Brain Structure and Function

, Volume 219, Issue 1, pp 415–430 | Cite as

Comparative dynamics of MAPK/ERK signalling components and immediate early genes in the hippocampus and amygdala following contextual fear conditioning and retrieval

  • Besnard Antoine
  • Laroche Serge
  • Caboche JocelyneEmail author
Original Article


Over the past few years multiple studies have attempted to uncover molecular signatures of memory reconsolidation when compared to consolidation. In the present study we used immunocytochemical detection of the MAPK/ERK1/2 pathway, to track activated neuronal circuits in the hippocampus and amygdala recruited during the consolidation and reconsolidation of a contextual fear conditioning (CFC) memory. We report selective differences in magnitude and temporal dynamics of activated ERK1/2 signalling in different subregions of these two structures between the post-training and post-retrieval periods, except in the dentate gyrus, where the patterns of activation were similar. We then focused on this brain area to dissect out the patterns of downstream ERK1/2 signalling components, including the phosphorylation of MSK-1 and histone H3 on ser10, along with the induction of the Immediate Early Genes (IEGs) Arc/Arg3.1, c-Fos and Zif268/Egr1 following CFC training and retrieval. We found that the completion of the nucleosomal response as well as the induction of IEGs shorter during the reconsolidation period as compared to consolidation. Our results shed new light on the cellular mechanisms underlying the consolidation and reconsolidation processes engaged following CFC training and retrieval and further extend the notion that memory reconsolidation is not mechanistically a repetition of consolidation. In addition, we provide evidence that the strength of a previously established CFC memory is characterized by distinct patterns of ERK1/2 activation in different hippocampal and amygdalar subfields upon CFC memory recall. Our results emphasize the differences between consolidation and reconsolidation processes in relation to contextual fear memories.


Comparative distribution Memory consolidation and reconsolidation Phospho-ERK Phospho-H3 c-Fos Zif268 Arc/Arg3.1 Kinetics 



Basolateral amygdala


Central amygdala


Contextual fear conditioning




cAMP response element


Dentate gyrus


Extracellular-signal Regulated Kinase


Histone H3


Immediate early gene


Lateral amygdala


Mitogen-activated protein Kinase


MAPK ERK kinase


Mitogen and Stressed-activated protein Kinase



This work has been supported by the “Centre National de la Recherche Scientifique” (CNRS), l’ “Agence Nationale pour la Recherche” (ANR-08-BLAN) and the “Fondation Jerôme Lejeune”. A.B. has been supported by the Edmond Rothschild Chemical Dependency Institute Beth Israël Medical center and Fondation pour la Recherche Médicale.

Conflict of interest

All authors report no conflict of interest.


  1. Anokhin KV, Tiunova AA, Rose SP (2002) Reminder effects—reconsolidation or retrieval deficit? Pharmacological dissection with protein synthesis inhibitors following reminder for a passive-avoidance task in young chicks. Eur J Neurosci 15(11):1759–1765PubMedCrossRefGoogle Scholar
  2. Athos J, Impey S, Pineda VV, Chen X, Storm DR (2002) Hippocampal CRE-mediated gene expression is required for contextual memory formation. Nat Neurosci 5(11):1119–1120PubMedCrossRefGoogle Scholar
  3. Atkins CM, Selcher JC, Petraitis JJ, Trzaskos JM, Sweatt JD (1998) The MAPK cascade is required for mammalian associative learning. Nat Neurosci 1(7):602–609PubMedCrossRefGoogle Scholar
  4. Bergstrom HC, McDonald CG, Johnson LR (2011) Pavlovian fear conditioning activates a common pattern of neurons in the lateral amygdala of individual brains. PLoS ONE 6(1):e15698PubMedCentralPubMedCrossRefGoogle Scholar
  5. Besnard A (2012) A model of hippocampal competition between new learning and memory updating. J Neurosci 32(10):3281–3283PubMedCrossRefGoogle Scholar
  6. Besnard A, Caboche J, Laroche S (2012) Reconsolidation of memory: a decade of debate. Prog Neurobiol 99(1):61–80PubMedCrossRefGoogle Scholar
  7. Bode AM, Dong Z (2005) Inducible covalent posttranslational modification of histone H3. Sci STKE 2005(281):re4PubMedGoogle Scholar
  8. Brami-Cherrier K, Roze E, Girault JA, Betuing S, Caboche J (2009) Role of the ERK/MSK1 signalling pathway in chromatin remodelling and brain responses to drugs of abuse. J Neurochem 108(6):1323–1335PubMedCrossRefGoogle Scholar
  9. Bustos SG, Maldonado H, Molina VA (2006) Midazolam disrupts fear memory reconsolidation. Neuroscience 139(3):831–842PubMedCrossRefGoogle Scholar
  10. Changelian PS, Feng P, King TC, Milbrandt J (1989) Structure of the NGFI-A gene and detection of upstream sequences responsible for its transcriptional induction by nerve growth factor. Proc Natl Acad Sci USA 86(1):377–381PubMedCrossRefGoogle Scholar
  11. Chen X, Garelick MG, Wang H, Lil V, Athos J, Storm DR (2005) PI3 kinase signaling is required for retrieval and extinction of contextual memory. Nat Neurosci 8(7):925–931PubMedCrossRefGoogle Scholar
  12. Cheval H, Chagneau C, Levasseur G, Veyrac A, Faucon-Biguet N, Laroche S, Davis S (2011) Distinctive features of Egr transcription factor regulation and DNA binding activity in CA1 of the hippocampus in synaptic plasticity and consolidation and reconsolidation of fear memory. Hippocampus. doi: 10.1002/hipo.20926 PubMedGoogle Scholar
  13. Chwang WB, O’Riordan KJ, Levenson JM, Sweatt JD (2006) ERK/MAPK regulates hippocampal histone phosphorylation following contextual fear conditioning. Learn Mem 13(3):322–328PubMedCrossRefGoogle Scholar
  14. Chwang WB, Arthur JS, Schumacher A, Sweatt JD (2007) The nuclear kinase mitogen- and stress-activated protein kinase 1 regulates hippocampal chromatin remodeling in memory formation. J Neurosci 27(46):12732–12742PubMedCrossRefGoogle Scholar
  15. Day JJ, Sweatt JD (2011) Epigenetic mechanisms in cognition. Neuron 70(5):813–829PubMedCentralPubMedCrossRefGoogle Scholar
  16. Debiec J, Ledoux JE (2004) Disruption of reconsolidation but not consolidation of auditory fear conditioning by noradrenergic blockade in the amygdala. Neuroscience 129(2):267–272PubMedCrossRefGoogle Scholar
  17. Di Benedetto B, Kallnik M, Weisenhorn DM, Falls WA, Wurst W, Holter SM (2009) Activation of ERK/MAPK in the lateral amygdala of the mouse is required for acquisition of a fear-potentiated startle response. Neuropsychopharmacology 34(2):356–366PubMedCrossRefGoogle Scholar
  18. Doyere V, Debiec J, Monfils MH, Schafe GE, LeDoux JE (2007) Synapse-specific reconsolidation of distinct fear memories in the lateral amygdala. Nat Neurosci 10(4):414–416PubMedGoogle Scholar
  19. Duvarci S, Nader K, LeDoux JE (2005) Activation of extracellular signal-regulated kinase- mitogen-activated protein kinase cascade in the amygdala is required for memory reconsolidation of auditory fear conditioning. Eur J Neurosci 21(1):283–289PubMedCrossRefGoogle Scholar
  20. Fanselow MS (1980) Conditioned and unconditional components of post-shock freezing. Pavlov J Biol Sci 15(4):177–182PubMedGoogle Scholar
  21. Fanselow MS (2000) Contextual fear, gestalt memories, and the hippocampus. Behav Brain Res 110(1–2):73–81PubMedCrossRefGoogle Scholar
  22. Fanselow MS, LeDoux JE (1999) Why we think plasticity underlying Pavlovian fear conditioning occurs in the basolateral amygdala. Neuron 23(2):229–232PubMedCrossRefGoogle Scholar
  23. Franklin K, Paxinos G (2007) The mouse brain in stereotaxic coordinates, 3rd edn. Academic Press, San DiegoGoogle Scholar
  24. Fendt M, Fanselow MS (1999) The neuroanatomical and neurochemical basis of conditioned fear. Neurosci Biobehav Rev 23(5):743–760PubMedCrossRefGoogle Scholar
  25. Gordon WC (1977) Susceptibility of a reactivated memory to the effects of strychnine: a time-dependent phenomenon. Physiol Behav 18(1):95–99PubMedCrossRefGoogle Scholar
  26. Gordon WC, Spear NE (1973) The effects of strychnine on recently acquired and reactivated passive avoidance memories. Physiol Behav 10(6):1071–1075PubMedCrossRefGoogle Scholar
  27. Guzowski JF, Timlin JA, Roysam B, McNaughton BL, Worley PF, Barnes CA (2005) Mapping behaviorally relevant neural circuits with immediate-early gene expression. Curr Opin Neurobiol 15(5):599–606PubMedCrossRefGoogle Scholar
  28. Hall J, Thomas KL, Everitt BJ (2001) Fear memory retrieval induces CREB phosphorylation and Fos expression within the amygdala. Eur J Neurosci 13(7):1453–1458PubMedCrossRefGoogle Scholar
  29. Herrera RE, Nordheim A, Stewart AF (1997) Chromatin structure analysis of the human c-fos promoter reveals a centrally positioned nucleosome. Chromosoma 106(5):284–292PubMedCrossRefGoogle Scholar
  30. Kawashima T, Okuno H, Nonaka M, Adachi-Morishima A, Kyo N, Okamura M, Takemoto-Kimura S, Worley PF, Bito H (2009) Synaptic activity-responsive element in the Arc/Arg3.1 promoter essential for synapse-to-nucleus signaling in activated neurons. Proc Natl Acad Sci USA 106(1):316–321PubMedCrossRefGoogle Scholar
  31. Kelleher RJ 3rd, Govindarajan A, Jung HY, Kang H, Tonegawa S (2004) Translational control by MAPK signaling in long-term synaptic plasticity and memory. Cell 116(3):467–479PubMedCrossRefGoogle Scholar
  32. Kim JJ, Fanselow MS (1992) Modality-specific retrograde amnesia of fear. Science 256(5057):675–677PubMedCrossRefGoogle Scholar
  33. Kubik S, Miyashita T, Guzowski JF (2007) Using immediate-early genes to map hippocampal subregional functions. Learn Mem 14(11):758–770PubMedCrossRefGoogle Scholar
  34. Languille S, Davis S, Richer P, Alcacer C, Laroche S, Hars B (2009) Extracellular signal-regulated kinase activation is required for consolidation and reconsolidation of memory at an early stage of ontogenesis. Eur J Neurosci 30(10):1923–1930PubMedCrossRefGoogle Scholar
  35. LeDoux JE (2000) Emotion circuits in the brain. Annu Rev Neurosci 23:155–184PubMedCrossRefGoogle Scholar
  36. Lee JL (2009) Reconsolidation: maintaining memory relevance. Trends Neurosci 32(8):413–420PubMedCentralPubMedCrossRefGoogle Scholar
  37. Lee JL, Everitt BJ, Thomas KL (2004) Independent cellular processes for hippocampal memory consolidation and reconsolidation. Science 304(5672):839–843PubMedCrossRefGoogle Scholar
  38. Leutgeb S, Leutgeb JK, Treves A, Moser MB, Moser EI (2004) Distinct ensemble codes in hippocampal areas CA3 and CA1. Science 305(5688):1295–1298PubMedCrossRefGoogle Scholar
  39. Liu X, Ramirez S, Pang PT, Puryear CB, Govindarajan A, Deisseroth K, Tonegawa S (2012) Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature 484(7394):381–385PubMedCentralPubMedCrossRefGoogle Scholar
  40. Lubin FD, Sweatt JD (2007) The IkappaB kinase regulates chromatin structure during reconsolidation of conditioned fear memories. Neuron 55(6):942–957PubMedCentralPubMedCrossRefGoogle Scholar
  41. Mactutus CF, Riccio DC, Ferek JM (1979) Retrograde amnesia for old (reactivated) memory: some anomalous characteristics. Science 204(4399):1319–1320PubMedCrossRefGoogle Scholar
  42. Mamiya N, Fukushima H, Suzuki A, Matsuyama Z, Homma S, Frankland PW, Kida S (2009) Brain region-specific gene expression activation required for reconsolidation and extinction of contextual fear memory. J Neurosci 29(2):402–413PubMedCrossRefGoogle Scholar
  43. Maren S, Fanselow MS (1996) The amygdala and fear conditioning: has the nut been cracked? Neuron 16(2):237–240PubMedCrossRefGoogle Scholar
  44. Maren S, Quirk GJ (2004) Neuronal signalling of fear memory. Nat Rev Neurosci 5(11):844–852PubMedCrossRefGoogle Scholar
  45. McGaugh JL (2000) Memory–a century of consolidation. Science 287(5451):248–251PubMedCrossRefGoogle Scholar
  46. Nader K, Hardt O (2009) A single standard for memory: the case for reconsolidation. Nat Rev Neurosci 10(3):224–234PubMedCrossRefGoogle Scholar
  47. Nieuwenhuis S, Forstmann BU, Wagenmakers EJ (2011) Erroneous analyses of interactions in neuroscience: a problem of significance. Nat Neurosci 14(9):1105–1107PubMedCrossRefGoogle Scholar
  48. Osan R, Tort AB, Amaral OB (2011) A mismatch-based model for memory reconsolidation and extinction in attractor networks. PLoS ONE 6(8):e23113PubMedCentralPubMedCrossRefGoogle Scholar
  49. Paul S, Olausson P, Venkitaramani DV, Ruchkina I, Moran TD, Tronson N, Mills E, Hakim S, Salter MW, Taylor JR, Lombroso PJ (2007) The striatal-enriched protein tyrosine phosphatase gates long-term potentiation and fear memory in the lateral amygdala. Biol Psychiatry 61(9):1049–1061PubMedCentralPubMedCrossRefGoogle Scholar
  50. Phillips RG, LeDoux JE (1994) Lesions of the dorsal hippocampal formation interfere with background but not foreground contextual fear conditioning. Learn Mem 1(1):34–44PubMedGoogle Scholar
  51. Przybyslawski J, Roullet P, Sara SJ (1999) Attenuation of emotional and nonemotional memories after their reactivation: role of beta adrenergic receptors. J Neurosci 19(15):6623–6628PubMedGoogle Scholar
  52. Radwanska K, Nikolaev E, Knapska E, Kaczmarek L (2002) Differential response of two subdivisions of lateral amygdala to aversive conditioning as revealed by c-Fos and P-ERK mapping. NeuroReport 13(17):2241–2246PubMedCrossRefGoogle Scholar
  53. Ruediger S, Vittori C, Bednarek E, Genoud C, Strata P, Sacchetti B, Caroni P (2011) Learning-related feedforward inhibitory connectivity growth required for memory precision. Nature 473(7348):514–518PubMedCrossRefGoogle Scholar
  54. Sananbenesi F, Fischer A, Schrick C, Spiess J, Radulovic J (2002) Phosphorylation of hippocampal Erk-1/2, Elk-1, and p90-Rsk-1 during contextual fear conditioning: interactions between Erk-1/2 and Elk-1. Mol Cell Neurosci 21(3):463–476PubMedCrossRefGoogle Scholar
  55. Schafe GE, Atkins CM, Swank MW, Bauer EP, Sweatt JD, LeDoux JE (2000) Activation of ERK/MAP kinase in the amygdala is required for memory consolidation of pavlovian fear conditioning. J Neurosci 20(21):8177–8187PubMedGoogle Scholar
  56. Sekeres MJ, Mercaldo V, Richards B, Sargin D, Mahadevan V, Woodin MA, Frankland PW, Josselyn SA (2012) Increasing CRTC1 function in the dentate gyrus during memory formation or reactivation increases memory strength without compromising memory quality. J Neurosci 32(49):17857–17868PubMedCrossRefGoogle Scholar
  57. Selcher JC, Atkins CM, Trzaskos JM, Paylor R, Sweatt JD (1999) A necessity for MAP kinase activation in mammalian spatial learning. Learn Mem 6(5):478–490PubMedCrossRefGoogle Scholar
  58. Sgambato V, Pages C, Rogard M, Besson MJ, Caboche J (1998) Extracellular signal-regulated kinase (ERK) controls immediate early gene induction on corticostriatal stimulation. J Neurosci 18(21):8814–8825PubMedGoogle Scholar
  59. Shalin SC, Zirrgiebel U, Honsa KJ, Julien JP, Miller FD, Kaplan DR, Sweatt JD (2004) Neuronal MEK is important for normal fear conditioning in mice. J Neurosci Res 75(6):760–770PubMedCrossRefGoogle Scholar
  60. Sindreu CB, Scheiner ZS, Storm DR (2007) Ca2+-stimulated adenylyl cyclases regulate ERK-dependent activation of MSK1 during fear conditioning. Neuron 53(1):79–89PubMedCentralPubMedCrossRefGoogle Scholar
  61. Thomas GM, Huganir RL (2004) MAPK cascade signalling and synaptic plasticity. Nat Rev Neurosci 5(3):173–183PubMedCrossRefGoogle Scholar
  62. Trifilieff P, Herry C, Vanhoutte P, Caboche J, Desmedt A, Riedel G, Mons N, Micheau J (2006) Foreground contextual fear memory consolidation requires two independent phases of hippocampal ERK/CREB activation. Learn Mem 13(3):349–358PubMedCrossRefGoogle Scholar
  63. Trifilieff P, Calandreau L, Herry C, Mons N, Micheau J (2007) Biphasic ERK1/2 activation in both the hippocampus and amygdala may reveal a system consolidation of contextual fear memory. Neurobiol Learn Mem 88(4):424–434PubMedCrossRefGoogle Scholar
  64. Tronson NC, Taylor JR (2007) Molecular mechanisms of memory reconsolidation. Nat Rev Neurosci 8(4):262–275PubMedCrossRefGoogle Scholar
  65. Tzingounis AV, Nicoll RA (2006) Arc/Arg3.1: linking gene expression to synaptic plasticity and memory. Neuron 52(3):403–407PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Besnard Antoine
    • 1
    • 2
    • 3
  • Laroche Serge
    • 4
    • 5
  • Caboche Jocelyne
    • 1
    • 2
    • 3
    • 6
    Email author
  1. 1.INSERM, UMRS 952, Physiopathologie des Maladies du Système Nerveux CentralParisFrance
  2. 2.CNRS, UMR7224, Physiopathologie des Maladies du Système Nerveux CentralParisFrance
  3. 3.Université Pierre et Marie Curie-Paris 6ParisFrance
  4. 4.Univ Paris-Sud, Centre de Neurosciences Paris-SudOrsayFrance
  5. 5.CNRSOrsayFrance
  6. 6.Université Pierre et Marie Curie-Paris 6, CNRS-UMR 7224, INSERM-UMRS952ParisFrance

Personalised recommendations