Brain Structure and Function

, Volume 219, Issue 1, pp 1–22 | Cite as

A systematic review of brain frontal lobe parcellation techniques in magnetic resonance imaging

  • Simon R. Cox
  • Karen J. Ferguson
  • Natalie A. Royle
  • Susan D. Shenkin
  • Sarah E. MacPherson
  • Alasdair M. J. MacLullich
  • Ian J. Deary
  • Joanna M. Wardlaw
Review

Abstract

Manual volumetric measurement of the brain’s frontal lobe and its subregions from magnetic resonance images (MRIs) is an established method for researching neural correlates of clinical disorders or cognitive functions. However, there is no consensus between methods used to identify relevant boundaries of a given region of interest (ROI) on MRIs, and those used may bear little relation to each other or the underlying structural, functional and connective architecture. This presents challenges for the analysis and synthesis of such results. We therefore performed a systematic literature review to highlight variations in the anatomical boundaries used to measure frontal regions, contextualised by up-to-date evidence from histology, hodology and neuropsychology. We searched EMBASE and MEDLINE for studies in English reporting three-dimensional boundaries for manually delineating the brain’s frontal lobe or sub-regional ROIs from MRIs. Exclusion criteria were: exclusive use of co-ordinate grid systems; insufficient detail to allow method replication; publication in grey literature only. Papers were assessed on quality criteria relating to bias, reproducibility and protocol rationale. There was a large degree of variability in the three-dimensional boundaries of all regions used by the 208 eligible papers. Half of the reports did not justify their rationale for boundary selection, and each paper met on average only three quarters of quality criteria. For the frontal lobe and each subregion (frontal pole, anterior cingulate, dorsolateral, inferior-lateral, and orbitofrontal) we identified reproducible methods for a biologically plausible target ROI. It is hoped that this synthesis will guide the design of future volumetric studies of cerebral structure.

Keywords

Frontal Cortex Parcellation Segmentation MRI Cytoarchitecture 

Notes

Acknowledgments

We are grateful to Sheila Fisken for her consultation on search strategy development (Liaison Librarian for Edinburgh University Medical School), and to David A. Dickie for the use of his brain MRI for figures. We are also grateful to the reviewers for their detailed and constructive suggestions for improving the manuscript. The work was undertaken by the University of Edinburgh in the Brain Research Imaging Centre (http://www.bric.ed.ac.uk—part of the SINAPSE collaboration) and the Centre for Cognitive Ageing and Cognitive Epidemiology (http://www.ccace.ed.ac.uk—part of the cross council Lifelong Health and Wellbeing Initiative, G0700704/84698). Funding from the Biotechnology and Biological Sciences Research Council, Engineering and Physical Sciences Research Council, Economic and Social Research Council, Medical Research Council, and from the Scottish Founding Council through the SINAPSE collaboration (http://www.sinapse.ac.uk) is gratefully acknowledged.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

429_2013_527_MOESM1_ESM.xls (246 kb)
Online Resource 1 Excel spreadsheet of all reviewed parcellation methods. Bold horizontal dividers identify groups of papers that use broadly the same protocol, starting with the paper in which the cited method originated. Details of the sample, acquisition hardware, sub-regional boundaries and quality scores are included (XLS 247 kb)
429_2013_527_MOESM2_ESM.doc (96 kb)
Online Resource 2 Complete references of all reviewed protocols (DOC 95 kb)

References

  1. Amunts K, Schleicher A, Burgel U, Mohlberg H, Uylings HBM, Zilles K (1999) Broca’s region revisited: cytoarchitecture and intersubject variability. J Comp Neurol 412:319–341PubMedGoogle Scholar
  2. Aron AR, Robbins TW, Poldrack RA (2004) Inhibition and the right inferior frontal cortex. Trends in Cogn Sci 8(4):170–177Google Scholar
  3. Asami T, Hayano F, Nakamura M, Yamasue H, Uehara K, Otsuka T, Roppongi T, Nihashi N, Inoue T, Hirayasu Y (2008) Anterior cingulate cortex volume reduction in patients with panic disorder. Psychiatry Clin Neurosci 62(3):322–330PubMedGoogle Scholar
  4. Baaré WF, Hulshoff PHE, Hijman R, Mali WP, Viergever MA, Kahn RS (1999) Volumetric analysis of frontal lobe regions in schizophrenia: relation to cognitive function and symptomatology. Biol Psychiatry 45(12):1597–1605PubMedGoogle Scholar
  5. Bäckman L, Robins-Wahlin TB, Lundin A, Ginovart N, Farde L (1997) Cognitive deficits in Huntington’s disease are predicted by dopaminergic PET markers and brain volumes. Brain 120(12):2207–2217PubMedGoogle Scholar
  6. Ballmaier M, Toga A, Blanton R, Sowell ER, Lavretsky H, Peterson BS, Pham D, Kumar A (2004) Anterior cingulate, gyrus rectus, and orbitofrontal abnormalities in elderly depressed patients: an MRI-based parcellation of the prefrontal cortex. Am J Psychiatry 161:99–108PubMedGoogle Scholar
  7. Bartzokis G, Mintz J, Marx P, Osborn D, Gutkind D, Chiang F, Phelan CK, Marder SR (1993) Reliability of in vivo volume measures of hippocampus and other brain structures using MRI. Magn Reson Imaging 11:993–1006PubMedGoogle Scholar
  8. Beck E (1949) A cytoarchitectural investigation into the boundaries of cortical areas 13 and 14 in the human brain. J Anat 83:147–157Google Scholar
  9. Beckmann M, Johansen-Berg H, Rushworth MFS (2009) Connectivity-based parcellation of human cingulate cortex and its relation to functional specialization. J Neurosci 29(4):1175–1190PubMedGoogle Scholar
  10. Benoit RG, Gilbert SJ, Volle E, Burgess PW (2010) When I think about me and simulate you: medial rostral prefrontal cortex and self-referential processes. NeuroImage 50(3):1340–1349PubMedGoogle Scholar
  11. Berryhill P, Lilly MA, Levin HS, Hillman GR, Mendelsohn D, Brunder DG, Fletcher JM, Kufera J, Kent TA, Yeakley J, Bruce D, Eisenberg HM (1995) Frontal lobe changes after severe diffuse closed head injury in children: a volumetric study of magnetic resonance imaging. Neurosurg 37(3):392–400Google Scholar
  12. Beyer JL, Kuchibhatla M, Payne ME, Macfall J, Cassidy F, Krishnan KRR (2009) Gray and white matter brain volumes in older adults with bipolar disorder. Int J Geriatr Psychiatry 24:1445–1452PubMedGoogle Scholar
  13. Bjork JM, Momenan R, Hommer DW (2009) Delay discounting correlates with proportional lateral frontal cortex volumes. Biol Psychiatry 65(8):710–713PubMedGoogle Scholar
  14. Blatter DD, Bigler ED, Gale SD, Johnson SC, Anderson C, Burnett BM, Parker N, Kurth S, Horn S (1995) Quantitative volumetric analysis of brain MRI: normative database spanning five decades of life. Am J Neuroradiol 16:241–245PubMedGoogle Scholar
  15. Blumberg HP, Stern E, Ricketts S, Martinez D, de Asis J, White T, Epstein J, Isenberg N, McBride PA, Kemperman I, Emmerich S, Dhawan V, Eidelberg D, Kocsis J, Silbersweig D (1999) Rostral and orbital prefrontal dysfunction in the manic state of bipolar disorder. Am J Psychiatry 156:1986–1988PubMedGoogle Scholar
  16. Bohland JW, Bokil H, Allen CB, Mitra PP (2009) The brain atlas concordance problem: quantitative comparison of anatomical parcellations. PLoS ONE 4(9):e7200PubMedCentralPubMedGoogle Scholar
  17. Bookheimer S (2002) Functional MRI of language: new approaches to understanding the cortical organization of semantic processing. Ann Rev Neurosci 25:151–188PubMedGoogle Scholar
  18. Botteron KN, Raichle ME, Drevets WC, Heath AC, Todd RD (2002) Volumetric reduction in left subgenual prefrontal cortex in early onset depression. Biol Psychiatry 51(4):342–344PubMedGoogle Scholar
  19. Brambilla P, Nicoletti MA, Harenski K, Sassi RB, Mallinger AG, Frank E, Kupfer DJ, Keshavan MS, Soares JC (2002) Anatomical MRI study of subgenual prefrontal cortex in bipolar and unipolar subjects. Neuropsychopharmacology 27(5):792–799PubMedGoogle Scholar
  20. Bremner JD, Bronen RA, Erasquin GD, Vermetten E, Staib LH, Ng CK, Soufer R, Charney DS, Innis RB (1998) Development and reliability of a method for using magnetic resonance imaging for the definition of regions of interest for positron emission tomography. Clin Positron Imaging 1(3):145–159PubMedGoogle Scholar
  21. Bremner JD, Narayan M, Anderson ER, Staib LH, Miller HL, Charney DS (2000) Hippocampal volume reduction in major depression. Am J Psychiatry 157:115–117PubMedGoogle Scholar
  22. Bremner JD, Vythilingam M, Vermetten E, Nazeer A, Adil J, Khan S, Staib LH, Charney DS (2002) Reduced volume of orbitofrontal cortex in major depression. Biol Psychiatry 51(4):273–279PubMedGoogle Scholar
  23. Brodmann K (1909) Vergleichende Lokalisationslehre der Großhirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Barth, Leipzig. (English translation available in Garey LJ (1994) Brodmann’s localization in the cerebral cortex. Smith Gordon, London)Google Scholar
  24. Burgess PW, Simons JS, Dumontheil I, Gilbert SJ (2006) The gateway hypothesis of rostral prefrontal cortex (area 10) function. In: Duncan J, Phillips LH, McLeod P (eds) Measuring the mind: speed, control and age, vol 3. Oxford University Press, Oxford, pp 217–248Google Scholar
  25. Bush G, Luu P, Posner M (2000) Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn Sci 4(6):215–222PubMedGoogle Scholar
  26. Cabeza R, Nyberg L (2000) Imaging cognition II: an empirical review of 275 PET and fMRI studies. J Cogn Neurosci 12(1):1–47PubMedGoogle Scholar
  27. Campbell AW (1905) Histological studies on the localisation of cerebral function. Cambridge University Press, CambridgeGoogle Scholar
  28. Carper RA, Courchesne E (2005) Localized enlargement of the frontal cortex in early autism. Biol Psychiatry 57(2):126–133PubMedGoogle Scholar
  29. Caviness VS, Meyer J, Makris N, Kennedy DN (1996) MRI-based topographic parcellation of human neocortex: an anatomically specified method with estimate of reliability. J Cogn Neurosci 8(6):566–587PubMedGoogle Scholar
  30. Chi JG, Dooling EC, Gilles FH (1977) Gyral development of the human brain. Ann Neurol 11:86–93Google Scholar
  31. Chiavaras MM, Petrides M (2000) Orbitofrontal sulci of the human and macaque monkey brain. J Comp Neurol 422(1):35–54PubMedGoogle Scholar
  32. Chiavaras MM, LeGoualher G, Evans A, Petrides M (2001) Three-dimensional probabilistic atlas of the human orbitofrontal sulci in standardized stereotaxic space. NeuroImage 13(3):479–496PubMedGoogle Scholar
  33. Coffey CE, Weiner RD, Djang W, Figiel G, Soady S, Patterson L, Holt PD, Spritzer CE, Wilkinson WE (1991) Brain anatomic effects of electroconvulsive therapy. Arch Gen Psychiatry 48:1013–1021PubMedGoogle Scholar
  34. Coffey CE, Lucke JF, Saxton JA, Ratcliff G, Unitas LJ, Billig B, Bryan RN (1998) Sex differences in brain aging: a quantitative magnetic resonance imaging study. Arch Neurol 55(2):169–179PubMedGoogle Scholar
  35. Convit A, Wolf OT, de Leon MJ, Patalinjug M, Kandil E, Caraos C, Scherer A, Saint Louis LA, Cancro R (2001) Volumetric analysis of the pre-frontal regions: findings in aging and schizophrenia. Psychiatry Res Neuroimaging 107(2):61–73Google Scholar
  36. Coryell W, Nopoulos P, Drevets W, Wilson T, Andreasen NC (2005) Subgenual prefrontal cortex volumes in major depressive disorder and schizophrenia: diagnostic specificity and prognostic implications. Am J Psychiatry 162(9):1706–1712PubMedGoogle Scholar
  37. Costafreda SG, Fu CHY, Lee L, Everitt B, Brammer MJ, David AS (2006) A systematic review and quantitative appraisal of fMRI studies of verbal fluency: role of the left inferior frontal gyrus. Hum Brain Mapp 27(10):799–810PubMedGoogle Scholar
  38. Cotter D, Hudson L, Landau S (2005) Evidence for orbitofrontal pathology in bipolar disorder and major depression, but not in schizophrenia. Bipolar Disord 7:358–369PubMedGoogle Scholar
  39. Cowell PE, Turetsky BI, Gur RC, Grossman RI, Shtasel DL, Gur RE (1994) Sex differences in aging of the human frontal and temporal lobes. J Neurosci 14(8):4748–4755PubMedGoogle Scholar
  40. Crespo-Facorro B, Kim JJ, Andreasen NC, O’Leary DS, Wiser AK, Bailey JM, Harris G, Magnotta VA (1999) Human frontal cortex: an MRI-based parcellation method. NeuroImage 10(5):500–519PubMedGoogle Scholar
  41. Croxson PL, Johansen-Berg H, Behrens TEJ, Robson MD, Pinsk MA, Gross CG, Richter W, Kastner S, Rushworth MFS (2005) Quantitative investigation of connections of the prefrontal cortex in the human and macaque using probabilistic diffusion tractography. J Neurosci 25(39):8854–8866PubMedGoogle Scholar
  42. Deary IJ, Penke L, Johnson W (2010) The neuroscience of human intelligence differences. Nat Rev Neurosci 11(3):201–211PubMedGoogle Scholar
  43. Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Buckner RL, Dale AM, Maguire RP, Hyman BT, Albert MS, Killiany RJ (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage 31(3):968–980PubMedGoogle Scholar
  44. Devinsky O, Morrell MJ, Vogt BA (1995) Contributions of anterior cingulate cortex to behaviour. Brain 118:279–306PubMedGoogle Scholar
  45. Devlin JT, Poldrack RA (2007) In praise of tedious anatomy. NeuroImage 37(4):1033–1041 (discussion 1050–1058)Google Scholar
  46. Drevets WC, Price J, Simpson J, Todd R (1997) Subgenual prefrontal cortex abnormalities in mood disorders. Nature 386:824–827PubMedGoogle Scholar
  47. Dumontheil I, Burgess PW, Blakemore S-J (2008) Development of rostral prefrontal cortex and cognitive and behavioural disorders. Dev Med Child Neurol 50(3):168–181PubMedCentralPubMedGoogle Scholar
  48. Dumontheil I, Gilbert SJ, Frith CD, Burgess PW (2010) Recruitment of lateral rostral prefrontal cortex in spontaneous and task-related thoughts. Q J Exp Psychol 63(9):1740–1756Google Scholar
  49. Duvernoy HM (1999) The human brain: surface, blood supply, and three-dimensional sectional anatomy, 2nd edn. Springer, WienGoogle Scholar
  50. Filipek PA, Semrud-Clikeman M, Steingard RJ, Renshaw PF, Kennedy DN, Biederman J (1997) Volumetric MRI analysis comparing subjects having attention-deficit hyperactivity disorder with normal controls. Neurology 48(3):589–601PubMedGoogle Scholar
  51. Fischl B, Rajendran N, Busa E, Augustinack J, Hinds O, Yeo BTT, Mohlberg H, Amunts K, Zilles K (2008) Cortical folding patterns and predicting cytoarchitecture. Cereb Cortex 18(8):1973–1980PubMedGoogle Scholar
  52. Flashman LA, McAllister TW, Johnson SC, Rick JH, Green RL, Saykin AJ (2001) Specific frontal lobe subregions correlated with unawareness of illness in schizophrenia: a preliminary study. J Neuropsychiatry Clin Neurosci 13(2):255–257Google Scholar
  53. Fornito A, Yucel M, Wood S, Stuart GW, Buchanan J-A, Proffitt T, Anderson V, Velakoulis D, Pantelis C (2004) Individual differences in anterior cingulate/paracingulate morphology are related to executive functions in healthy males. Cereb Cortex 14(4):424–431PubMedGoogle Scholar
  54. Fornito A, Whittle S, Wood SJ, Velakoulis D, Pantelis C, Yücel M (2006) The influence of sulcal variability on morphometry of the human anterior cingulate and paracingulate cortex. NeuroImage 33(3):843–854PubMedGoogle Scholar
  55. Foundas AL, Weisberg A, Browning CA, Weinberger DR (2001) Morphology of the frontal operculum: a volumetric magnetic resonance imaging study of the pars triangularis. J Neuroimaging 11:153–159PubMedGoogle Scholar
  56. Frost MA, Goebel R (2012) Measuring structural-functional correspondence: spatial variability of specialised brain regions after macro-anatomical alignment. NeuroImage 59(2):1369–1381PubMedGoogle Scholar
  57. Gansler DA, McLaughlin NCR, Iguchi L, Jerram M, Moore DW, Bhadelia R, Fulwiler C (2009) A multivariate approach to aggression and the orbital frontal cortex in psychiatric patients. Psychiatry Res 171(3):145–154PubMedGoogle Scholar
  58. Geyer S, Weiss M, Reimann K, Lohmann G, Turner R (2011) Microstructural parcellation of the human cerebral cortex—from Brodmann’s post-mortem map to in vivo mapping with high-field magnetic resonance imaging. Front Hum Neurosci 5:1–7Google Scholar
  59. Gilbert AR (2001) Thalamic volumes in patients with first-episode schizophrenia. Am J Psychiatry 158(4):618–624PubMedGoogle Scholar
  60. Gilbert SJ, Spengler S, Simons JS, Steele JD, Lawrie SM, Frith CD, Burgess PW (2006) Functional specialization within rostral prefrontal cortex (area 10): a meta-analysis. J Cogn Neurosci 18(6):932–948PubMedGoogle Scholar
  61. Ginovart N, Lundin A, Farde L, Halldin C, Backman L, Swahn CG, Pauli S, Sedvall G (1997) PET study of the pre- and post-synaptic dopaminergic markers for the neurodegenerative process in Huntington’s disease. Brain 120:503–514PubMedGoogle Scholar
  62. Gläscher J, Rudrauf D, Colom R, Paul LK, Tranel D, Damasio H, Adolphs R (2010) Distributed neural system for general intelligence revealed by lesion mapping. Proc Natl Acad Sci USA 107(10):4705–4709PubMedGoogle Scholar
  63. Glasser MF, Van Essen DC (2011) Mapping human cortical areas in vivo based on myelin content as revealed by T1- and T2-weighted MRI. J Neurosci 31(32):11597–11616PubMedCentralPubMedGoogle Scholar
  64. Gold SM, Dziobek I, Rogers K, Bayoumy A, McHugh PF, Convit A (2005) Hypertension and hypothalamo-pituitary-adrenal axis hyperactivity affect frontal lobe integrity. J Clin Endocrinol Metab 90(6):3262–3267PubMedGoogle Scholar
  65. Goulas A, Uylings HBM, Stiers P (2012) Unravelling the intrinsic functional organization of the human lateral frontal cortex: a parcellation scheme based on resting state fMRI. J Neurosci 32(30):10238–10252PubMedGoogle Scholar
  66. Gronenschild HBM, Burgmans S, Smeets F, Vuurman EFPM, Uylings HBM, Jolles J (2010) A time-saving and facilitating approach for segmentation of anatomically defined cortical regions: MRI volumetry. Psychiatry Res Neuroimaging 181:211–218Google Scholar
  67. Gur RE, Cowell PE, Latshaw A, Turetsky BI, Grossman RI, Arnold SE, Bilker WB, Gur RC (2000) Reduced dorsal and orbital prefrontal gray matter volumes in schizophrenia. Arch Gen Psychiatry 57(8):761–768PubMedGoogle Scholar
  68. Harris GJ, Barta PE, Peng LW, Lee S, Brettschneider PD, Shah A, Henderer JD, Schlaepfer TE, Pearlson GD (1994) MR gray and white matter segmentation using manual thresholding: dependence on image brightness. Am J Neuroradiol 15(225–230):1994Google Scholar
  69. Hastings RS, Parsey RV, Oquendo MA, Arango V, Mann JJ (2004) Volumetric analysis of the prefrontal cortex, amygdala, and hippocampus in major depression. Neuropsychopharmacology 29(5):952–959PubMedGoogle Scholar
  70. Haznedar MM, Buchsbaum MS, Metzer M, Solimando A, Spiegel-Cohen J, Hollander E (1997) Anterior cingulate gyrus volume and glucose metabolism in autistic disorder. Am J Psychiatry 154:1047–1050PubMedGoogle Scholar
  71. Head D, Raz N, Gunning-Dixon F, Williamson A, Acker JD (2002) Age-related differences in the course of cognitive skill acquisition: the role of regional cortical shrinkage and cognitive resources. Psychol Aging 17(1):72–84PubMedGoogle Scholar
  72. Hill DE, Yeo RA, Campbell RA, Hart B, Vigil J, Brooks W (2003) Magnetic resonance imaging correlates of attention-deficit/hyperactivity disorder in children. Neuropsychology 17(3):496–506PubMedGoogle Scholar
  73. Hirayasu Y, Shenton ME, Salisbury DF, Kwon JS, Wible CG, Fischer IA, Yurgelun-Todd D, Zarate C, Kikinis R, Jolesz FA, McCarley RW (1999) Subgenual cingulate cortex volume in first-episode psychosis. Am J Psychiatry 156:1091–1093PubMedCentralPubMedGoogle Scholar
  74. Hof PR, Mufson EJ, Morrison JH (1995) Human orbitofrontal cortex: cytoarchitecture and quantitative immunohistochemical parcellation. J Comp Neurol 359(1):48–68PubMedGoogle Scholar
  75. Iordanova B, Rosenbaum D, Norman D, Weiner M, Studholme C (2006) MR imaging anatomy in neurodegeneration: a robust volumetric parcellations method of frontal lobe gyri with quantitative validation in patients with dementia. Am J Neuroradiol 27:1747–1754PubMedCentralPubMedGoogle Scholar
  76. Jernigan TL, Archibald SL, Berhow MT, Sowell ER, Foster DS, Hesselink JR (1991) Cerebral structure on MRI, part1: localization of age-related changes. Biol Psychiatry 29:55–67PubMedGoogle Scholar
  77. Johansen-Berg H, Gutman DA, Behrens TEJ, Matthews PM, Rushworth MFS, Katz E, Lozano AM, Mayberg HS (2008) Anatomical connectivity of the subgenual cingulate regions targeted with deep brain stimulation for treatment-resistant depression. Cereb Cortex 18:1374–1383Google Scholar
  78. John JP, Wang L, Moffitt AJ, Singh HK, Gado MH, Csernansky JG (2006) Inter-rater reliability of manual segmentation of the superior, inferior and middle frontal gyri. Psychiatry Res 148(2–3):151–163PubMedGoogle Scholar
  79. John JP, Yashavantha BS, Gado M, Veena R, Jain S, Ravishankar, Csernansky JG (2007) A proposal for MRI-based parcellations of the frontal pole. Brain Struct Funct 212:245–253Google Scholar
  80. Jones BF, Barnes J, Uylings HBM, Fox NC, Frost C, Witter MP, Scheltens P (2006) Differential regional atrophy of the cingulate gyrus in Alzheimer disease: a volumetric MRI study. Cereb Cortex 16(12):1701–1708PubMedGoogle Scholar
  81. Jung RE, Haier RJ (2007) The parieto-frontal integration theory (P-FIT) of intelligence: converging neuroimaging evidence. Behav Brain Sci 30(2):135–154PubMedGoogle Scholar
  82. Kahnt T, Chang LJ, Park SQ, Heinzle J, Haynes J-D (2012) Connectivity-based parcellation of the human orbitofrontal cortex. J Neurosci 32(18):6240–6250PubMedGoogle Scholar
  83. Kates WR, Frederikse M, Mostofsky SH, Folley BS, Cooper K, Mazur-Hopkins P, Kofman O, Singer HS, Denckla MB, Pearlson GD, Kaufmann WE (2002) MRI parcellation of the frontal lobe in boys with attention deficit hyperactivity disorder or Tourette syndrome. Psychiatry Res Neuroimaging 116(1–2):63–81Google Scholar
  84. Kaur S, Sassi RB, Axelson D, Nicoletti M, Brambilla P, Monkul ES, Hatch JP, Keshevan MS, Ryan N, Birmaher B, Soares JC (2005) Cingulate cortex anatomical abnormalities in children and adolescents with bipolar disorder. Am J Psychiatry 162(9):1637–1643PubMedGoogle Scholar
  85. Kegeles LS, Malone KM, Slifstein M, Ellis SP, Xanthopoulos E, Keilp JG, Campbell C, Oquendo M, van Heertum RL, Mann JJ (2003) Response of cortical metabolic deficits to serotonergic challenge in familial mood disorders. Psychiatry Interpers Biol Process 160(1):76–82Google Scholar
  86. Keller SS, Highley JR, Garcia-Finana M, Sluming V, Rezaie R, Roberts N (2007) Sulcal variability, stereological measurement and asymmetry of Broca's area on MR images. J Anat 211:534–555Google Scholar
  87. Keller SS, Crow T, Foundas A, Amunts K, Roberts N (2009) Broca’s area: nomenclature, anatomy, typology and asymmetry. Brain Lang 109:29–48PubMedGoogle Scholar
  88. Kikinis R, Shenton ME, Iosifescu DV, McCarley RW, Saiviroonporn P, Hokama HH, Robatino A, Metcalf D, Wible CG, Portas CM, Donnino RM, Jolesz FA (1996) A digital brain atlas for surgical planning, model-driven segmentation, and teaching. IEEE Trans Vis Comp Graphics 2(3):232–241Google Scholar
  89. Knaus TA, Bollich AM, Corey DM, Lemen LC, Foundas AL (2006) Variability in perisylvian brain anatomy in healthy adults. Brain Lang 97:219–232PubMedGoogle Scholar
  90. Kringelbach ML, Rolls ET (2004) The functional neuroanatomy of the human orbitofrontal cortex: evidence from neuroimaging and neuropsychology. Prog Neurobiol 72(5):341–372PubMedGoogle Scholar
  91. Lacerda AL, Hardan AY, Yorbik O, Keshavan MS (2003) Measurement of the orbitofrontal cortex: a validation study of a new method. NeuroImage 19(3):665–673PubMedGoogle Scholar
  92. Lai TJ, Payne ME, Byrum CE, Steffens DC, Krishnan KRR (2000) Reduction of orbital frontal cortex volume in geriatric depression. Biol Psychiatry 48(10):971–975Google Scholar
  93. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ionnadis JPA, Clarke M, Devereaux PJ, Kleijnen J, Moher D (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 339:b2700PubMedCentralPubMedGoogle Scholar
  94. Lindberg O, Ostberg P, Zandbelt BB, Oberg J, Zhang Y, Andersen C, Looi JCL, Bogdanovic, Wahlund L-O (2009) Cortical morphometric subclassification of frontotemporal lobar degeneration. Am J Neuroradiol 30(6):1233–1239Google Scholar
  95. Lyoo IK, Han MH, Cho DY (1998) A brain MRI study in subjects with borderline personality disorder. J Affect Disord 50(2–3):235–243PubMedGoogle Scholar
  96. Mackey S, Petrides M (2009) Architectonic mapping of the medial region of the human orbitofrontal cortex by density profiles. Neurosci 159:1089–1107Google Scholar
  97. MacLullich AMJ, Ferguson KJ, Wardlaw JM, Starr JM, Deary IJ, Seckl JR (2006) Smaller left anterior cingulate cortex volumes are associated with impaired hypothalamic–pituitary–adrenal axis regulation in healthy elderly men. J Clin Endocrinol Metab 91(4):1591–1594PubMedGoogle Scholar
  98. Mansouri FA, Tanaka K, Buckley MJ (2009) Conflict-induced behavioural adjustment: a clue to the executive functions of the prefrontal cortex. Nat Rev Neurosci 10:141–152PubMedGoogle Scholar
  99. McCormick LM, Ziebell S, Nopoulos P, Cassell M, Andreasen NC, Brumm M (2006) Anterior cingulate cortex: an MRI-based parcellation method. NeuroImage 32(3):1167–1175PubMedGoogle Scholar
  100. McLaughlin NCR, Moore DW, Fulwiler C, Bhadelia R, Gansler DA (2009) Differential contributions of lateral prefrontal cortex regions to visual memory processes. Brain Imaging Behav 3(2):202–211Google Scholar
  101. Medina KL, McQueeny T, Nagel BJ, Hanson KL, Schweinsburg AD, Tapert SF (2008) Prefrontal cortex volumes in adolescents with alcohol use disorders: unique gender effects. Alcoholism Clin Exp Res 32(3):386–394Google Scholar
  102. Middleton FA, Strick PL (2001) Cerebellar projections to the prefrontal cortex of the primate. J Neurosci 21(2):700–712PubMedGoogle Scholar
  103. Moberg PJ, Doty RL, Turetsky BI, Arnold SE, Mahr RN, Gur RC, Bilker W, Gur RE (1997) Olfactory identification deficits in schizophrenia: correlation with duration of illness. Am J Psychiatry 154(7):1016–1018PubMedGoogle Scholar
  104. Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA Statement. PLoS Med 6(6):e1000097. doi: 10.1371/journal.pmed1000097
  105. Monkul ES, Hatch JP, Nicoletti MA, Spence S, Brambilla P, Lacerda ALT, Sassi RB, Mallinger AG, Keshevan MS, Soares JC (2007) Fronto-limbic brain structures in suicidal and non-suicidal female patients with major depressive disorder. Mol Psychiatry 12(4):360–366PubMedGoogle Scholar
  106. Nagel B, Medina K, Yoshii J, Schweinsburg AD, Moadab I, Tapert SF (2006) Age-related changes in prefrontal white matter volume across adolescense. NeuroReport 17(13):1427–1431PubMedCentralPubMedGoogle Scholar
  107. Najt P, Nicoletti M, Chen HH, Hatch JP, Caetano SC, Sassi RB, Axelson D, Brmabilla P, Keshevan MS, Ryan ND, Birmaher B, Soares JC (2007). Anatomical measurements of the orbitofrontal cortex in child and adolescent patients with bipolar disorder. Neurosci 413(3):183–186Google Scholar
  108. Nakamura M, Nestor PG, Levitt JJ, Cohen AS, Kawashima T, Shenton ME, McCarley RW (2008) Orbitofrontal volume deficit in schizophrenia and thought disorder. Brain 131(1):180–195PubMedCentralPubMedGoogle Scholar
  109. Nifosì F, Toffanin T, Follador H, Zonta F, Padovan G, Pigato G, Carollo C, Ermani M, Amista P, Perini GI (2010) Reduced right posterior hippocampal volume in women with recurrent familial pure depressive disorder. Psychiatry Res 184(1):23–28PubMedGoogle Scholar
  110. Nishitani N, Schurman M, Amunts K, Hari R (2005) Broca’s region: from action to language. Physiol 20:60–69Google Scholar
  111. Noga JT, Aylward E, Barta PE, Pearlson GD (1995) Cingulate gyrus in schizophrenic patients and normal volunteers. Psychiatry Res 61(4):201–208PubMedGoogle Scholar
  112. Ongür D, Ferry AT, Price JL (2003) Architectonic subdivision of the human orbital and medial prefrontal cortex. J Comp Neurol 460(3):425–449PubMedGoogle Scholar
  113. Ono M, Kubik S, Abernathey CC (1990) Atlas of the cerebral sulci. Thieme Verlag, StuggartGoogle Scholar
  114. Palomero-Gallagher N, Vogt BA, Schleicher A, Mayberg HS, Zilles K (2009) Receptor architecture of human cingulate cortex: evaluation of the four-region neurobiological model. Hum Brain Mapp 30(8):2336–2355PubMedGoogle Scholar
  115. Pantazis D, Joshi A, Jiang J, Shattuck D, Bernstein LE, Damasio H, Leahy RM (2010) Comparison of landmark-based and automatic methods for cortical surface registration. Neuroimage 49(3):2479–2493PubMedCentralPubMedGoogle Scholar
  116. Pantel J, Schroder J, Essig M, Popp D, Dech H, Knopp MV, Schad LR, Eysenbach K, Backenstrass M, Friedlinger M (1997) Quantitative magnetic resonance imaging in geriatric depression and primary degenerative dementia. J Affect Disord 42(1):69–83PubMedGoogle Scholar
  117. Paus T, Otaky N, Caramanos Z, MacDonald D, Zijdenbos A, D’Avirro D, Gutmans D, Holmes C, Tomiauolo F, Evans AC (1996) In vivo morphometry of the intrasulcal gray matter in the human cingulate, paracingulate, and superior-rostral sulci: hemispheric asymmetries, gender differences and probability maps. J Comp Neurol 376(4):664–673PubMedGoogle Scholar
  118. Petrides M (2000) The role of the mid-dorsolateral prefrontal cortex in working memory. Exp Brain Res 133(1):44–54PubMedGoogle Scholar
  119. Petrides M, Pandya DN (1994) Comparative architectonic analysis of the human and the macaque frontal cortex. In: Boller F, Grafman J (eds) Handbook of neuropsychology, vol 9th. Elsevier, Amsterdam, pp 17–58Google Scholar
  120. Petrides M, Tomiauolo F, Yeterian EH, Pandya DN (2012) The prefrontal cortex: comparative architectonic organization in the human and the macaque monkey brains. Cortex 48(1):46–57Google Scholar
  121. Prasad KMR, Sahni SD, Rohm BR, Keshavan MS (2005) Dorsolateral prefrontal cortex morphology and short-term outcome in first-episode schizophrenia. Psychiatry Res 140(2):147–155PubMedGoogle Scholar
  122. Rademacher J, Galaburda AM, Kennedy DN, Filipek PA, Caviness VS (1992) Human cerebral cortex: localization, parcellation, and morphometry with magnetic resonance imaging. J Cogn Neurosci 4(4):352–374PubMedGoogle Scholar
  123. Rademacher J, Caviness VS, Steinmetz H, Galaburda AM (1993) Topographical variation of the human primary cortices: implications for neuroimaging, brain mapping, and neurobiology. Cereb Cortex 3(4):313–329PubMedGoogle Scholar
  124. Rajkowska G, Goldman-Rakic PS (1995) Cytoarchitectonic definition of prefrontal areas in the normal human cortex: II. Variability in locations of areas 9 and 46 and relationship to the Talairach Coordinate System. Cereb Cortex 5(4):323–337PubMedGoogle Scholar
  125. Rajkowska G, Miguel-Hidalgo JJ, Dubey P, Stockmeier CA, Krishnan RR (2005) Prominent reduction in pyramidal neuron density in the orbitofrontal cortex of elderly depressed patients. Biol Psychiatry 58:297–306PubMedCentralPubMedGoogle Scholar
  126. Rankin KP, Rosen HJ, Kramer JH, Chaier GF, Weiner MW, Schuff N, Miller BL (2004) Right and left medial orbitofrontal volumes shown an opposite relationship to agreeableness if FTD. Dementia Geriatr Cogn Disord 17(4):328–332Google Scholar
  127. Ranta ME, Crocetti D, Clauss JA, Kraut MA, Mostofsky SH, Kaufmann WE (2009) Manual MRI parcellation of the frontal lobe. Psychiatry Res 172(2):147–154PubMedGoogle Scholar
  128. Ratnanather JT, Botteron KN, Nishino T, Massie AB, Lal RM, Patel SG, Peddi S, Todd RD, Miller MI (2001) Validating cortical surface analysis of medial prefrontal cortex. NeuroImage 14(5):1058–1069PubMedGoogle Scholar
  129. Rauch SL, Shin LM, Segal E, Pitman RK, Carson MA, McMullin K, Whalen PJ, Makris N (2003) Selectively reduced regional cortical volumes in post-traumatic stress disorder. NeuroReport 14(7):913–916PubMedGoogle Scholar
  130. Raz N, Torres IJ, Briggs SD, Spencer WD, Thornton AE, Loken WJ, Gunning FM, McQuain JD, Driesen NR, Acker JD (1995) Selective neuroanatomic abnormalities in Down’s syndrome and their cognitive correlates: evidence from MRI morphometry. Neurology 45:356–366PubMedGoogle Scholar
  131. Reignes MHT, Krings T, Nguyen H–H, Kuker W, Spetzger U, Rhode V, Hutter BO, Thron A, Gilsbach JM (2000) Virtual pointer projection of the central sulcus to the outside of the skull using frameless neuronavigation—accuracy and applications. Acta Neurochir 142:1385–1390Google Scholar
  132. Riffkin J, Yücel M, Maruff P, Wood SJ, Soulsby B, Olver J, Kyrios M, Velakoulis D, Pantelis C (2005) A manual and automated MRI study of anterior cingulate and orbito-frontal cortices, and caudate nucleus in obsessive–compulsive disorder: comparison with healthy controls and patients with schizophrenia. Psychiatry Res 138(2):99–113PubMedGoogle Scholar
  133. Rolls ET, Grabenhorst F (2008) The orbitofrontal cortex and beyond: from affect to decision-making. Prog Neurobiol 86(3):216–244PubMedGoogle Scholar
  134. Rosen HJ, Perry RJ, Murphy J, Kramer JH, Mychack P, Schuff N, Weiner M, Levenson RW, Miller BL (2002) Emotion comprehension in the temporal variant of frontotemporal dementia. Brain 125:2286–2295PubMedGoogle Scholar
  135. Rosso IM, Makris N, Thermenos HW, Hodge SM, Brown A, Kennedy D, Caviness VS, Faraone SV, Tsuang MT, Seiman LJ (2010) Regional prefrontal cortex gray matter volumes in youth at familial risk for schizophrenia from the Harvard Adolescent High Risk Study. Schizophrenia Res 123(1):15–21Google Scholar
  136. Rupp CI, Fleischhacker WW, Kemmler G, Oberbauer H, Scholtz AW, Wanko C, Hinterhuber H (2005) Various bilateral olfactory deficits in male patients with schizophrenia. Schizophr Bull 31(1):155–165PubMedGoogle Scholar
  137. Sabb FW, Bilder RM, Chou M, Bookheimer SY (2007) Working memory effects on semantic processing: priming differences in pars orbitalis. NeuroImage 37(1):311–322PubMedGoogle Scholar
  138. Salat DH, Kaye JA, Janowsky JS (2001) Selective preservation and degeneration within the prefrontal cortex in aging and Alzheimer disease. Arch Neurol 58(9):1403–1408PubMedGoogle Scholar
  139. Sanches M, Caetano S, Nicoletti M, Monkul ES, Chen HH, Hatch JP, Yeh P-H, Mullis RL, Keshevan MS, Rajkowska G, Soares JC (2009) An MRI-based approach for the measurement of the dorsolateral prefrontal cortex in humans. Psychiatry Res 173(2):150–154PubMedCentralPubMedGoogle Scholar
  140. Sanfilipo M, Lafargue T, Rusinek H, Arena L, Loneragan C, Lautin A, Feiner D, Rotrosen J, Wolkin A (2000) Volumetric measure of the frontal and temporal lobe regions in schizophrenia: relationship to negative symptoms. Arch Gen Psychiatry 57(5):471–480PubMedGoogle Scholar
  141. Sarkisov SA, Filimonoff IN, Preobrashenskaya NS (1949) Cytoarchitecture of the human cortex cerebri. Medgiz, MoscowGoogle Scholar
  142. Schenker NM, Desgouttes A-M, Semendeferi K (2005) Neural connectivity and cortical substrates of cognition in hominoids. J Hum Evol 49(5):547–569PubMedGoogle Scholar
  143. Schlaepfer TE, Harris GJ, Tien AY, Peng LW, Lee S, Federman EB, Chase GA, Barta PE, Pearlson GD (1994) Decreased regional cortical gray matter volume in schizophrenia. Am J Psychiatry 151:842–848PubMedGoogle Scholar
  144. Seidman LJ, Yurgelun-Todd D, Kremen WS, Woods BT, Goldstein JM, Faraone SV, Tsuang MT (1994) Relationship of prefrontal and temporal lobe MRI measures to neuropsychological performance in chronic schizophrenia. Biol Psychiatry 35(4):235–246PubMedGoogle Scholar
  145. Seidman LJ, Valera EM, Makris N, Monuteaux MC, Boriel DL, Kelkar K, Kennedy DN, Caviness VS, Bush G, Aleardi M, Faraone SV, Biederman J (2006) Dorsolateral prefrontal and anterior cingulate cortex volumetric abnormalities in adults with attention-deficit/hyperactivity disorder identified by magnetic resonance imaging. Biol Psychiatry 60(10):1071–1080PubMedGoogle Scholar
  146. Semendeferi K, Damasio H, Frank R, Van Hoesen GW (1997) The evolution of the frontal lobes: a volumetric analysis based on three-dimensional reconstructions of magnetic resonance scans of human and ape brains. J Hum Evol 32(4):375–388PubMedGoogle Scholar
  147. Semendeferi K, Armstrong E, Schleicher A, Zilles K, Van Hoesen GW (2001) Prefrontal cortex in humans and apes: a comparative study of area 10. Am J Phys Anthropol 114(3):224–241PubMedGoogle Scholar
  148. Shallice T, Stuss DT, Picton TW, Alexander MP, Gillingham S (2008) Mapping task switching in frontal cortex through neuropsychological group studies. Front Neurosci 2(1):79–85PubMedCentralPubMedGoogle Scholar
  149. Smith GE (1907) A new topographical survey of the human cerebral cortex, being an account of the distribution of the anatomically distinct cortical areas and their relationship to the cerebral sulci. J Anat Physiol 41(4):237–254PubMedCentralPubMedGoogle Scholar
  150. Sowell ER, Trauner DA, Gamst A, Jernigan TL (2002) Development of cortical and subcortical brain structures in childhood and adolescence: a structural MRI study. Develop Med Child Neurol 44(1):4–16PubMedGoogle Scholar
  151. Suga M, Yamasue H, Abe O, Yamasaki S, Yamada H, Inoue H, Takei K, Aoki S, Kasai K (2010) Reduced gray matter volume of Brodmann’s area 45 is associated with severe psychotic symptoms in patients with schizophrenia. Eur Arch Psychiatry Clin Neurosci 260:465–473PubMedGoogle Scholar
  152. Suzuki M, Zhou S-Y, Takahashi T, Hagino H, Kawasaki Y, Niu L, Matsui M, Seto H, Kurachi M (2005) Differential contributions of prefrontal and temporolimbic pathology to mechanisms of psychosis. Brain 128(9):2109–2122PubMedGoogle Scholar
  153. Szeszko PR, Bilder RM, Lencz T, Pollack S, Alvir JM, Ashtari M, Wu H, Lieberman JA (1999a) Investigation of frontal lobe subregions in first-episode schizophrenia. Psychiatry Res 90(1):1–15PubMedGoogle Scholar
  154. Szeszko PR, Robinson D, Alvir JM, Bilder RM, Lencz T, Ashtari M, Wu H, Bogerts B (1999b) Orbital frontal and amygdala volume reductions in obsessive–compulsive disorder. Arch Gen Psychiatry 56(10):913–919PubMedGoogle Scholar
  155. Takahashi T, Kawasaki Y, Kurokawa K, Hagino H, Nohara S, Yamashita I, Nakamura K, Murata M, Matsui M, Suzuki M, Seto H, Kurachi M (2002) Lack of normal structural asymmetry of the anterior cingulate gyrus in female patients with schizophrenia: a volumetric magnetic resonance imaging study. Schizophr Res 55(1–2):69–81PubMedGoogle Scholar
  156. Takahashi T, Suzuki M, Kawasaki Y, Hagino H, Yamashita I, Nohara S, Nakamura K, Seto H, Kurachi M (2003) Perigenual cingulate gyrus volume in patients with schizophrenia: a Magnetic Resonance Imaging Study. Biol Psychiatry 53:593–600PubMedGoogle Scholar
  157. Tisserand DJ, Pruessner JC, Arigita EJS, Boxtel MPJV, Evans AC, Jolles J, Uylings HBM (2002) Regional frontal cortical volumes decrease differentially in aging: an MRI study to compare volumetric approaches and voxel-based morphometry. NeuroImage 17:657–669PubMedGoogle Scholar
  158. Tomaiuolo F, MacDonald JD, Caramanos Z, Posner G, Chiavaras M, Evans AC, Petrides M (1999) Morphology morphometry and probability mapping of the pars opercularis of the inferior frontal gyrus: an in vivo MRI analysis. Eur J Neurosci 11:3033–3046PubMedGoogle Scholar
  159. Torralva T, Kipps CM, Hodges JR, Clark L, Bekinschtein T, Roca M, Calcagno ML, Manes F (2007) The relationship between affective decision-making and theory of mind in the frontal variant of fronto-temporal dementia. Neuropsychologia 45(2):342–349PubMedGoogle Scholar
  160. Tzourio N, Petit L, Mellet E, Orssaud C, Crivello F, Benali K, Salamon G, Mazoyer B (1997) Use of anatomical parcellation to catalog and study structure–function relationships in the human brain. Hum Brain Mapp 5(4):228–232PubMedGoogle Scholar
  161. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage 15(1):273–289PubMedGoogle Scholar
  162. Unterrainer JM, Owen AM (2006) Planning and problem solving: from neuropsychology to functional neuroimaging. J Physiol 99(4–6):308–317Google Scholar
  163. Uylings HBM, Rajkowska G, Sanz-Arigita E, Amunts K, Zilles K (2005) Consequences of large interindividual variability for human brain atlases: converging macroscopical imaging and microscopical neuroanatomy. Anat Embryol 210(5–6):423–431PubMedGoogle Scholar
  164. Uylings HBM, Sanz-Arigita EJ, de Vos K, Pool CW, Evers P, Rajkowska G (2010) 3-D cytoarchitectonic parcellation of human orbitofrontal cortex correlation with postmortem MRI. Psychiatry Res 183(1):1–20PubMedCentralPubMedGoogle Scholar
  165. van Elst LTV, Hesslinger B, Thiel T, Geiger E, Haegele K, Lemieux L, Lieb K, Bohus M, Hennig J, Ebert D (2003) Frontolimbic brain abnormalities in patients with boderline personality disorder: a volumetric magnetic resonance imaging study. Biol Psychiatry 54(2):163–171Google Scholar
  166. Van Petten C, Plante E, Davidson PSR, Kuo TY, Bajuscak L, Glisky EL (2004) Memory and executive function in older adults: relationships with temporal and prefrontal gray matter volumes and white matter hyperintensities. Neuropsycholgia 42:1313–1335Google Scholar
  167. Vogt BA (2008) Architecture, cytology and comparative organization of primate cingulate cortex. In: Vogt B (ed) Cingulate neurobiology and disease. Oxford University Press, OxfordGoogle Scholar
  168. Vogt BA, Nimchinksy EA, Vogt LJ, Hof PR (1995) Human cingulate cortex: surface features, flat maps, and cytoarchitecture. J Comp Neurol 359:490–506PubMedGoogle Scholar
  169. Volle E, Gilbert SJ, Benoit RG, Burgess PW (2010) Specialization of the rostral prefrontal cortex for distinct analogy processes. Cereb Cortex 20(11):2647–2659PubMedGoogle Scholar
  170. von Economo C, Koskinas GN (1925) Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen. Springer, BerlinGoogle Scholar
  171. Walker AE (1940) A cytoarchitectural study of the prefrontal area in the macaque monkey. J Comp Neurol 73(1):59–86Google Scholar
  172. Whiting P, Rutjes AWS, Reitsma JB, Bossuyt PMM, Kleijnen J (2003) The development of QUADAS: a tool for the quality assessment of studies of diagnostic accuracy included in systematic reviews. BMC Med Res Methodol 3:25PubMedCentralPubMedGoogle Scholar
  173. Wible CG, Shenton ME, Hokama H, Kikinis R, Jolesz FA, Metcalf D, Mccarley RW (1995) Prefrontal cortex and schizophrenia. Arch Gen Psychiatry 52:279–288PubMedGoogle Scholar
  174. Wible CG, Shenton ME, Fischer IA, Allard JE, Kikinis R, Jolesz FA, Iosifescu DV, McCarley RW (1997) Parcellation of the human prefrontal cortex using MRI. Psychiatry Res Neuroimaging 76:29–40Google Scholar
  175. Wilde EAA, Hunter JV, Newsome MR, Schiebel RS, Bigler ED, Johnson JL, Fearing MA, Cleavinger HB, Li X, Swank PR, Pedroza C, Roberson GS, Bachevalier J, Levin HS (2005) Frontal and temporal morphometric findings on MRI in children after moderate to severe traumatic brain injury. J Neurotrauma 22(3):333–344PubMedGoogle Scholar
  176. Woodward SH, Kaloupek DG, Streeter CC, Martinez C, Schaer M, Eliez S (2006) Decreased anterior cingulate volume in combat-related PTSD. Biol Psychiatry 59(7):582–587PubMedGoogle Scholar
  177. Yamasaki S, Yamasue H, Abe O, Suga M, Yamada H, Inoue H, Kuwabara H, Kawakubo Y, Yahata N, Aoki S, Kano Y, Kato N, Kasai K (2010) Reduced gray matter volume of pars opercularis is associated with impaired social communication in high-functioning autism spectrum disorders. Biol Psychiatry 68(12):1141–1147PubMedGoogle Scholar
  178. Yamasue H, Iwanami A, Hirayasu Y, Yamada H, Abe O, Kuroki N, Fukuda R, Tsujii K, Aoki S, Ohtomo K, Kato N, Kasai K (2004) Localized volume reduction in prefrontal, temporolimbic, and paralimbic regions in schizophrenia: an MRI parcellation study. Psychiatry Res 131(3):195–207PubMedGoogle Scholar
  179. Yücel M, Stuart GW, Maruff P, Velakoulis D, Crowe SF, Savage G, Pantelis C (2001) Hemispheric and gender-related differences in the gross morphology of the anterior cingulate/paracingulate cortex in normal volunteers: an MRI morphometric study. Cereb Cortex 11(1):17–25PubMedGoogle Scholar
  180. Yücel M, McKinnon MC, Chahal R, Taylor VH, Macdonald K, Joffe R, MacQuenn GM (2008) Anterior cingulate volumes in never-treated patients with major depressive disorder. Neuropsychopharmacology 33:3157–3163PubMedGoogle Scholar
  181. Zald DH (2007) Orbital versus dorsolateral prefrontal cortex: anatomical insights into content versus process differentiation models of the prefrontal cortex. Ann N Y Acad Sci 1121:395–406PubMedGoogle Scholar
  182. Zhou S-Y, Suzuki M, Hagino H, Takahashi T, Kawasaki Y, Matsui M, Seto H, Kurachi M (2005) Volumetric analysis of sulci/gyri defined in vivo frontal lobe regions in schizophrenia: precentral gyrus, cingulate gyrus, and prefrontal region. Psychiatry Res Neuroimaging 139:127–139Google Scholar
  183. Zilles K, Amunts K (2010) Centenary of Brodmann’s map—conception and fate. Nat Rev Neurosci 11(2):139–145PubMedGoogle Scholar
  184. Zuffante P, Leonard CM, Kuldau JM, Bauer RM, Doty EG, Bilder RM (2001) Working memory deficits in schizophrenia are not necessarily specific of associated with MRI-based estimates of area 46 volumes. Psychiatry Res Neuroimaging 108:187–209Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Simon R. Cox
    • 1
    • 2
    • 3
  • Karen J. Ferguson
    • 2
    • 4
  • Natalie A. Royle
    • 1
    • 2
    • 5
  • Susan D. Shenkin
    • 2
    • 4
  • Sarah E. MacPherson
    • 2
    • 3
  • Alasdair M. J. MacLullich
    • 2
    • 4
    • 6
  • Ian J. Deary
    • 2
    • 3
  • Joanna M. Wardlaw
    • 1
    • 2
    • 5
  1. 1.Brain Research Imaging CentreUniversity of EdinburghEdinburghUK
  2. 2.Centre for Cognitive Ageing and Cognitive EpidemiologyUniversity of EdinburghEdinburghUK
  3. 3.Department of PsychologyUniversity of EdinburghEdinburghUK
  4. 4.Geriatric MedicineUniversity of EdinburghEdinburghUK
  5. 5.Scottish Imaging Network, a Platform for Scientific Excellence (SINAPSE) CollaborationEdinburghUK
  6. 6.Endocrinology UnitUniversity of EdinburghEdinburghUK

Personalised recommendations