Brain Structure and Function

, Volume 219, Issue 3, pp 1055–1081

Extending the socio-sexual brain: arginine-vasopressin immunoreactive circuits in the telencephalon of mice

  • Marcos Otero-Garcia
  • Ana Martin-Sanchez
  • Lluis Fortes-Marco
  • Joana Martínez-Ricós
  • Carmen Agustin-Pavón
  • Enrique Lanuza
  • Fernando Martínez-García
Original Article

Abstract

Quantitative analysis of the immunoreactivity for arginine-vasopressin (AVP-ir) in the telencephalon of male (intact and castrated) and female CD1 mice allows us to precisely locate two sexually dimorphic (more abundant in intact than castrated males and females) AVP-ir cell groups in the posterior bed nucleus of the stria terminalis (BST) and the amygdala. Chemoarchitecture (NADPH diaphorase) reveals that the intraamygdaloid AVP-ir cells are located in the intra-amygdaloid BST (BSTIA) rather than the medial amygdala (Me), as previously thought. Then, we have used for the first time tract tracing (combined with AVP immunofluorescence) and fiber-sparing lesions of the BST to analyze the projections of the telencephalic AVP-ir cell groups. The results demonstrate that the posterior BST originates the sexually dimorphic innervation of the lateral septum, the posterodorsal Me and a substance P-negative area in the medioventral striato-pallidum (mvStP).The BSTIA may also contribute to some of these terminal fields. Our material also reveals non-dimorphic AVP-ir processes in two locations of the amygdala. First, the ventral Me shows dendrite-like AVP-ir processes apparently belonging supraoptic neurons, whose possible functions are discussed. Second, the Ce shows sparse, thick AVP-ir axons with high individual variability in density and distribution, whose possible influence on stress coping in relation to the affiliative or agonistic behaviors mediated by the Me are discussed. Finally, we propose that the region of the mvStP showing sexually dimorphic AVP-ir innervation is part of the brain network for socio-sexual behavior, in which it would mediate motivational aspects of chemosensory-guided social interactions.

Keywords

Medial ventral striatum Ventral pallidum Bed nucleus of the stria terminalis Islands of Calleja Amygdala Socio-sexual behavior 

Abbreviations

3V

Third ventricle

AA

Anterior amygdaloid area

AAD

Anterior amygdaloid area, dorsal part

AAV

Anterior amygdaloid area, ventral part

AC

Anterior commissural nucleus

aca

Anterior commissure, anterior part

Acb

Accumbens nucleus

AcbC

Accumbens nucleus, core

AcbSh

Accumbens nucleus, shell

ACo

Anterior cortical amygdaloid nucleus

acp

Anterior commissure, posterior part

AD

Anterodorsal thalamic nucleus

ADP

Anterodorsal preoptic nucleus

AHA

Anterior hypothalamic area, anterior part

AHiAL

Amygdalohippocampal area, anterolateral part

AHiMP

Amygdalohippocampal area, medial posterior part

AIP

Agranular insular cortex, posterior part

AM

Anteromedial thalamic nucleus

AOM

Anterior olfactory nucleus, medial part

AOP

Anterior olfactory nucleus, posterior part

APir

Amygdalopiriform transition area

AStr

Amygdalostriatal transition area

AV

Anteroventral thalamic nucleus

AVP

Arginine-vasopressin

AVPe

Anteroventral periventricular nucleus

AVP-ir

Arginine-vasopressin immunoreactive

AVV

Anteroventral thalamic nucleus, ventral part

BAC

Bed nucleus of the anterior commissure

BAOT

Bed nucleus of the accessory olfactory tract

BLA

Basolateral amygdaloid nucleus, anterior

BLP

Basolateral amygdaloid nucleus, posterior

BLV

Basolateral amygdaloid nucleus, ventral

BMA

Basomedial amygdaloid nucleus, anterior

BMP

Basomedial amygdaloid nucleus, posterior

BST

Bed nucleus of the stria terminalis

BSTIA

Bed nucleus of the stria terminalis, intraamygdaloid division

BSTLD

Bed nucleus of the stria terminalis, lateral division, dorsal part

BSTLI

Bed nucleus of the stria terminalis, lateral division, intermediate part

BSTLJ

Bed nucleus of the stria terminalis, lateral division, juxtacapsular part

BSTLP

Bed nucleus of the stria terminalis, lateral division, posterior part

BSTLV

Bed nucleus of the stria terminalis, lateral division, ventral part

BSTMA

Bed nucleus of the stria terminalis, medial division, anterior part

BSTMP

Bed nucleus of the stria terminalis, medial division, posterior part

BSTMPI

Bed nucleus of the stria terminalis, medial division, posterointermediate part

BSTMPL

Bed nucleus of the stria terminalis, medial division, posterolateral part

BSTMPM

Bed nucleus of the stria terminalis, medial division, posteromedial part

BSTMV

Bed nucleus of the stria terminalis, medial division, ventral part

BSTS

Bed nucleus of the stria terminalis, supracapsular part

CA1

Field CA1 of hippocampus

CA2

Field CA2 of hippocampus

CA3

Field CA3 of hippocampus

cc

Corpus callosum

Ce

Central amygdaloid nucleus

CeC

Central amygdaloid nucleus, capsular part

CeL

Central amygdaloid nucleus, lateral division

CeM

Central amygdaloid nucleus, medial division

CeMPV

Central amygdaloid nucleus, medial division, posteroventral part

Cg1

Cingulate cortex, area 1

Cg2

Cingulate cortex, area 2

Cl

Claustrum

CM

Central medial thalamic nucleus

CPu

Caudate putamen (striatum)

CxA

Cortex-amygdala transition zone

D3V

Dorsal third ventricle

DEn

Dorsal endopiriform nucleus

DG

Dentate gyrus

DP

Dorsal peduncular cortex

DTT

Dorsal tenia tecta

f

Fornix

FG

Fluorogold

fi

Fimbria of the hippocampus

fmi

Forceps minor of the corpus callosum

GrDG

Granular layer of the dentate gyrus

HDB

Nucleus of the horizontal limb of the diagonal band

I

Intercalated nuclei of the amygdala

IAD

Interanterodorsal thalamic nucleus

ic

Internal capsule

ICj

Islands of Calleja

ICjM

Islands of Calleja, major island

IG

Indusium griseum

IL

Infralimbic cortex

IM

Intercalated amygdaloid nucleus, main part

IPAC

Interstitial nucleus of the posterior limb of the anterior commissure

IPACL

Lateral interstitial nucleus of the posterior limb of the anterior commissure

IPACM

Medial interstitial nucleus of the posterior limb of the anterior commissure

La

Lateral amygdaloid nucleus

LA

Lateroanterior hypothalamic nucleus

LaDL

Lateral amygdaloid nucleus, dorsolateral part

LaVL

Lateral amygdaloid nucleus, ventrolateral part

LaVM

Lateral amygdaloid nucleus, ventromedial part

LEnt

Lateral entorhinal cortex

LGP

Lateral globus pallidus

LH

Lateral hypothalamic area

lo

Lateral olfactory tract

LOT

Nucleus of the lateral olfactory tract

LOT 1

Nucleus of the lateral olfactory tract, layer 1

LOT 2

Nucleus of the lateral olfactory tract, layer 2

LOT 3

Nucleus of the lateral olfactory tract, layer 3

LPO

Lateral preoptic area

LS

Lateral septum

LSD

Lateral septal nucleus, dorsal part

LSI

Lateral septal nucleus, intermediate part

LSV

Lateral septal nucleus, ventral part

LV

Lateral ventricle

M1

Primary motor cortex

M2

Secondary motor cortex

MCPO

Magnocellular preoptic nucleus

MD

Mediodorsal thalamic nucleus

Me

Medial amygdaloid nucleus

MeA

Medial amygdaloid nucleus, anterior part

MeAD

Medial amygdaloid nucleus, anterior dorsal part

MeAV

Medial amygdaloid nucleus, anteroventral part

MePD

Medial amygdaloid nucleus, posterodorsal part

MePV

Medial amygdaloid nucleus, posteroventral part

mfb

Medial forebrain bundle

MGP

Medial globus pallidus (entopeduncular nucleus)

MnPO

Median preoptic nucleus

MO

Medial orbital cortex

MPA

Medial preoptic area

MPO

Medial preoptic nucleus

MPOM

Medial preoptic nucleus, medial part

MS

Medial septal nucleus

mvStP

Medioventral striato-pallidum

NADPHd

Nicotinamide adenine dinucleotide phosphate diaphorase

opt

Optic tract

Or

Oriens layer of the hippocampus

PaAP

Paraventricular hypothalamic nucleus, anterior parvicellular part

PB

Phosphate buffer

PBS

Phosphate buffered saline

Pir

Piriform cortex

PLCo

Posterolateral cortical amygdaloid nucleus

PMCo

Posteromedial cortical amygdaloid nucleus

PRh

Perirhinal cortex

PrL

Prelimbic cortex

PT

Paratenial thalamic nucleus

PVA

Paraventricular thalamic nucleus, anterior part

Py

Pyramidal cell layer of the hippocampus

Rad

Stratum radiatum of the hippocampus

Re

Reuniens thalamic nucleus

Rt

Reticular thalamic nucleus

SCh

Suprachiasmatic nucleus

SFi

Septofimbrial nucleus

SFO

Subfornical organ

SHi

Septohippocampal nucleus

SHy

Septohypothalamic nucleus

SI

Substantia innominata

SLu

Stratum lucidum, hippocampus

SM

Nucleus of the stria medullaris

sm

Stria medullaris of the thalamus

SO

Supraoptic nucleus

SP

Substance P

st

Stria terminalis

StA

Strial part of the preoptic area

TBS

TRIS buffered saline

Tu

Olfactory tubercle

V1aR

Arginine-vasopressin receptor type 1a

V1bR

Arginine-vasopressin receptor type 1b

VA

Ventral anterior thalamic nucleus

VEn

Ventral endopiriform nucleus

VDB

Ventral diagonal band

VLPO

Ventrolateral preoptic nucleus

VMPO

Ventromedial preoptic nucleus

VO

Ventral orbital cortex

VOLT

Vascular organ of the lamina terminalis

VP

Ventral pallidum

VTT

Ventral tenia tecta

Xi

Xiphoid thalamic nucleus

References

  1. Albers HE, Dean A, Karom MC, Smith D, Huhman KL (2006) Role of V1a vasopressin receptors in the control of aggression in Syrian hamsters. Brain Res 1073–1074:425–430PubMedCrossRefGoogle Scholar
  2. Alheid GF, Heimer L (1988) New perspectives in basal forebrain organization of special relevance for neuropsychiatric disorders: the striatopallidal, amygdaloid, and corticopetal components of substantia innominata. Neuroscience 27:1–39PubMedCrossRefGoogle Scholar
  3. Ankarali S, Ankarali HC, Marangoz C (2009) Further evidence for the role of nitric oxide in maternal aggression: effects of l-NAME on maternal aggression towards female intruders in Wistar rats. Physiol Res 58:591–598PubMedGoogle Scholar
  4. Arakawa H, Arakawa K, Deak T (2010) Oxytocin and vasopressin in the medial amygdala differentially modulate approach and avoidance behavior toward illness-related social odor. Neuroscience 171:1141–1151PubMedCrossRefGoogle Scholar
  5. Barbaresi P, Quaranta A, Amoroso S, Mensa E, Fabri M (2012) Immunocytochemical localization of calretinin-containing neurons in the rat periaqueductal gray and colocalization with enzymes producing nitric oxide: a double, double-labeling study. Synapse 66:291–307PubMedCrossRefGoogle Scholar
  6. Bester-Meredith JK, Young LJ, Marler CA (1999) Species differences in paternal behavior and aggression in peromyscus and their associations with vasopressin immunoreactivity and receptors. Horm Behav 36:25–38PubMedCrossRefGoogle Scholar
  7. Bielsky IF, Hu SB, Ren X, Terwilliger EF, Young LJ (2005) The V1a vasopressin receptor is necessary and sufficient for normal social recognition: a gene replacement study. Neuron 47:503–513PubMedCrossRefGoogle Scholar
  8. Bolborea M, Ansel L, Weinert D, Steinlechner S, Pevet P, Klosen P (2010) The bed nucleus of the stria terminalis in the Syrian hamster (Mesocricetus auratus): absence of vasopressin expression in standard and wild-derived hamsters and galanin regulation by seasonal changes in circulating sex steroids. Neuroscience 165:819–830PubMedCrossRefGoogle Scholar
  9. Bosch OJ, Neumann ID (2010) Vasopressin released within the central amygdala promotes maternal aggression. Eur J Neurosci 31:883–891PubMedCrossRefGoogle Scholar
  10. Buijs RM (1978) Intra- and extrahypothalamic vasopressin and oxytocin pathways in the rat. Pathways to the limbic system, medulla oblongata and spinal cord. Cell Tissue Res 192:423–435PubMedCrossRefGoogle Scholar
  11. Bupesh M, Legaz I, Abellan A, Medina L (2011) Multiple telencephalic and extratelencephalic embryonic domains contribute neurons to the medial extended amygdala. J Comp Neurol 519:1505–1525PubMedCrossRefGoogle Scholar
  12. Caffe AR, van Leeuwen FW (1983) Vasopressin-immunoreactive cells in the dorsomedial hypothalamic region, medial amygdaloid nucleus and locus coeruleus of the rat. Cell Tissue Res 233:23–33PubMedCrossRefGoogle Scholar
  13. Campbell P, Ophir AG, Phelps SM (2009) Central vasopressin and oxytocin receptor distributions in two species of singing mice. J Comp Neurol 516:321–333PubMedCrossRefGoogle Scholar
  14. Canteras NS (2002) The medial hypothalamic defensive system: hodological organization and functional implications. Pharmacol Biochem Behav 71:481–491PubMedCrossRefGoogle Scholar
  15. Castel M, Morris JF (1988) The neurophysin-containing innervation of the forebrain of the mouse. Neuroscience 24:937–966PubMedCrossRefGoogle Scholar
  16. Caughey SD, Klampfl SM, Bishop VR, Pfoertsch J, Neumann ID, Bosch OJ, Meddle SL (2011) Changes in the intensity of maternal aggression and central oxytocin and vasopressin V1a receptors across the peripartum period in the rat. J Neuroendocrinol 23:1113–1124PubMedCrossRefGoogle Scholar
  17. Chamero P, Marton TF, Logan DW, Flanagan K, Cruz JR, Saghatelian A, Cravatt BF, Stowers L (2007) Identification of protein pheromones that promote aggressive behaviour. Nature 450:899–902PubMedCrossRefGoogle Scholar
  18. Chamero P, Katsoulidou V, Hendrix P, Bufe B, Roberts R, Matsunami H, Abramowitz J, Birnbaumer L, Zufall F, Leinders-Zufall T (2011) G protein G(alpha)o is essential for vomeronasal function and aggressive behavior in mice. Proc Natl Acad Sci USA 108:12898–12903PubMedCentralPubMedCrossRefGoogle Scholar
  19. de Vries GJ (2008) Sex differences in vasopressin and oxytocin innervation of the brain. Prog Brain Res 170:17–27PubMedCrossRefGoogle Scholar
  20. De Vries GJ, Buijs RM (1983) The origin of the vasopressinergic and oxytocinergic innervation of the rat brain with special reference to the lateral septum. Brain Res 273:307–317PubMedCrossRefGoogle Scholar
  21. De Vries GJ, Wang Z, Bullock NA, Numan S (1994) Sex differences in the effects of testosterone and its metabolites on vasopressin messenger RNA levels in the bed nucleus of the stria terminalis of rats. J Neurosci 14:1789–1794PubMedGoogle Scholar
  22. Demas GE, Eliasson MJ, Dawson TM, Dawson VL, Kriegsfeld LJ, Nelson RJ, Snyder SH (1997) Inhibition of neuronal nitric oxide synthase increases aggressive behavior in mice. Mol Med 3:610–616PubMedCentralPubMedGoogle Scholar
  23. DeVries GJ, Buijs RM, Van Leeuwen FW, Caffe AR, Swaab DF (1985) The vasopressinergic innervation of the brain in normal and castrated rats. J Comp Neurol 233:236–254PubMedCrossRefGoogle Scholar
  24. Dong HW, Swanson LW (2004) Projections from bed nuclei of the stria terminalis, posterior division: implications for cerebral hemisphere regulation of defensive and reproductive behaviors. J Comp Neurol 471:396–433PubMedCrossRefGoogle Scholar
  25. Dubois-Dauphin M, Barberis C, de Bilbao F (1996) Vasopressin receptors in the mouse (Mus musculus) brain: sex-related expression in the medial preoptic area and hypothalamus. Brain Res 743:32–39PubMedCrossRefGoogle Scholar
  26. Everts HG, De Ruiter AJ, Koolhaas JM (1997) Differential lateral septal vasopressin in wild-type rats: correlation with aggression. Horm Behav 31:136–144PubMedCrossRefGoogle Scholar
  27. Ferris CF, Delville Y, Miller MA, Dorsa DM, De Vries GJ (1995) Distribution of small vasopressinergic neurons in golden hamsters. J Comp Neurol 360:589–598PubMedCrossRefGoogle Scholar
  28. Gabor CS, Phan A, Clipperton-Allen AE, Kavaliers M, Choleris E (2012) Interplay of oxytocin, vasopressin, and sex hormones in the regulation of social recognition. Behav Neurosci 126:97–109PubMedCrossRefGoogle Scholar
  29. Gammie SC (2005) Current models and future directions for understanding the neural circuitries of maternal behaviors in rodents. Behav Cogn Neurosci Rev 4:119–135PubMedCrossRefGoogle Scholar
  30. Garcia-Moreno F, Pedraza M, Di Giovannantonio LG, Di Salvio M, Lopez-Mascaraque L, Simeone A, De Carlos JA (2010) A neuronal migratory pathway crossing from diencephalon to telencephalon populates amygdala nuclei. Nat Neurosci 13:680–689PubMedCrossRefGoogle Scholar
  31. Gillard ER, Coburn CG, de Leon A, Snissarenko EP, Bauce LG, Pittman QJ, Hou B, Curras-Collazo MC (2007) Vasopressin autoreceptors and nitric oxide-dependent glutamate release are required for somatodendritic vasopressin release from rat magnocellular neuroendocrine cells responding to osmotic stimuli. Endocrinology 148:479–489PubMedCrossRefGoogle Scholar
  32. Guirado S, Real MA, Davila JC (2008) Distinct immunohistochemically defined areas in the medial amygdala in the developing and adult mouse. Brain Res Bull 75:214–217PubMedCrossRefGoogle Scholar
  33. Gutierrez-Castellanos N, Martinez-Marcos A, Martinez-Garcia F, Lanuza E (2010) Chemosensory function of the amygdala. Vitam Horm 83:165–196PubMedCrossRefGoogle Scholar
  34. Hatton GI, Yang QZ (1989) Supraoptic nucleus afferents from the main olfactory bulb—II. Intracellularly recorded responses to lateral olfactory tract stimulation in rat brain slices. Neuroscience 31:289–297PubMedCrossRefGoogle Scholar
  35. Hatton GI, Yang QZ (1990) Activation of excitatory amino acid inputs to supraoptic neurons. I. Induced increases in dye-coupling in lactating, but not virgin or male rats. Brain Res 513:264–269PubMedCrossRefGoogle Scholar
  36. Herkenham M (1987) Mismatches between neurotransmitter and receptor localizations in brain: observations and implications. Neuroscience 23:1–38PubMedCrossRefGoogle Scholar
  37. Hernando F, Schoots O, Lolait SJ, Burbach JP (2001) Immunohistochemical localization of the vasopressin V1b receptor in the rat brain and pituitary gland: anatomical support for its involvement in the central effects of vasopressin. Endocrinology 142:1659–1668PubMedGoogle Scholar
  38. Ho JM, Murray JH, Demas GE, Goodson JL (2010) Vasopressin cell groups exhibit strongly divergent responses to copulation and male–male interactions in mice. Horm Behav 58:368–377PubMedCrossRefGoogle Scholar
  39. Johnson AE, Barberis C, Albers HE (1995) Castration reduces vasopressin receptor binding in the hamster hypothalamus. Brain Res 674:153–158PubMedCrossRefGoogle Scholar
  40. Karlson P, Luscher M (1959) Pheromones: a new term for a class of biologically active substances. Nature 183:55–56PubMedCrossRefGoogle Scholar
  41. Kavaliers M, Choleris E, Pfaff DW (2005) Recognition and avoidance of the odors of parasitized conspecifics and predators: differential genomic correlates. Neurosci Biobehav Rev 29:1347–1359PubMedCrossRefGoogle Scholar
  42. Knobloch HS, Charlet A, Hoffmann LC, Eliava M, Khrulev S, Cetin AH, Osten P, Schwarz MK, Seeburg PH, Stoop R, Grinevich V (2012) Evoked axonal oxytocin release in the central amygdala attenuates fear response. Neuron 73:553–566PubMedCrossRefGoogle Scholar
  43. Koolhaas JM, Van Den Brink THC, Roozendaal B, Boorsma F (1990) Medial amygdala and aggressive behavior: interaction between testosterone and vasopressin. Aggress Behav 16:223–229Google Scholar
  44. Leypold BG, Yu CR, Leinders-Zufall T, Kim MM, Zufall F, Axel R (2002) Altered sexual and social behaviors in trp2 mutant mice. Proc Natl Acad Sci USA 99:6376–6381PubMedCentralPubMedCrossRefGoogle Scholar
  45. Lim MM, Young LJ (2004) Vasopressin-dependent neural circuits underlying pair bond formation in the monogamous prairie vole. Neuroscience 125:35–45PubMedCrossRefGoogle Scholar
  46. Lim MM, Murphy AZ, Young LJ (2004) Ventral striatopallidal oxytocin and vasopressin V1a receptors in the monogamous prairie vole (Microtus ochrogaster). J Comp Neurol 468:555–570PubMedCrossRefGoogle Scholar
  47. Lin D, Boyle MP, Dollar P, Lee H, Lein ES, Perona P, Anderson DJ (2011) Functional identification of an aggression locus in the mouse hypothalamus. Nature 470:221–226PubMedCentralPubMedCrossRefGoogle Scholar
  48. Ludwig M, Leng G (2006) Dendritic peptide release and peptide-dependent behaviours. Nat Rev Neurosci 7:126–136PubMedCrossRefGoogle Scholar
  49. Manning M, Misicka A, Olma A, Bankowski K, Stoev S, Chini B, Durroux T, Mouillac B, Corbani M, Guillon G (2012) Oxytocin and vasopressin agonists and antagonists as research tools and potential therapeutics. J Neuroendocrinol 24:609–628PubMedCentralPubMedCrossRefGoogle Scholar
  50. Martínez-García F, Novejarque A, Gutiérrez-Castellanos N, Lanuza E (2012) Chapter 6—Piriform cortex and amygdala. In: Watson C, Paxinos G, Puelles L (eds) The mouse nervous system. Academic Press, San Diego, pp 140–172CrossRefGoogle Scholar
  51. Mitra SW, Hoskin E, Yudkovitz J, Pear L, Wilkinson HA, Hayashi S, Pfaff DW, Ogawa S, Rohrer SP, Schaeffer JM, McEwen BS, Alves SE (2003) Immunolocalization of estrogen receptor beta in the mouse brain: comparison with estrogen receptor alpha. Endocrinology 144:2055–2067PubMedCrossRefGoogle Scholar
  52. Modney BK, Yang QZ, Hatton GI (1990) Activation of excitatory amino acid inputs to supraoptic neurons. II. Increased dye-coupling in maternally behaving virgin rats. Brain Res 513:270–273PubMedCrossRefGoogle Scholar
  53. Moncho-Bogani J, Lanuza E, Hernandez A, Novejarque A, Martinez-Garcia F (2002) Attractive properties of sexual pheromones in mice. Innate or learned? Physiol Behav 77:167–176PubMedCrossRefGoogle Scholar
  54. Murakami G, Hunter RG, Fontaine C, Ribeiro A, Pfaff D (2011) Relationships among estrogen receptor, oxytocin and vasopressin gene expression and social interaction in male mice. Eur J Neurosci 34:469–477PubMedCrossRefGoogle Scholar
  55. Murray EK, Varnum MM, Fernandez JL, de Vries GJ, Forger NG (2011) Effects of neonatal treatment with valproic acid on vasopressin immunoreactivity and olfactory behaviour in mice. J Neuroendocrinol 23:906–914PubMedCentralPubMedCrossRefGoogle Scholar
  56. Napier TC, Mitrovic I, Churchill L, Klitenick MA, Lu XY, Kalivas PW (1995) Substance P in the ventral pallidum: projection from the ventral striatum, and electrophysiological and behavioral consequences of pallidal substance P. Neuroscience 69:59–70PubMedCrossRefGoogle Scholar
  57. Nephew BC, Bridges RS (2008) Arginine vasopressin V1a receptor antagonist impairs maternal memory in rats. Physiol Behav 95:182–186PubMedCentralPubMedCrossRefGoogle Scholar
  58. Newman SW (1999) The medial extended amygdala in male reproductive behavior. A node in the mammalian social behavior network. Ann N Y Acad Sci 877:242–257PubMedCrossRefGoogle Scholar
  59. Novejarque A, Gutierrez-Castellanos N, Lanuza E, Martinez-Garcia F (2011) Amygdaloid projections to the ventral striatum in mice: direct and indirect chemosensory inputs to the brain reward system. Front Neuroanat. doi:10.3389/fnana.2011.00054 PubMedCentralPubMedGoogle Scholar
  60. Olucha-Bordonau FE, Teruel V, Barcia-Gonzalez J, Ruiz-Torner A, Valverde-Navarro AA, Martinez-Soriano F (2003) Cytoarchitecture and efferent projections of the nucleus incertus of the rat. J Comp Neurol 464:62–97PubMedCrossRefGoogle Scholar
  61. Pardo-Bellver C, Cadiz-Moretti B, Novejarque A, Martinez-Garcia F, Lanuza E (2012) Differential efferent projections of the anterior, posteroventral, and posterodorsal subdivisions of the medial amygdala in mice. Front Neuroanat. doi:10.3389/fnana.2012.00033 PubMedCentralPubMedGoogle Scholar
  62. Paxinos G, Franklin KBJ (2001) The mouse brain in stereotaxic coordinates. Academic Press, San DiegoGoogle Scholar
  63. Pecina S, Berridge KC (2000) Opioid site in nucleus accumbens shell mediates eating and hedonic ‘liking’ for food: map based on microinjection Fos plumes. Brain Res 863:71–86PubMedCrossRefGoogle Scholar
  64. Pecina S, Berridge KC (2005) Hedonic hot spot in nucleus accumbens shell: where do mu-opioids cause increased hedonic impact of sweetness? J Neurosci 25:11777–11786PubMedCrossRefGoogle Scholar
  65. Plumari L, Viglietti-Panzica C, Allieri F, Honda S, Harada N, Absil P, Balthazart J, Panzica GC (2002) Changes in the arginine-vasopressin immunoreactive systems in male mice lacking a functional aromatase gene. J Neuroendocrinol 14:971–978PubMedCrossRefGoogle Scholar
  66. Popeski N, Woodside B (2004) Central nitric oxide synthase inhibition disrupts maternal behavior in the rat. Behav Neurosci 118:1305–1316PubMedCrossRefGoogle Scholar
  67. Riedel A, Hartig W, Seeger G, Gartner U, Brauer K, Arendt T (2002) Principles of rat subcortical forebrain organization: a study using histological techniques and multiple fluorescence labeling. J Chem Neuroanat 23:75–104PubMedCrossRefGoogle Scholar
  68. Risold PY, Swanson LW (1997) Connections of the rat lateral septal complex. Brain Res Brain Res Rev 24:115–195PubMedCrossRefGoogle Scholar
  69. Roberts SA, Simpson DM, Armstrong SD, Davidson AJ, Robertson DH, McLean L, Beynon RJ, Hurst JL (2010) Darcin: a male pheromone that stimulates female memory and sexual attraction to an individual male’s odour. BMC Biol 8:75PubMedCentralPubMedCrossRefGoogle Scholar
  70. Rood BD, de Vries GJ (2011) Vasopressin innervation of the mouse (Mus musculus) brain and spinal cord. J Comp Neurol 519:2434–2474PubMedCentralPubMedCrossRefGoogle Scholar
  71. Rood BD, Murray EK, Laroche J, Yang MK, Blaustein JD, De Vries GJ (2008) Absence of progestin receptors alters distribution of vasopressin fibers but not sexual differentiation of vasopressin system in mice. Neuroscience 154:911–921PubMedCrossRefGoogle Scholar
  72. Rood BD, Stott RT, You S, Smith CJ, Woodbury ME, de Vries GJ (2012–2013) Site of origin of and sex differences in the vasopressin innervation of the mouse (Mus musculus) brain. J Comp NeurolGoogle Scholar
  73. Rosen GJ, De Vries GJ, Villalba C, Weldele ML, Place NJ, Coscia EM, Glickman SE, Forger NG (2006) Distribution of vasopressin in the forebrain of spotted hyenas. J Comp Neurol 498:80–92PubMedCrossRefGoogle Scholar
  74. Rosen GJ, De Vries GJ, Goldman SL, Goldman BD, Forger NG (2007) Distribution of vasopressin in the brain of the eusocial naked mole-rat. J Comp Neurol 500:1093–1105PubMedCrossRefGoogle Scholar
  75. Schorscher-Petcu A, Dupre A, Tribollet E (2009) Distribution of vasopressin and oxytocin binding sites in the brain and upper spinal cord of the common marmoset. Neurosci Lett 461:217–222PubMedCrossRefGoogle Scholar
  76. Shipley MT, Adamek GD (1984) The connections of the mouse olfactory bulb: a study using orthograde and retrograde transport of wheat germ agglutinin conjugated to horseradish peroxidase. Brain Res Bull 12:669–688PubMedCrossRefGoogle Scholar
  77. Smithson KG, Weiss ML, Hatton GI (1989) Supraoptic nucleus afferents from the main olfactory bulb—I. Anatomical evidence from anterograde and retrograde tracers in rat. Neuroscience 31:277–287PubMedCrossRefGoogle Scholar
  78. Smithson KG, Weiss ML, Hatton GI (1992) Supraoptic nucleus afferents from the accessory olfactory bulb: evidence from anterograde and retrograde tract tracing in the rat. Brain Res Bull 29:209–220PubMedCrossRefGoogle Scholar
  79. Stoop R (2012) Neuromodulation by oxytocin and vasopressin. Neuron 76:142–159PubMedCrossRefGoogle Scholar
  80. Szot P, Dorsa DM (1993) Expression of vasopressin mRNA in extrahypothalamic nuclei of the homozygous Brattleboro rat is not modulated by testosterone. Neuroendocrinology 58:381–387PubMedCrossRefGoogle Scholar
  81. Toth M, Fuzesi T, Halasz J, Tulogdi A, Haller J (2010) Neural inputs of the hypothalamic “aggression area” in the rat. Behav Brain Res 215:7–20PubMedCrossRefGoogle Scholar
  82. Tsukahara S, Tsuda MC, Kurihara R, Kato Y, Kuroda Y, Nakata M, Xiao K, Nagata K, Toda K, Ogawa S (2011) Effects of aromatase or estrogen receptor gene deletion on masculinization of the principal nucleus of the bed nucleus of the stria terminalis of mice. Neuroendocrinology 94:137–147PubMedCrossRefGoogle Scholar
  83. Ubeda-Banon I, Novejarque A, Mohedano-Moriano A, Pro-Sistiaga P, de la Rosa-Prieto C, Insausti R, Martinez-Garcia F, Lanuza E, Martinez-Marcos A (2007) Projections from the posterolateral olfactory amygdala to the ventral striatum: neural basis for reinforcing properties of chemical stimuli. BMC Neurosci 8:103PubMedCentralPubMedCrossRefGoogle Scholar
  84. Ubeda-Banon I, Novejarque A, Mohedano-Moriano A, Pro-Sistiaga P, Insausti R, Martinez-Garcia F, Lanuza E, Martinez-Marcos A (2008) Vomeronasal inputs to the rodent ventral striatum. Brain Res Bull 75:467–473PubMedCrossRefGoogle Scholar
  85. Veenema AH, Neumann ID (2007) Neurobiological mechanisms of aggression and stress coping: a comparative study in mouse and rat selection lines. Brain Behav Evol 70:274–285PubMedCrossRefGoogle Scholar
  86. Veinante P, Freund-Mercier MJ (1997) Distribution of oxytocin- and vasopressin-binding sites in the rat extended amygdala: a histoautoradiographic study. J Comp Neurol 383:305–325PubMedCrossRefGoogle Scholar
  87. Wang Z (1995) Species differences in the vasopressin-immunoreactive pathways in the bed nucleus of the stria terminalis and medial amygdaloid nucleus in prairie voles (Microtus ochrogaster) and meadow voles (Microtus pennsylvanicus). Behav Neurosci 109:305–311PubMedCrossRefGoogle Scholar
  88. Wang Z, Smith W, Major DE, De Vries GJ (1994) Sex and species differences in the effects of cohabitation on vasopressin messenger RNA expression in the bed nucleus of the stria terminalis in prairie voles (Microtus ochrogaster) and meadow voles (Microtus pennsylvanicus). Brain Res 650:212–218PubMedCrossRefGoogle Scholar
  89. Wang Z, Zhou L, Hulihan TJ, Insel TR (1996) Immunoreactivity of central vasopressin and oxytocin pathways in microtine rodents: a quantitative comparative study. J Comp Neurol 366:726–737PubMedCrossRefGoogle Scholar
  90. Wang Z, Moody K, Newman JD, Insel TR (1997a) Vasopressin and oxytocin immunoreactive neurons and fibers in the forebrain of male and female common marmosets (Callithrix jacchus). Synapse 27:14–25PubMedCrossRefGoogle Scholar
  91. Wang Z, Toloczko D, Young LJ, Moody K, Newman JD, Insel TR (1997b) Vasopressin in the forebrain of common marmosets (Callithrix jacchus): studies with in situ hybridization, immunocytochemistry and receptor autoradiography. Brain Res 768:147–156PubMedCrossRefGoogle Scholar
  92. Wersinger SR, Kelliher KR, Zufall F, Lolait SJ, O’Carroll AM, Young WS 3rd (2004) Social motivation is reduced in vasopressin 1b receptor null mice despite normal performance in an olfactory discrimination task. Horm Behav 46:638–645PubMedCrossRefGoogle Scholar
  93. Wersinger SR, Caldwell HK, Christiansen M, Young WS 3rd (2007a) Disruption of the vasopressin 1b receptor gene impairs the attack component of aggressive behavior in mice. Genes Brain Behav 6:653–660PubMedCentralPubMedCrossRefGoogle Scholar
  94. Wersinger SR, Caldwell HK, Martinez L, Gold P, Hu SB, Young WS 3rd (2007b) Vasopressin 1a receptor knockout mice have a subtle olfactory deficit but normal aggression. Genes Brain Behav 6:540–551PubMedCrossRefGoogle Scholar
  95. Yang QZ, Hatton GI (1988) Direct evidence for electrical coupling among rat supraoptic nucleus neurons. Brain Res 463:47–56PubMedCrossRefGoogle Scholar
  96. Young LJ, Winslow JT, Nilsen R, Insel TR (1997) Species differences in V1a receptor gene expression in monogamous and nonmonogamous voles: behavioral consequences. Behav Neurosci 111:599–605PubMedCrossRefGoogle Scholar
  97. Young LJ, Nilsen R, Waymire KG, MacGregor GR, Insel TR (1999a) Increased affiliative response to vasopressin in mice expressing the V1a receptor from a monogamous vole. Nature 400:766–768PubMedCrossRefGoogle Scholar
  98. Young LJ, Toloczko D, Insel TR (1999b) Localization of vasopressin (V1a) receptor binding and mRNA in the rhesus monkey brain. J Neuroendocrinol 11:291–297PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Marcos Otero-Garcia
    • 1
  • Ana Martin-Sanchez
    • 1
  • Lluis Fortes-Marco
    • 1
  • Joana Martínez-Ricós
    • 2
  • Carmen Agustin-Pavón
    • 3
  • Enrique Lanuza
    • 1
  • Fernando Martínez-García
    • 1
  1. 1.Laboratori de Neuroanatomia Funcional Comparada, Depts. Biologia Funcional i Biologia Cel·lular, Fac. Ciències BiològiquesUniv. ValènciaBurjassotSpain
  2. 2.Dept. Anatomia i Embriologia Humana, Fac. MedicinaUniv. ValènciaValènciaSpain
  3. 3.EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG)Universitat Pompeu Fabra (UPF)BarcelonaSpain

Personalised recommendations