–25PubMedGoogle Scholar
  70. Nitschke JB, Sarinopoulos I, Mackiewicz KL, Schaefer HS, Davidson RJ (2006) Functional neuroanatomy of aversion and its anticipation. Neuroimage 29:106–116PubMedGoogle Scholar
  71. Norena AJ, Moffat G, Blanc JL, Pezard L, Cazals Y (2010) Neural changes in the auditory cortex of awake guinea pigs after two tinnitus inducers: salicylate and acoustic trauma. Neuroscience 166:1194–1209PubMedGoogle Scholar
  72. O’Doherty JP (2004) Reward representations and reward-related learning in the human brain: insights from neuroimaging. Curr Opin Neurobiol 14:769–776PubMedGoogle Scholar
  73. Pae JS, Kwon JS, Youn T, Park HJ, Kim MS, Lee B, Park KS (2003) LORETA imaging of P300 in schizophrenia with individual MRI and 128-channel EEG. Neuroimage 20:1552–1560PubMedGoogle Scholar
  74. Pascual-Marqui RD (2002) Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find Exp Clin Pharmacol 24(Suppl D):5–12PubMedGoogle Scholar
  75. Pascual-Marqui RD (2007) Instantaneous and lagged measurements of linear and nonlinear dependence between groups of multivariate time series: frequency decomposition. Arxiv preprint arXiv:07111455Google Scholar
  76. Peyron R, Laurent B, Garcia-Larrea L (2000) Functional imaging of brain responses to pain. A review and meta-analysis (2000). Neurophysiol Clin 30:263–288PubMedGoogle Scholar
  77. Pizzagalli DA, Oakes TR, Fox AS, Chung MK, Larson CL, Abercrombie HC, Schaefer SM, Benca RM, Davidson RJ (2004) Functional but not structural subgenual prefrontal cortex abnormalities in melancholia. Mol Psychiatry 9(325):393–405Google Scholar
  78. Raz N, Rodrigue KM (2006) Differential aging of the brain: patterns, cognitive correlates and modifiers. Neurosci Biobehav Rev 30:730–748PubMedGoogle Scholar
  79. Rolls ET (2004) The functions of the orbitofrontal cortex. Brain Cogn 55:11–29PubMedGoogle Scholar
  80. Rolls ET, Grabenhorst F (2008) The orbitofrontal cortex and beyond: from affect to decision-making. Prog Neurobiol 86:216–244PubMedGoogle Scholar
  81. Rosen SD, Paulesu E, Frith CD, Frackowiak RS, Davies GJ, Jones T, Camici PG (1994) Central nervous pathways mediating angina pectoris. Lancet 344:147–150PubMedGoogle Scholar
  82. Sadaghiani S, Hesselmann G, Kleinschmidt A (2009) Distributed and antagonistic contributions of ongoing activity fluctuations to auditory stimulus detection. J Neurosci 29:13410–13417PubMedGoogle Scholar
  83. Sauseng P, Klimesch W (2008) What does phase information of oscillatory brain activity tell us about cognitive processes? Neurosci Biobehav Rev 32:1001–1013PubMedGoogle Scholar
  84. Scharmuller W, Leutgeb V, Schafer A, Kochel A, Schienle A (2011) Source localization of late electrocortical positivity during symptom provocation in spider phobia: an sLORETA study. Brain Res 1397:10–18PubMedCentralPubMedGoogle Scholar
  85. Schecklmann M, Landgrebe M, Poeppl TB, Kreuzer P, Manner P, Marienhagen J, Wack DS, Kleinjung T, Hajak G, Langguth B (2013) Neural correlates of tinnitus duration and distress: a positron emission tomography study. Hum Brain Mapp 34(1):233–240PubMedGoogle Scholar
  86. Schlee W, Hartmann T, Langguth B, Weisz N (2009) Abnormal resting-state cortical coupling in chronic tinnitus. BMC Neurosci 10:11PubMedCentralPubMedGoogle Scholar
  87. Schlee W, Kleinjung T, Hiller W, Goebel G, Kolassa IT, Langguth B (2011) Does tinnitus distress depend on age of onset? PLoS ONE 6:e27379PubMedCentralPubMedGoogle Scholar
  88. Sekihara K, Sahani M, Nagarajan SS (2005) Localization bias and spatial resolution of adaptive and non-adaptive spatial filters for MEG source reconstruction. Neuroimage 25:1056–1067PubMedGoogle Scholar
  89. Sherlin L, Congedo M (2005) Obsessive-compulsive dimension localized using low-resolution brain electromagnetic tomography (LORETA). Neurosci Lett 387:72–74PubMedGoogle Scholar
  90. Siepmann M, Kirch W (2002) Effects of caffeine on topographic quantitative EEG. Neuropsychobiology 45:161–166PubMedGoogle Scholar
  91. Song JJ, Choi HG, Oh SH, Chang SO, Kim CS, Lee JH (2009) Unilateral sensorineural hearing loss in children: the importance of temporal bone computed tomography and audiometric follow-up. Otol Neurotol 30:604–608PubMedGoogle Scholar
  92. Song JJ, De Ridder D, Van de Heyning P, Vanneste S (2012a) Mapping tinnitus-related brain activation: an activation-likelihood estimation metaanalysis of PET studies. J Nucl Med 53:1550–1557PubMedGoogle Scholar
  93. Song JJ, Hong SK, Kim JS, Koo JW (2012b) Enlarged vestibular aqueduct may precipitate benign paroxysmal positional vertigo in children. Acta Otolaryngol 132(Suppl 1):S109–S117PubMedGoogle Scholar
  94. Song JJ, De Ridder D, Schlee W, Van de Heyning P, Vanneste S (2013a) “Distressed aging”: the differences in brain activity between early- and late-onset tinnitus. Neurobiol Aging 34:1853–1863PubMedGoogle Scholar
  95. Song JJ, Punte AK, De Ridder D, Vanneste S, Van de Heyning P (2013b) Neural substrates predicting improvement of tinnitus after cochlear implantation in patients with single-sided deafness. Hear Res 299C:1–9Google Scholar
  96. Sun W, Zhang L, Lu J, Yang G, Laundrie E, Salvi R (2008) Noise exposure-induced enhancement of auditory cortex response and changes in gene expression. Neuroscience 156:374–380PubMedCentralPubMedGoogle Scholar
  97. Sun W, Lu J, Stolzberg D, Gray L, Deng A, Lobarinas E, Salvi RJ (2009) Salicylate increases the gain of the central auditory system. Neuroscience 159:325–334PubMedCentralPubMedGoogle Scholar
  98. Sun W, Deng A, Jayaram A, Gibson B (2012) Noise exposure enhances auditory cortex responses related to hyperacusis behavior. Brain Res 1485:108–116PubMedGoogle Scholar
  99. Turner JG, Parrish J (2008) Gap detection methods for assessing salicylate-induced tinnitus and hyperacusis in rats. Am J Audiol 17:S185–S192PubMedGoogle Scholar
  100. Vanneste S, Plazier M, der Loo E, de Heyning PV, Congedo M, De Ridder D (2010a) The neural correlates of tinnitus-related distress. Neuroimage 52:470–480PubMedGoogle Scholar
  101. Vanneste S, Plazier M, van der Loo E, Van de Heyning P, De Ridder D (2010b) The differences in brain activity between narrow band noise and pure tone tinnitus. PLoS ONE 5:e13618PubMedCentralPubMedGoogle Scholar
  102. Vanneste S, Plazier M, van der Loo E, Van de Heyning P, De Ridder D (2011a) The difference between uni- and bilateral auditory phantom percept. Clin Neurophysiol 122:578–587PubMedGoogle Scholar
  103. Vanneste S, van de Heyning P, De Ridder D (2011b) The neural network of phantom sound changes over time: a comparison between recent-onset and chronic tinnitus patients. Eur J Neurosci 34:718–731PubMedGoogle Scholar
  104. Vanneste S, Joos K, De Ridder D (2012) Prefrontal cortex based sex differences in tinnitus perception: same tinnitus intensity, same tinnitus distress, different mood. PLoS ONE 7:e31182PubMedCentralPubMedGoogle Scholar
  105. Varela F, Lachaux JP, Rodriguez E, Martinerie J (2001) The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci 2:229–239PubMedGoogle Scholar
  106. Vernon JA (1987) Pathophysiology of tinnitus: a special case–hyperacusis and a proposed treatment. Am J Otol 8:201–202PubMedGoogle Scholar
  107. Vitacco D, Brandeis D, Pascual-Marqui R, Martin E (2002) Correspondence of event-related potential tomography and functional magnetic resonance imaging during language processing. Hum Brain Mapp 17:4–12PubMedGoogle Scholar
  108. Volkow ND, Logan J, Fowler JS, Wang GJ, Gur RC, Wong C, Felder C, Gatley SJ, Ding YS, Hitzemann R, Pappas N (2000) Association between age-related decline in brain dopamine activity and impairment in frontal and cingulate metabolism. Am J Psychiatry 157:75–80PubMedGoogle Scholar
  109. Volpe U, Mucci A, Bucci P, Merlotti E, Galderisi S, Maj M (2007) The cortical generators of P3a and P3b: a LORETA study. Brain Res Bull 73:220–230PubMedGoogle Scholar
  110. Volz KG, von Cramon DY (2009) How the orbitofrontal cortex contributes to decision making—a view from neuroscience. Prog Brain Res 174:61–71PubMedGoogle Scholar
  111. Wagner M, Fuchs M, Kastner J (2004) Evaluation of sLORETA in the presence of noise and multiple sources. Brain Topogr 16:277–280PubMedGoogle Scholar
  112. Weisz N, Moratti S, Meinzer M, Dohrmann K, Elbert T (2005) Tinnitus perception and distress is related to abnormal spontaneous brain activity as measured by magnetoencephalography. PLoS Med 2:e153PubMedCentralPubMedGoogle Scholar
  113. Weisz N, Muller S, Schlee W, Dohrmann K, Hartmann T, Elbert T (2007) The neural code of auditory phantom perception. J Neurosci 27:1479–1484PubMedGoogle Scholar
  114. Weisz N, Hartmann T, Muller N, Lorenz I, Obleser J (2011) Alpha rhythms in audition: cognitive and clinical perspectives. Front Psychol 2:73PubMedCentralPubMedGoogle Scholar
  115. White DJ, Congedo M, Ciorciari J, Silberstein RB (2012) Brain oscillatory activity during spatial navigation: theta and gamma activity link medial temporal and parietal regions. J Cogn Neurosci 24:686–697PubMedGoogle Scholar
  116. Witting N, Kupers RC, Svensson P, Arendt-Nielsen L, Gjedde A, Jensen TS (2001) Experimental brush-evoked allodynia activates posterior parietal cortex. Neurology 57:1817–1824PubMedGoogle Scholar
  117. Witting N, Kupers RC, Svensson P, Jensen TS (2006) A PET activation study of brush-evoked allodynia in patients with nerve injury pain. Pain 120:145–154PubMedGoogle Scholar
  118. Woodhouse A, Drummond PD (1993) Mechanisms of increased sensitivity to noise and light in migraine headache. Cephalalgia 13:417–421PubMedGoogle Scholar
  119. Worrell GA, Lagerlund TD, Sharbrough FW, Brinkmann BH, Busacker NE, Cicora KM, O’Brien TJ (2000) Localization of the epileptic focus by low-resolution electromagnetic tomography in patients with a lesion demonstrated by MRI. Brain Topogr 12:273–282PubMedGoogle Scholar
  120. Wright P, Albarracin D, Brown RD, Li H, He G, Liu Y (2008) Dissociated responses in the amygdala and orbitofrontal cortex to bottom-up and top-down components of emotional evaluation. Neuroimage 39:894–902PubMedCentralPubMedGoogle Scholar
  121. Zeng FG (2013) An active loudness model suggesting tinnitus as increased central noise and hyperacusis as increased nonlinear gain. Hear Res 295:172–179PubMedCentralPubMedGoogle Scholar
  122. Zumsteg D, Wennberg RA, Treyer V, Buck A, Wieser HG (2005) H2(15)O or 13NH3 PET and electromagnetic tomography (LORETA) during partial status epilepticus. Neurology 65:1657–1660PubMedGoogle Scholar
  123. Zumsteg D, Lozano AM, Wennberg RA (2006a) Depth electrode recorded cerebral responses with deep brain stimulation of the anterior thalamus for epilepsy. Clin Neurophysiol 117:1602–1609PubMedGoogle Scholar
  124. Zumsteg D, Lozano AM, Wennberg RA (2006b) Mesial temporal inhibition in a patient with deep brain stimulation of the anterior thalamus for epilepsy. Epilepsia 47:1958–1962PubMedGoogle Scholar
  125. Zumsteg D, Lozano AM, Wieser HG, Wennberg RA (2006c) Cortical activation with deep brain stimulation of the anterior thalamus for epilepsy. Clin Neurophysiol 117:192–207PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jae-Jin Song
    • 1
    Email author
  • Dirk De Ridder
    • 2
    • 3
  • Nathan Weisz
    • 4
  • Winfried Schlee
    • 5
  • Paul Van de Heyning
    • 3
    • 6
  • Sven Vanneste
    • 3
    • 7
  1. 1.Department of Otorhinolaryngology-Head and Neck SurgerySeoul National University HospitalSeoulKorea
  2. 2.Department of Surgical Sciences, Dunedin School of MedicineUniversity of OtagoDunedinNew Zealand
  3. 3.Department of Translational Neuroscience, Faculty of MedicineUniversity of AntwerpAntwerpBelgium
  4. 4.Center for Mind/Brain SciencesUniversity of TrentoTrentoItaly
  5. 5.Department of Clinical and Biological PsychologyUniversity of UlmUlmGermany
  6. 6.Brai²n, TRI & ENT, University Hospital AntwerpAntwerpBelgium
  7. 7.School of Behavioral and Brain SciencesThe University of Texas at DallasRichardsonUSA

Personalised recommendations