Brain Structure and Function

, Volume 219, Issue 1, pp 353–366 | Cite as

Musical training intensity yields opposite effects on grey matter density in cognitive versus sensorimotor networks

  • Clara E. JamesEmail author
  • Mathias S. Oechslin
  • Dimitri Van De Ville
  • Claude-Alain Hauert
  • Céline Descloux
  • François Lazeyras
Original Article


Using optimized voxel-based morphometry, we performed grey matter density analyses on 59 age-, sex- and intelligence-matched young adults with three distinct, progressive levels of musical training intensity or expertise. Structural brain adaptations in musicians have been repeatedly demonstrated in areas involved in auditory perception and motor skills. However, musical activities are not confined to auditory perception and motor performance, but are entangled with higher-order cognitive processes. In consequence, neuronal systems involved in such higher-order processing may also be shaped by experience-driven plasticity. We modelled expertise as a three-level regressor to study possible linear relationships of expertise with grey matter density. The key finding of this study resides in a functional dissimilarity between areas exhibiting increase versus decrease of grey matter as a function of musical expertise. Grey matter density increased with expertise in areas known for their involvement in higher-order cognitive processing: right fusiform gyrus (visual pattern recognition), right mid orbital gyrus (tonal sensitivity), left inferior frontal gyrus (syntactic processing, executive function, working memory), left intraparietal sulcus (visuo-motor coordination) and bilateral posterior cerebellar Crus II (executive function, working memory) and in auditory processing: left Heschl’s gyrus. Conversely, grey matter density decreased with expertise in bilateral perirolandic and striatal areas that are related to sensorimotor function, possibly reflecting high automation of motor skills. Moreover, a multiple regression analysis evidenced that grey matter density in the right mid orbital area and the inferior frontal gyrus predicted accuracy in detecting fine-grained incongruities in tonal music.


Musical training Voxel-based morphometry Grey matter density Plasticity Cognition Sensorimotor function 



We would like to thank Andres Posada, Alexis Hervais Adelman and Sebastian Rieger for assisting in MR data acquisition and help with fMRI setup, and Julien Chanal and Olivier Renaud for advice on statistical data analysis. Finally we thank Alexis Hervais Adelman once more for assistance on analyses, and precious comments on the manuscript.

Supplementary material

429_2013_504_MOESM1_ESM.pdf (398 kb)
Supplementary material 1 (PDF 397 kb)
429_2013_504_MOESM2_ESM.wav (901 kb)
Supplementary material 2 (WAV 900 kb)
429_2013_504_MOESM3_ESM.wav (900 kb)
Supplementary material 3 (WAV 899 kb)
429_2013_504_MOESM4_ESM.wav (900 kb)
Supplementary material 4 (WAV 899 kb)


  1. Aliu SO, Houde JF, Nagarajan SS (2009) Motor-induced suppression of the auditory cortex. J Cogn Neurosci 21(4):791–802. doi: 10.1162/jocn.2009.21055 PubMedCentralPubMedCrossRefGoogle Scholar
  2. Ashburner J (2007) A fast diffeomorphic image registration algorithm. Neuroimage 38(1):95–113. doi: 10.1016/j.neuroimage.2007.07.007 PubMedCrossRefGoogle Scholar
  3. Ashburner J, Friston KJ (2005) Unified segmentation. Neuroimage 26(3):839–851. doi: 10.1016/j.neuroimage.2005.02.018 PubMedCrossRefGoogle Scholar
  4. Bar-Gad I, Morris G, Bergman H (2003) Information processing, dimensionality reduction and reinforcement learning in the basal ganglia. Prog Neurobiol 71(6):439–473. doi: 10.1016/j.pneurobio.2003.12.001 PubMedCrossRefGoogle Scholar
  5. Behmer LP Jr, Jantzen KJ (2011) Reading sheet music facilitates sensorimotor mu-desynchronization in musicians. Clin Neurophysiol 122(7):1342–1347. doi: 10.1016/j.clinph.2010.12.035 PubMedCrossRefGoogle Scholar
  6. Bermudez P, Zatorre RJ (2005) Differences in gray matter between musicians and nonmusicians. Ann N Y Acad Sci 1060:395–399PubMedCrossRefGoogle Scholar
  7. Bermudez P, Lerch JP, Evans AC, Zatorre RJ (2009) Neuroanatomical correlates of musicianship as revealed by cortical thickness and voxel-based morphometry. Cereb Cortex 19(7):1583–1596. doi: 10.1093/cercor/bhn196 PubMedCrossRefGoogle Scholar
  8. Bialystok E, Depape AM (2009) Musical expertise, bilingualism, and executive functioning. J Exp Psychol Hum Percept Perform 35(2):565–574. doi: 10.1037/a0012735 PubMedCrossRefGoogle Scholar
  9. Blakemore SJ, Frith U (2005) The learning brain: lessons for education: a precis. Dev Sci 8(6):459–465. doi: 10.1111/j.1467-7687.2005.00434.x PubMedCrossRefGoogle Scholar
  10. Chan AS, Ho YC, Cheung MC (1998) Music training improves verbal memory. Nature 396(6707):128. doi: 10.1038/24075 PubMedCrossRefGoogle Scholar
  11. Charness N, Krampe R, Mayr U (1996) The role of practice and coaching in entrepreneurial skill domains: an international comparison of life-span chess skill acquisition. In: Ericsson KA (ed) The road to excellence: the acquisition of expert performance in the arts and sciences, sports, and games. Lawrence Erlbaum Associates, Mahwah, pp 51–80Google Scholar
  12. Dayan E, Cohen LG (2011) Neuroplasticity subserving motor skill learning. Neuron 72(3):443–454. doi: 10.1016/j.neuron.2011.10.008 PubMedCentralPubMedCrossRefGoogle Scholar
  13. Denny BT, Kober H, Wager TD, Ochsner KN (2012) A meta-analysis of functional neuroimaging studies of self- and other judgments reveals a spatial gradient for mentalizing in medial prefrontal cortex. J Cogn Neurosci. doi: 10.1162/jocn_a_00233 PubMedCentralPubMedGoogle Scholar
  14. Devlin JT, Jamison HL, Gonnerman LM, Matthews PM (2006) The role of the posterior fusiform gyrus in reading. J Cogn Neurosci 18(6):911–922. doi: 10.1162/jocn.2006.18.6.911 PubMedCentralPubMedCrossRefGoogle Scholar
  15. Do Lam ATA, Axmacher N, Fell J, Staresina BP, Gauggel S, Wagner T, Olligs J, Weis S (2012) Monitoring the mind: the neurocognitive correlates of metamemory. PLoS One 7(1):e30009. doi: 10.1371/journal.pone.0030009 PubMedCentralPubMedCrossRefGoogle Scholar
  16. Draganski B, Gaser C, Busch V, Schuierer G, Bogdahn U, May A (2004) Neuroplasticity: changes in grey matter induced by training. Nature 427(6972):311–312. doi: 10.1038/427311a PubMedCrossRefGoogle Scholar
  17. Duan X, He S, Liao W, Liang D, Qiu L, Wei L, Li Y, Liu C, Gong Q, Chen H (2012) Reduced caudate volume and enhanced striatal-DMN integration in chess experts. NeuroImage 60(2):1280–1286. doi: 10.1016/j.neuroimage.2012.01.047 PubMedCrossRefGoogle Scholar
  18. Duvernoy HM (1991) The human brain: surface, three-dimensional sectional anatomy, and MRI. Springer, New YorkGoogle Scholar
  19. Eickhoff SB, Paus T, Caspers S, Grosbras MH, Evans AC, Zilles K, Amunts K (2007) Assignment of functional activations to probabilistic cytoarchitectonic areas revisited. Neuroimage 36(3):511–521. doi: 10.1016/j.neuroimage.2007.03.060 PubMedCrossRefGoogle Scholar
  20. Ericsson KA, Krampe RT, Tesch-Römer C (1993) The role of deliberate practice in the acquisition of expert performance. Psychol Rev 100(3):363–406. doi: 10.1037/0033-295x.100.3.363 CrossRefGoogle Scholar
  21. Friederici AD (2002) Towards a neural basis of auditory sentence processing. Trends Cogn Sci 6(2):78–84PubMedCrossRefGoogle Scholar
  22. Garavan H, Kelley D, Rosen A, Rao SM, Stein EA (2000) Practice-related functional activation changes in a working memory task. Microsc Res Tech 51(1):54–63. doi: 10.1002/1097-0029(20001001)51:1<54::AID-JEMT6>3.0.CO;2-J PubMedCrossRefGoogle Scholar
  23. Gaser C, Schlaug G (2003) Brain structures differ between musicians and non-musicians. J Neurosci 23(27):9240–9245PubMedGoogle Scholar
  24. George EM, Coch D (2011) Music training and working memory: an ERP study. Neuropsychologia 49(5):1083–1094. doi: 10.1016/j.neuropsychologia.2011.02.001 PubMedCrossRefGoogle Scholar
  25. Good CD, Johnsrude IS, Ashburner J, Henson RN, Friston KJ, Frackowiak RS (2001) A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage 14(1 Pt 1):21–36. doi: 10.1006/nimg.2001.0786 PubMedCrossRefGoogle Scholar
  26. Granert O, Peller M, Jabusch HC, Altenmuller E, Siebner HR (2011) Sensorimotor skills and focal dystonia are linked to putaminal grey-matter volume in pianists. J Neurol Neurosurg Psychiatry 82(11):1225–1231. doi: 10.1136/jnnp.2011.245811 PubMedCrossRefGoogle Scholar
  27. Hall DA, Haggard MP, Akeroyd MA, Palmer AR, Summerfield AQ, Elliott MR, Gurney EM, Bowtell RW (1999) “Sparse” temporal sampling in auditory fMRI. Hum Brain Mapp 7(3):213–223PubMedCrossRefGoogle Scholar
  28. Hanggi J, Koeneke S, Bezzola L, Jancke L (2010) Structural neuroplasticity in the sensorimotor network of professional female ballet dancers. Hum Brain Mapp 31(8):1196–1206. doi: 10.1002/hbm.20928 PubMedGoogle Scholar
  29. Hutchinson S, Lee LH, Gaab N, Schlaug G (2003) Cerebellar volume of musicians. Cereb Cortex 13(9):943–949PubMedCrossRefGoogle Scholar
  30. Hyde KL, Lerch J, Norton A, Forgeard M, Winner E, Evans AC, Schlaug G (2009) Musical training shapes structural brain development. J Neurosci 29(10):3019–3025. doi: 10.1523/JNEUROSCI.5118-08.2009 PubMedCentralPubMedCrossRefGoogle Scholar
  31. Ito M (2002) Historical review of the significance of the cerebellum and the role of Purkinje cells in motor learning. Ann N Y Acad Sci 978:273–288PubMedCrossRefGoogle Scholar
  32. Jabusch HC, Alpers H, Kopiez R, Vauth H, Altenmuller E (2009) The influence of practice on the development of motor skills in pianists: a longitudinal study in a selected motor task. Hum Mov Sci 28(1):74–84. doi: 10.1016/j.humov.2008.08.001 PubMedCrossRefGoogle Scholar
  33. James CE, Britz J, Vuilleumier P, Hauert CA, Michel CM (2008) Early neuronal responses in right limbic structures mediate harmony incongruity processing in musical experts. Neuroimage 42(4):1597–1608. doi: 10.1016/j.neuroimage.2008.06.025 PubMedCrossRefGoogle Scholar
  34. Janata P (2005) Brain networks that track musical structure. Ann N Y Acad Sci 1060:111–124PubMedCrossRefGoogle Scholar
  35. Janata P, Birk JL, Van Horn JD, Leman M, Tillmann B, Bharucha JJ (2002a) The cortical topography of tonal structures underlying Western music. Science 298(5601):2167–2170PubMedCrossRefGoogle Scholar
  36. Janata P, Tillmann B, Bharucha JJ (2002b) Listening to polyphonic music recruits domain-general attention and working memory circuits. Cogn Affect Behav Neurosci 2(2):121–140PubMedCrossRefGoogle Scholar
  37. Jancke L (2009) The plastic human brain. Restor Neurol Neurosci 27(5):521–538. doi: 10.3233/RNN-2009-0519 PubMedGoogle Scholar
  38. Jancke L, Shah NJ, Peters M (2000) Cortical activations in primary and secondary motor areas for complex bimanual movements in professional pianists. Brain Res Cogn Brain Res 10(1–2):177–183PubMedCrossRefGoogle Scholar
  39. Kanai R, Rees G (2011) The structural basis of inter-individual differences in human behaviour and cognition. Nat Rev Neurosci 12(4):231–242. doi: 10.1038/nrn3000 PubMedCrossRefGoogle Scholar
  40. Kim H (2012) A dual-subsystem model of the brain’s default network: self-referential processing, memory retrieval processes and autobiographical memory retrieval. Neuroimage. doi: 10.1016/j.neuroimage.2012.03.025 Google Scholar
  41. Koelsch S, Maess B, Gunter TC, Friederici AD (2001) Neapolitan chords activate the area of Broca. A magnetoencephalographic study. Ann N Y Acad Sci 930:420–421PubMedCrossRefGoogle Scholar
  42. Koutstaal W, Wagner AD, Rotte M, Maril A, Buckner RL, Schacter DL (2001) Perceptual specificity in visual object priming: functional magnetic resonance imaging evidence for a laterality difference in fusiform cortex. Neuropsychologia 39(2):184–199PubMedCrossRefGoogle Scholar
  43. Krings T, Topper R, Foltys H, Erberich S, Sparing R, Willmes K, Thron A (2000) Cortical activation patterns during complex motor tasks in piano players and control subjects. A functional magnetic resonance imaging study. Neurosci Lett 278(3):189–193PubMedCrossRefGoogle Scholar
  44. Leff AP, Crewes H, Plant GT, Scott SK, Kennard C, Wise RJ (2001) The functional anatomy of single-word reading in patients with hemianopic and pure alexia. Brain 124(Pt 3):510–521PubMedCrossRefGoogle Scholar
  45. Macmillan NA, Creelman CD (1997) d’plus: a program to calculate accuracy and bias measures from detection and discrimination data. Spat Vis 11(1):141–143PubMedGoogle Scholar
  46. Meister IG, Krings T, Foltys H, Boroojerdi B, Muller M, Topper R, Thron A (2004) Playing piano in the mind-an fMRI study on music imagery and performance in pianists. Brain Res Cogn Brain Res 19(3):219–228PubMedCrossRefGoogle Scholar
  47. Mink JW (1996) The basal ganglia: focused selection and inhibition of competing motor programs. Prog Neurobiol 50(4):381–425. doi: 10.1016/s0301-0082(96)00042-1 PubMedCrossRefGoogle Scholar
  48. Mink JW (2003) The basal ganglia and involuntary movements: impaired inhibition of competing motor patterns. Arch Neurol 60(10):1365–1368. doi: 10.1001/archneur.60.10.1365 PubMedCrossRefGoogle Scholar
  49. Moreno S, Marques C, Santos A, Santos M, Castro SL, Besson M (2009) Musical training influences linguistic abilities in 8-year-old children: more evidence for brain plasticity. Cereb Cortex 19(3):712–723. doi: 10.1093/cercor/bhn120 PubMedCrossRefGoogle Scholar
  50. Morosan P, Rademacher J, Schleicher A, Amunts K, Schormann T, Zilles K (2001) Human primary auditory cortex: cytoarchitectonic subdivisions and mapping into a spatial reference system. Neuroimage 13(4):684–701. doi: 10.1006/nimg.2000.0715 PubMedCrossRefGoogle Scholar
  51. Nakada T, Suzuki K, Fujii Y, Matsuzawa H, Kwee IL (2000) Independent component-cross correlation-sequential epoch (ICS) analysis of high field fMRI time series: direct visualization of dual representation of the primary motor cortex in human. Neurosci Res 37(3):237–244PubMedCrossRefGoogle Scholar
  52. Nan Y, Friederici AD (2012) Differential roles of right temporal cortex and Broca’s area in pitch processing: evidence from music and Mandarin. Hum Brain Mapp. doi: 10.1002/hbm.22046 PubMedGoogle Scholar
  53. Ochsner KN, Ray RR, Hughes B, McRae K, Cooper JC, Weber J, Gabrieli JD, Gross JJ (2009) Bottom-up and top-down processes in emotion generation: common and distinct neural mechanisms. Psychol Sci 20(11):1322–1331. doi: 10.1111/j.1467-9280.2009.02459.x PubMedCentralPubMedCrossRefGoogle Scholar
  54. Oechslin MS, Van De Ville D, Lazeyras F, Hauert C-A, James CE (2012) Degree of musical expertise modulates higher-order brain functioning. Cereb Cortex. doi: 10.1093/cercor/bhs206 PubMedGoogle Scholar
  55. Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9(1):97–113. doi: 10.1016/0028-3932(71)90067-4 PubMedCrossRefGoogle Scholar
  56. O’Reilly JX, Beckmann CF, Tomassini V, Ramnani N, Johansen-Berg H (2010) Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cereb Cortex 20(4):953–965. doi: 10.1093/cercor/bhp157 PubMedCrossRefGoogle Scholar
  57. Ousdal OT, Jensen J, Server A, Hariri AR, Nakstad PH, Andreassen OA (2008) The human amygdala is involved in general behavioral relevance detection: evidence from an event-related functional magnetic resonance imaging Go-NoGo task. Neuroscience 156(3):450–455PubMedCentralPubMedCrossRefGoogle Scholar
  58. Pantev C, Herholz SC (2011) Plasticity of the human auditory cortex related to musical training. Neurosci Biobehav Rev 35(10):2140–2154PubMedCrossRefGoogle Scholar
  59. Pascual-Leone A (2001) The brain that plays music and is changed by it. Ann N Y Acad Sci 930:315–329PubMedCrossRefGoogle Scholar
  60. Poldrack RA, Sabb FW, Foerde K, Tom SM, Asarnow RF, Bookheimer SY, Knowlton BJ (2005) The neural correlates of motor skill automaticity. J Neurosci 25(22):5356–5364. doi: 10.1523/JNEUROSCI.3880-04.2005 PubMedCrossRefGoogle Scholar
  61. Price CJ, Mechelli A (2005) Reading and reading disturbance. Curr Opin Neurobiol 15(2):231–238. doi: 10.1016/j.conb.2005.03.003 PubMedCrossRefGoogle Scholar
  62. Rauscher FH, Shaw GL, Levine LJ, Wright EL, Dennis WR, Newcomb RL (1997) Music training causes long-term enhancement of preschool children’s spatial-temporal reasoning. Neurol Res 19(1):2–8PubMedGoogle Scholar
  63. Raven J, Raven JC, Court JH (2003) Manual for raven’s progressive matrices and vocabulary scales. section 1: general overview. San Antonio, TX: Harcourt AssessmentGoogle Scholar
  64. Ridgway GR, Henley SM, Rohrer JD, Scahill RI, Warren JD, Fox NC (2008) Ten simple rules for reporting voxel-based morphometry studies. NeuroImage 40(4):1429–1435. doi: 10.1016/j.neuroimage.2008.01.003 PubMedCrossRefGoogle Scholar
  65. Salmi J, Pallesen KJ, Neuvonen T, Brattico E, Korvenoja A, Salonen O, Carlson S (2009) Cognitive and motor loops of the human cerebro-cerebellar system. J Cogn Neurosci 22(11):2663–2676. doi: 10.1162/jocn.2009.21382 CrossRefGoogle Scholar
  66. Schlaug G (2001) The brain of musicians. A model for functional and structural adaptation. Ann N Y Acad Sci 930:281–299PubMedCrossRefGoogle Scholar
  67. Schlaug G, Jancke L, Huang Y, Staiger JF, Steinmetz H (1995) Increased corpus callosum size in musicians. Neuropsychologia 33(8):1047–1055PubMedCrossRefGoogle Scholar
  68. Schmithorst VJ, Holland SK (2004) The effect of musical training on the neural correlates of math processing: a functional magnetic resonance imaging study in humans. Neurosci Lett 354(3):193–196PubMedCrossRefGoogle Scholar
  69. Schneider P, Scherg M, Dosch HG, Specht HJ, Gutschalk A, Rupp A (2002) Morphology of Heschl’s gyrus reflects enhanced activation in the auditory cortex of musicians. Nat Neurosci 5(7):688–694PubMedCrossRefGoogle Scholar
  70. Schneider P, Sluming V, Roberts N, Scherg M, Goebel R, Specht HJ, Dosch HG, Bleeck S, Stippich C, Rupp A (2005) Structural and functional asymmetry of lateral Heschl’s gyrus reflects pitch perception preference. Nat Neurosci 8(9):1241–1247PubMedCrossRefGoogle Scholar
  71. Schön D, Anton JL, Roth M, Besson M (2002) An fMRI study of music sight-reading. NeuroReport 13(17):2285–2289. doi: 10.1097/01.wnr.0000044224.79663.f5 PubMedCrossRefGoogle Scholar
  72. Schulze K, Zysset S, Mueller K, Friederici AD, Koelsch S (2011) Neuroarchitecture of verbal and tonal working memory in nonmusicians and musicians. Hum Brain Mapp 32(5):771–783. doi: 10.1002/hbm.21060 PubMedCrossRefGoogle Scholar
  73. Simon O, Mangin JF, Cohen L, Le Bihan D, Dehaene S (2002) Topographical layout of hand, eye, calculation, and language-related areas in the human parietal lobe. Neuron 33(3):475–487PubMedCrossRefGoogle Scholar
  74. Sloboda JA, Davidson JW, Howe MJA, Moore DG (1996) The role of practice in the development of performing musicians. Br J Psychol 87(2):287–309. doi: 10.1111/j.2044-8295.1996.tb02591.x CrossRefGoogle Scholar
  75. Sluming V, Barrick T, Howard M, Cezayirli E, Mayes A, Roberts N (2002) Voxel-based morphometry reveals increased gray matter density in Broca’s area in male symphony orchestra musicians. Neuroimage 17(3):1613–1622PubMedCrossRefGoogle Scholar
  76. Sluming V, Brooks J, Howard M, Downes JJ, Roberts N (2007) Broca’s area supports enhanced visuospatial cognition in orchestral musicians. J Neurosci 27(14):3799–3806. doi: 10.1523/JNEUROSCI.0147-07.2007 PubMedCrossRefGoogle Scholar
  77. Starkes JL, Deakin JM, Allard F, Hodges NJ, Hayes A (1996) Deliberate practice in sports: what is it anyway? In: Ericsson KA (ed) The road to excellence: the acquisition of expert performance in the arts and sciences, sports, and games. Lawrence Erlbaum Associates, Mahwah, pp 81–106Google Scholar
  78. Sterzer P, Kleinschmidt A (2010) Anterior insula activations in perceptual paradigms: often observed but barely understood. Brain Struct Funct 214(5–6):611–622. doi: 10.1007/s00429-010-0252-2 PubMedCrossRefGoogle Scholar
  79. Stewart L (2005) A neurocognitive approach to music reading. Ann N Y Acad Sci 1:377–386. doi: 10.1196/annals.1360.032 CrossRefGoogle Scholar
  80. Stewart L, Henson R, Kampe K, Walsh V, Turner R, Frith U (2003) Brain changes after learning to read and play music. NeuroImage 20(1):71–83PubMedCrossRefGoogle Scholar
  81. Stoodley CJ, Schmahmann JD (2009) Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. NeuroImage 44(2):489–501. doi: 10.1016/j.neuroimage.2008.08.039 PubMedCrossRefGoogle Scholar
  82. Terumitsu M, Ikeda K, Kwee IL, Nakada T (2009) Participation of primary motor cortex area 4a in complex sensory processing: 3.0-T fMRI study. NeuroReport 20(7):679–683. doi: 10.1097/WNR.0b013e32832a1820 PubMedCrossRefGoogle Scholar
  83. Tillmann B, Koelsch S, Escoffier N, Bigand E, Lalitte P, Friederici AD, von Cramon DY (2006) Cognitive priming in sung and instrumental music: activation of inferior frontal cortex. Neuroimage 31(4):1771–1782. doi: 10.1016/j.neuroimage.2006.02.028 PubMedCrossRefGoogle Scholar
  84. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15(1):273–289. doi: 10.1006/nimg.2001.0978 PubMedCrossRefGoogle Scholar
  85. Wan CY, Schlaug G (2010) Music making as a tool for promoting brain plasticity across the life span. Neuroscientist 16(5):566–577. doi: 10.1177/1073858410377805 PubMedCentralPubMedCrossRefGoogle Scholar
  86. Wan X, Nakatani H, Ueno K, Asamizuya T, Cheng K, Tanaka K (2011) The neural basis of intuitive best next-move generation in board game experts. Science 331(6015):341–346. doi: 10.1126/science.1194732 PubMedCrossRefGoogle Scholar
  87. Williamon A, Valentine E, Valentine J (2002) Shifting the focus of attention between levels of musical structure. Eur J Cogn Psychol 14(4):493–520. doi: 10.1080/09541440143000221 CrossRefGoogle Scholar
  88. Wilson SM, Saygin AP, Sereno MI, Iacoboni M (2004) Listening to speech activates motor areas involved in speech production. Nat Neurosci 7(7):701–702. doi: 10.1038/nn1263 PubMedCrossRefGoogle Scholar
  89. Zatorre RJ, Belin P, Penhune VB (2002) Structure and function of auditory cortex: music and speech. Trends Cogn Sci 6(1):37–46PubMedCrossRefGoogle Scholar
  90. Zatorre RJ, Chen JL, Penhune VB (2007) When the brain plays music: auditory-motor interactions in music perception and production. Nat Rev Neurosci 8(7):547–558PubMedCrossRefGoogle Scholar
  91. Zatorre RJ, Fields RD, Johansen-Berg H (2012) Plasticity in gray and white: neuroimaging changes in brain structure during learning. Nat Neurosci 15(4):528–536. doi: 10.1038/nn.3045 PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Clara E. James
    • 1
    • 2
    • 3
    Email author
  • Mathias S. Oechslin
    • 1
    • 2
  • Dimitri Van De Ville
    • 1
    • 4
    • 5
  • Claude-Alain Hauert
    • 1
    • 2
  • Céline Descloux
    • 6
  • François Lazeyras
    • 4
  1. 1.Geneva Neuroscience CenterUniversity of GenevaGenevaSwitzerland
  2. 2.Faculty of Psychology and Educational SciencesUniversity of GenevaGenevaSwitzerland
  3. 3.University of Applied Sciences of Western Switzerland, HealthGenevaSwitzerland
  4. 4.Faculty of Medicine, Department of Radiology and Medical InformaticsUniversity of GenevaGenevaSwitzerland
  5. 5.Institute of Bioengineering, École Polytechnique Fédérale de LausanneLausanneSwitzerland
  6. 6.Medical University of LausanneLausanneSwitzerland

Personalised recommendations