Advertisement

Brain Structure and Function

, Volume 219, Issue 2, pp 485–494 | Cite as

Architecture of fluid intelligence and working memory revealed by lesion mapping

  • Aron K. Barbey
  • Roberto Colom
  • Erick J. Paul
  • Jordan Grafman
Original Article

Abstract

Although cognitive neuroscience has made valuable progress in understanding the role of the prefrontal cortex in human intelligence, the functional networks that support adaptive behavior and novel problem solving remain to be well characterized. Here, we studied 158 human brain lesion patients to investigate the cognitive and neural foundations of key competencies for fluid intelligence and working memory. We administered a battery of neuropsychological tests, including the Wechsler Adult Intelligence Scale (WAIS) and the N-Back task. Latent variable modeling was applied to obtain error-free scores of fluid intelligence and working memory, followed by voxel-based lesion-symptom mapping to elucidate their neural substrates. The observed latent variable modeling and lesion results support an integrative framework for understanding the architecture of fluid intelligence and working memory and make specific recommendations for the interpretation and application of the WAIS and N-Back task to the study of fluid intelligence in health and disease.

Keywords

Fluid intelligence Working memory Prefrontal cortex Voxel-based lesion-symptom mapping 

Notes

Acknowledgments

We are grateful to S. Bonifant, B. Cheon, C. Ngo, A. Greathouse, V. Raymont, K. Reding, and G. Tasick for their invaluable help with the testing of participants and organization of this study. This work was supported by funding from the US National Institute of Neurological Disorders and Stroke intramural research program and a project grant from the United States Army Medical Research and Material Command administered by the Henry M. Jackson Foundation (Vietnam Head Injury Study Phase III: a 30-year post-injury follow-up study, grant number DAMD17-01-1-0675). R. Colom was supported by grant PSI2010-20364 from Ministerio de Ciencia e Innovación [Ministry of Science and Innovation, Spain].

Supplementary material

429_2013_512_MOESM1_ESM.docx (104 kb)
Supplementary material 1 (DOCX 104 kb)

References

  1. Ackerman PL, Beier ME, Boyle MO (2002) Individual differences in working memory within a nomological network of cognitive and perceptual speed abilities. J Exp Psychol Gen 131:567–589PubMedCrossRefGoogle Scholar
  2. Baldo JV, Dronkers NF (2006) The role of inferior parietal and inferior frontal cortex in working memory. Neuropsychology 20:529–538PubMedCrossRefGoogle Scholar
  3. Barbey AK, Krueger F, Grafman J (2009) An evolutionarily adaptive neural architecture for social reasoning. Trends Neurosci 32:603–610PubMedCentralPubMedCrossRefGoogle Scholar
  4. Barbey AK, Koenigs M, Grafman J (2011) Orbitofrontal contributions to human working memory. Cereb Cortex 21:789–795PubMedCrossRefGoogle Scholar
  5. Barbey AK, Colom R, Solomon J, Krueger F, Forbes C, Grafman J (2012a) An integrative architecture for general intelligence and executive function revealed by lesion mapping. Brain 135:1154–1164PubMedCrossRefGoogle Scholar
  6. Barbey AK, Koenigs M, Grafman J (2012b) Dorsolateral prefrontal contributions to human working memory. Cortex (epub ahead of print)Google Scholar
  7. Barbey AK, Colom R, Grafman J (2012c) Distributed neural system for emotional intelligence revealed by lesion mapping. Soc Cogn Affect Neurosci (epub ahead of print)Google Scholar
  8. Basso A, De Renzi E, Faglioni P, Scotti G, Spinnler H (1973) Neuropsychological evidence for the existence of cerebral areas critical to the performance of intelligence tasks. Brain 96:715–728PubMedCrossRefGoogle Scholar
  9. Bates E, Wilson SM, Saygin AP, Dick F, Sereno MI, Knight RT, Dronkers NF (2003) Voxel-based lesion-symptom mapping. Nat Neurosci 6:448–450PubMedGoogle Scholar
  10. Bechara A, Damasio AR, Damasio H, Anderson SW (1994) Insensitivity to future consequences following damage to human prefrontal cortex. Cognition 50:7–15PubMedCrossRefGoogle Scholar
  11. Bennett CM, Miller MB (2010) How reliable are the results from functional magnetic resonance imaging? Ann N Y Acad Sci 1191:133–155PubMedCrossRefGoogle Scholar
  12. Black FW (1976) Cognitive deficits in patients with unilateral war-related frontal lobe lesions. J Clin Psychol 32:366–372PubMedCrossRefGoogle Scholar
  13. Blair RJ, Cipolotti L (2000) Impaired social response reversal. A case of ‘acquired sociopathy’. Brain 123(Pt 6):1122–1141PubMedCrossRefGoogle Scholar
  14. Botvinick MM, Braver TS, Barch DM, Carter CS, Cohen JD (2001) Conflict monitoring and cognitive control. Psychol Rev 108:624–652PubMedCrossRefGoogle Scholar
  15. Bugg JM, Zook NA, Delosh EL, Davalos DB, Davis HP (2006) Age differences in fluid intelligence: contributions of general slowing and frontal decline. Brain Cogn 62:9–16PubMedCrossRefGoogle Scholar
  16. Burgess PW, Shallice T (1996) Response suppression, initiation and strategy use following frontal lobe lesions. Neuropsychologia 34:263–272PubMedCrossRefGoogle Scholar
  17. Carroll JB (1993) Human cognitive abilities: a survey of factor-analytic studies. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  18. Cattell RB (1971) Abilities: their structure, growth, and action. Houghton Mifflin, BostonGoogle Scholar
  19. Cohen JD, Perlstein WM, Braver TS, Nystrom LE, Noll DC, Jonides J, Smith EE (1997) Temporal dynamics of brain activation during a working memory task. Nature 386:604–608PubMedCrossRefGoogle Scholar
  20. Colom R, Rebollo I, Palacios A, Juan-Espinosa M, Kyllonen PC (2004) Working memory is (almost) perfectly predicted by g. Intelligence 32:277–296CrossRefGoogle Scholar
  21. Colom R, Abad FJ, Rebollo I, Shih PC (2005) Memory span and general intelligence: a latent-variable approach. Intelligence 33:623–642CrossRefGoogle Scholar
  22. Colom R, Jung RE, Haier RJ (2007) General intelligence and memory span: evidence for a common neuroanatomic framework. Cogn Neuropsychol 24:867–878PubMedCrossRefGoogle Scholar
  23. Colom R, Haier RJ, Head K, Alvarez-Linera J, Quiroga MA, Shih PC, Jung RE (2009) Gray matter correlates of fluid, crystallized, and spatial intelligence: testing the P-FIT model. Intelligence 37:124–135CrossRefGoogle Scholar
  24. Crone EA, Wendelken C, Donohue SE, Bunge SA (2006) Neural evidence for dissociable components of task-switching. Cereb Cortex 16:475–486PubMedCrossRefGoogle Scholar
  25. D’esposito M, Postle BR (1999) The dependence of span and delayed-response performance on prefrontal cortex. Neuropsychologia 37:1303–1315PubMedCrossRefGoogle Scholar
  26. D’esposito M, Cooney JW, Gazzaley A, Gibbs SE, Postle BR (2006) Is the prefrontal cortex necessary for delay task performance? Evidence from lesion and FMRI data. J Int Neuropsychol Soc 12:248–260PubMedGoogle Scholar
  27. Dosenbach NU, Visscher KM, Palmer ED, Miezin FM, Wenger KK, Kang HC, Burgund ED, Grimes AL, Schlaggar BL, Petersen SE (2006) A core system for the implementation of task sets. Neuron 50:799–812PubMedCentralPubMedCrossRefGoogle Scholar
  28. Duncan J (2001) An adaptive coding model of neural function in prefrontal cortex. Nat Rev Neurosci 2:820–829PubMedCrossRefGoogle Scholar
  29. Duncan J (2010) The multiple-demand (MD) system of the primate brain: mental programs for intelligent behaviour. Trends Cogn Sci 14:172–179PubMedCrossRefGoogle Scholar
  30. Duncan J, Burgess P, Emslie H (1995) Fluid intelligence after frontal lobe lesions. Neuropsychologia 33:261–268PubMedCrossRefGoogle Scholar
  31. Duncan J, Emslie H, Williams P, Johnson R, Freer C (1996) Intelligence and the frontal lobe: the organization of goal-directed behavior. Cogn Psychol 30:257–303PubMedCrossRefGoogle Scholar
  32. Eslinger PJ, Damasio AR (1985) Severe disturbance of higher cognition after bilateral frontal lobe ablation: patient EVR. Neurology 35:1731–1741PubMedCrossRefGoogle Scholar
  33. Glascher J, Tranel D, Paul LK, Rudrauf D, Rorden C, Hornaday A, Grabowski T, Damasio H, Adolphs R (2009) Lesion mapping of cognitive abilities linked to intelligence. Neuron 61:681–691PubMedCentralPubMedCrossRefGoogle Scholar
  34. Glascher J, Rudrauf D, Colom R, Paul LK, Tranel D, Damasio H, Adolphs R (2010) Distributed neural system for general intelligence revealed by lesion mapping. Proc Natl Acad Sci USA 107:4705–4709PubMedCrossRefGoogle Scholar
  35. Gray JR, Chabris CF, Braver TS (2003) Neural mechanisms of general fluid intelligence. Nat Neurosci 6:316–322PubMedCrossRefGoogle Scholar
  36. Haier RJ, Colom R, Schroeder DH, Condon CA, Tang C, Eaves E, Head K (2009) Gray matter and intelligence factors: is there a neurology? Intelligence 37:136–144CrossRefGoogle Scholar
  37. Isingrini M, Vazou F (1997) Relation between fluid intelligence and frontal lobe functioning in older adults. Int J Aging Hum Dev 45:99–109PubMedCrossRefGoogle Scholar
  38. Jaeggi SM, Buschkuehl M, Jonides J, Perrig WJ (2008) Improving fluid intelligence with training on working memory. Proc Natl Acad Sci USA 105:6829–6833PubMedCrossRefGoogle Scholar
  39. Jaeggi SM, Studer-Luethi B, Buschkuehl M, Su YF, Jonides J, Perrig WJ (2010) The relationship between n-back performance and matrix reasoning—implications for training and transfer. Intelligence 38:625–635CrossRefGoogle Scholar
  40. Jaeggi SM, Buschkuehl M, Jonides J, Shah P (2011) Short- and long-term benefits of cognitive training. Proc Natl Acad Sci USA 108:10081–10086PubMedCrossRefGoogle Scholar
  41. Jensen AR (1998) The g factor: the science of mental ability. Praeger, Westport, ConnGoogle Scholar
  42. Johnson W, Bouchard TJ (2005) The structure of human intelligence: it is verbal, perceptual, and image rotation (VPR), not fluid and crystallized. Intelligence 33:393–416CrossRefGoogle Scholar
  43. Jung RE, Haier RJ (2007) The Parieto-Frontal Integration Theory (P-FIT) of intelligence: converging neuroimaging evidence. Behav Brain Sci 30:135–154 (discussion 154–187)PubMedCrossRefGoogle Scholar
  44. Kane MJ, Engle RW (2002) The role of prefrontal cortex in working-memory capacity, executive attention, and general fluid intelligence: an individual-differences perspective. Psychon Bull Rev 9:637–671PubMedCrossRefGoogle Scholar
  45. Karama S, Colom R, Johnson W, Deary IJ, Haier R, Waber DP, Lepage C, Ganjavi H, Jung R, Evans AC (2011) Cortical thickness correlates of specific cognitive performance accounted for by the general factor of intelligence in healthy children aged 6 to 18. Neuroimage 55:1443–1453PubMedCentralPubMedCrossRefGoogle Scholar
  46. Koechlin E, Basso G, Pietrini P, Panzer S, Grafman J (1999) The role of the anterior prefrontal cortex in human cognition. Nature 399:148–151PubMedCrossRefGoogle Scholar
  47. Koenigs M, Barbey AK, Postle BR, Grafman J (2009) Superior parietal cortex is critical for the manipulation of information in working memory. J Neurosci 29:14980–14986PubMedCentralPubMedCrossRefGoogle Scholar
  48. Kroger JK, Sabb FW, Fales CL, Bookheimer SY, Cohen MS, Holyoak KJ (2002) Recruitment of anterior dorsolateral prefrontal cortex in human reasoning: a parametric study of relational complexity. Cereb Cortex 12:477–485PubMedCrossRefGoogle Scholar
  49. Kyllonen PC, Christal RE (1990) Reasoning ability is (little more than) working-memory capacity. Intelligence 14:389–433CrossRefGoogle Scholar
  50. Makale M, Solomon J, Patronas NJ, Danek A, Butman JA, Grafman J (2002) Quantification of brain lesions using interactive automated software. Behav Res Methods Instr Comput 34:6–18CrossRefGoogle Scholar
  51. Martinez K, Burgaleta M, Roman FJ, Escorial S, Shih PC, Quiroga MA, Colom R (2011) Can fluid intelligence be reduced to ‘simple’ short-term storage? Intelligence 39:473–480CrossRefGoogle Scholar
  52. Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex function. Annu Rev Neurosci 24:167–202PubMedCrossRefGoogle Scholar
  53. Muller NG, Machado L, Knight RT (2002) Contributions of subregions of the prefrontal cortex to working memory: evidence from brain lesions in humans. J Cogn Neurosci 14:673–686PubMedCrossRefGoogle Scholar
  54. Nyberg L, Marklund P, Persson J, Cabeza R, Forkstam C, Petersson KM, Ingvar M (2003) Common prefrontal activations during working memory, episodic memory, and semantic memory. Neuropsychologia 41:371–377PubMedCrossRefGoogle Scholar
  55. Parkin AJ, Java RI (1999) Deterioration of frontal lobe function in normal aging: influences of fluid intelligence versus perceptual speed. Neuropsychology 13:539–545PubMedCrossRefGoogle Scholar
  56. Ramnani N, Owen AM (2004) Anterior prefrontal cortex: insights into function from anatomy and neuroimaging. Nat Rev Neurosci 5:184–194PubMedCrossRefGoogle Scholar
  57. Raymont V, Salazar AM, Lipsky R, Goldman D, Tasick G, Grafman J (2010) Correlates of posttraumatic epilepsy 35 years following combat brain injury. Neurology 75:224–229PubMedCrossRefGoogle Scholar
  58. Roca M, Parr A, Thompson R, Woolgar A, Torralva T, Antoun N, Manes F, Duncan J (2010) Executive function and fluid intelligence after frontal lobe lesions. Brain 133:234–247PubMedCrossRefGoogle Scholar
  59. Rombouts SA, Barkhof F, Hoogenraad FG, Sprenger M, Valk J, Scheltens P (1997) Test-retest analysis with functional MR of the activated area in the human visual cortex. AJNR Am J Neuroradiol 18:1317–1322PubMedGoogle Scholar
  60. Semendeferi K, Armstrong E, Schleicher A, Zilles K, Van Hoesen GW (2001) Prefrontal cortex in humans and apes: a comparative study of area 10. Am J Phys Anthropol 114:224–241PubMedCrossRefGoogle Scholar
  61. Shallice T, Burgess PW (1991) Deficits in strategy application following frontal lobe damage in man. Brain 114(Pt 2):727–741PubMedCrossRefGoogle Scholar
  62. Solomon J, Raymont V, Braun A, Butman JA, Grafman J (2007) User-friendly software for the analysis of brain lesions (ABLe). Comput Methods Progr Biomed 86:245–254CrossRefGoogle Scholar
  63. Spearman C (1904) “General intelligence” objectively determined and measured. Am J Psychol 15:201–292CrossRefGoogle Scholar
  64. Spearman C (1928) The abilities of man. Science 68:38PubMedCrossRefGoogle Scholar
  65. Suss HM, Oberauer K, Wittmann WW, Wilhelm O, Schulze R (2002) Working-memory capacity explains reasoning ability—and a little bit more. Intelligence 30:261–288CrossRefGoogle Scholar
  66. Tsuchida A, Fellows LK (2009) Lesion evidence that two distinct regions within prefrontal cortex are critical for n-back performance in humans. J Cogn Neurosci 21:2263–2275PubMedCrossRefGoogle Scholar
  67. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15:273–289PubMedCrossRefGoogle Scholar
  68. Van Essen DC, Dierker DL (2007) Surface-based and probabilistic atlases of primate cerebral cortex. Neuron 56:209–225PubMedCrossRefGoogle Scholar
  69. Volle E, Kinkingnehun S, Pochon JB, Mondon K, Thiebaut De Schotten M, Seassau M, Duffau H, Samson Y, Dubois B, Levy R (2008) The functional architecture of the left posterior and lateral prefrontal cortex in humans. Cerebral Cortex 18:2460–2469PubMedCrossRefGoogle Scholar
  70. Wechsler D (1997) Wechsler adult intelligence test administration and scoring manual. The Psychology Corporation, San AntonioGoogle Scholar
  71. Woods RP, Mazziotta JC, Cherry SR (1993) MRI-PET registration with automated algorithm. J Comput Assist Tomogr 17:536–546PubMedCrossRefGoogle Scholar
  72. Woolgar A, Parr A, Cusack R, Thompson R, Nimmo-Smith I, Torralva T, Roca M, Antoun N, Manes F, Duncan J (2010) Fluid intelligence loss linked to restricted regions of damage within frontal and parietal cortex. Proc Natl Acad Sci USA 107:14899–14902PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Aron K. Barbey
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
  • Roberto Colom
    • 7
  • Erick J. Paul
    • 1
    • 2
  • Jordan Grafman
    • 8
  1. 1.Decision Neuroscience Laboratory, University of IllinoisChampaignUSA
  2. 2.Beckman Institute for Advanced Science and TechnologyUniversity of IllinoisUrbanaUSA
  3. 3.Department of Internal MedicineUniversity of IllinoisChampaignUSA
  4. 4.Department of PsychologyUniversity of IllinoisChampaignUSA
  5. 5.Department of Speech and Hearing ScienceUniversity of IllinoisChampaignUSA
  6. 6.Neuroscience ProgramUniversity of IllinoisChampaignUSA
  7. 7.Universidad Autónoma de Madrid, Fundación CIEN/Fundación Reina SofíaMadridSpain
  8. 8.Traumatic Brain Injury Research Laboratory, Rehabilitation Institute of ChicagoChicagoUSA

Personalised recommendations