Brain Structure and Function

, Volume 219, Issue 1, pp 343–352 | Cite as

Corpus callosum shape changes in early Alzheimer’s disease: an MRI study using the OASIS brain database

  • Babak A. ArdekaniEmail author
  • Alvin H. Bachman
  • Khadija Figarsky
  • John J. Sidtis
Original Article


The corpus callosum (CC) is the largest fiber bundle connecting the left and right cerebral hemispheres. It has been a region examined extensively for indications of various pathologies, including Alzheimer’s disease (AD). Almost all previous studies of the CC in AD have been concerned with its size, particularly its mid-sagittal cross-sectional area (CCA). In this study, we show that the CC shape, characterized by its circularity (CIR), may be affected more profoundly than its size in early AD. MRI scans (n = 196) were obtained from the publicly available Open Access Series of Imaging Studies database. The CC cross-sectional region on the mid-sagittal section of the brain was automatically segmented using a novel algorithm. The CCA and CIR were compared in 98 normal controls (NC) subjects, 70 patients with very mild AD (AD-VM), and 28 patients with mild AD (AD-M). Statistical analysis of covariance controlling for age and intracranial capacity showed that both the CIR and the CCA were significantly reduced in the AD-VM group relative to the NC group (CIR: p = 0.004; CCA: p = 0.005). However, only the CIR was significantly different between the AD-M and AD-VM groups (p = 0.006) being smaller in the former. The CCA was not significantly different between the AD-M and AD-VM groups. The results suggest that CC shape may be a more sensitive marker than its size for monitoring the progression of AD. In order to facilitate independent analyses, the CC segmentations and the CCA and CIR data used in this study have been made publicly available (


Alzheimer’s disease Brain Corpus callosum Shape analysis Magnetic resonance imaging 



We thank our colleagues responsible for the OASIS project for making the MRI data available. Data analysis and manuscript preparation were supported by R01 DC007658. The OASIS project was supported by the following NIH grants: P50 AG05681, P01 AG03991, R01 AG021910, P50 MH071616, U24 RR021382, and R01 MH56584.


  1. Abe O, Masutani Y, Aoki S, Yamasue H, Yamada H, Kasai K, Mori H, Hayashi N, Masumoto T, Ohtomo K (2004) Topography of the human corpus callosum using diffusion tensor tractography. J Comput Assist Tomogr 28:533–539PubMedCrossRefGoogle Scholar
  2. Aljabar P, Heckemann RA, Hammers A, Hajnal JV, Rueckert D (2009) Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy. Neuroimage 46:726–738PubMedCrossRefGoogle Scholar
  3. Ardekani BA, Bachman AH (2009) Model-based automatic detection of the anterior and posterior commissures on MRI scans. Neuroimage 46:677–682PubMedCentralPubMedCrossRefGoogle Scholar
  4. Ardekani BA, Kershaw J, Braun M, Kanno I (1997) Automatic detection of the mid-sagittal plane in 3-D brain images. IEEE Trans Med Imaging 16:947–952PubMedCrossRefGoogle Scholar
  5. Ardekani BA, Guckemus S, Bachman A, Hoptman MJ, Wojtaszek M, Nierenberg J (2005) Quantitative comparison of algorithms for inter-subject registration of 3D volumetric brain MRI scans. J Neurosci Methods 142:67–76PubMedCrossRefGoogle Scholar
  6. Ardekani BA, Toshikazu I, Bachman A, Szeszko PR (2012a) Multi-atlas corpus callosum segmentation with adaptive atlas selection. Proc Int Soc Magn Reson Med Melbourne, Australia, Abstract #2564Google Scholar
  7. Ardekani BA, Figarsky K, Sidtis JJ (2012b) Sexual dimorphism in the human corpus callosum: an MRI study using the OASIS brain database. Cereb Cortex (in press)Google Scholar
  8. Buckner RL, Head D, Parker J, Fotenos AF, Marcus D, Morris JC, Snyder AZ (2004) A unified approach for morphometric and functional data analysis in young, old, and demented adults using automated atlas-based head size normalization: reliability and validation against manual measurement of total intracranial volume. Neuroimage 23:724–738PubMedCrossRefGoogle Scholar
  9. Cabezas M, Oliver A, Lladó X, Freixenet J, Cuadra MB (2011) A review of atlas-based segmentation for magnetic resonance brain images. Comput Methods Programs Biomed 104:e158–e177PubMedCrossRefGoogle Scholar
  10. Constant D, Ruther H (1996) Sexual dimorphism in the human corpus callosum? A comparison of methodologies. Brain Res 727:99–106PubMedCrossRefGoogle Scholar
  11. Di Paola M, Di Iulio F, Cherubini A, Blundo C, Casini AR, Sancesario G, Passafiume D, Caltagirone C, Spalletta G (2010) When, where, and how the corpus callosum changes in MCI and AD: a multimodal MRI study. Neurology 74:1136–1142PubMedCrossRefGoogle Scholar
  12. Di Paola M, Luders E, Di Iulio F, Cherubini A, Passafiume D, Thompson PM, Caltagirone C, Toga AW, Spalletta G (2010) Callosal atrophy in mild cognitive impairment and Alzheimer’s disease: different effects in different stages. Neuroimage 49:141–149PubMedCentralPubMedCrossRefGoogle Scholar
  13. Di Paola M, Spalletta G, Caltagirone C (2010) In vivo structural neuroanatomy of corpus callosum in Alzheimer’s disease and mild cognitive impairment using different MRI techniques: a review. J Alzheimers Dis 20:67–95PubMedGoogle Scholar
  14. Downhill JE Jr, Buchsbaum MS, Wei T, Spiegel-Cohen J, Hazlett EA, Haznedar MM, Silverman J, Siever LJ (2000) Shape and size of the corpus callosum in schizophrenia and schizotypal personality disorder. Schizophr Res 42:193–208PubMedCrossRefGoogle Scholar
  15. Frederiksen KS, Garde E, Skimminge A, Ryberg C, Rostrup E, Baaré WF, Siebner HR, Hejl AM, Leffers AM, Waldemar G (2011) Corpus callosum atrophy in patients with mild Alzheimer’s disease. Neurodegener Dis 8:476–482PubMedCrossRefGoogle Scholar
  16. Going JJ, Dixson A (1990) Morphometry of the adult human corpus callosum: lack of sexual dimorphism. J Anat 171:163–167PubMedGoogle Scholar
  17. Hallam BJ, Brown WS, Ross C, Buckwalter JG, Bigler ED, Tschanz JT, Norton MC, Welsh-Bohmer KA, Breitner JC (2008) Regional atrophy of the corpus callosum in dementia. J Int Neuropsychol Soc 14:414–423PubMedCrossRefGoogle Scholar
  18. Hampel H, Teipel SJ, Alexander GE, Horwitz B, Teichberg D, Schapiro MB, Rapoport SI (1998) Corpus callosum atrophy is a possible indicator of region- and cell type-specific neuronal degeneration in Alzheimer disease: a magnetic resonance imaging analysis. Arch Neurol 55:193–198PubMedCrossRefGoogle Scholar
  19. Hensel A, Wolf H, Kruggel F, Riedel-Heller SG, Nikolaus C, Arendt T, Gertz HJ (2002) Morphometry of the corpus callosum in patients with questionable and mild dementia. J Neurol Neurosurg Psychiatry 73:59–61PubMedCrossRefGoogle Scholar
  20. Hofer S, Frahm J (2006) Topography of the human corpus callosum revisited-comprehensive fiber tractography using diffusion tensor magnetic resonance imaging. Neuroimage 32:989–994PubMedCrossRefGoogle Scholar
  21. Holloway RL, Anderson PJ, Defendini R, Harper C (1993) Sexual dimorphism of the human corpus callosum from three independent samples: relative size of the corpus callosum. Am J Phys Anthropol 92:481–498PubMedCrossRefGoogle Scholar
  22. Hynd GW, Hall J, Novey ES, Eliopulos D, Black K, Gonzalez JJ, Edmonds JE, Riccio C, Cohen M (1995) Dyslexia and corpus callosum morphology. Arch Neurol 52:32–38PubMedCrossRefGoogle Scholar
  23. Jain R, Kasturi R, Schunck BG (1995) Machine vision. McGraw-Hill, New YorkGoogle Scholar
  24. Jäncke L, Staiger JF, Schlaug G, Huang Y, Steinmetz H (1997) The relationship between corpus callosum size and forebrain volume. Cereb Cortex 7:48–56PubMedCrossRefGoogle Scholar
  25. Janowsky JS, Kaye JA, Carper RA (1996) Atrophy of the corpus callosum in Alzheimer’s disease versus healthy aging. J Am Geriatr Soc 44:798–803PubMedGoogle Scholar
  26. Klein A, Andersson J, Ardekani BA, Ashburner J, Avants B, Chiang MC, Christensen GE, Collins DL, Gee J, Hellier P, Song JH, Jenkinson M, Lepage C, Rueckert D, Thompson P, Vercauteren T, Woods RP, Mann JJ, Parsey RV (2009) Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. Neuroimage 46:786–802PubMedCentralPubMedCrossRefGoogle Scholar
  27. Luders E, Cherbuin N, Thompson PM, Gutman B, Anstey KJ, Sachdev P, Toga AW (2010) When more is less: associations between corpus callosum size and handedness lateralization. Neuroimage 52:43–49PubMedCentralPubMedCrossRefGoogle Scholar
  28. Marcus DS, Wang TH, Parker J, Csernansky JG, Morris JC, Buckner RL (2007) Open Access Series of Imaging Studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults. J Cogn Neurosci 19:1498–1507PubMedCrossRefGoogle Scholar
  29. Mitchell TN, Free SL, Merschhemke M, Lemieux L, Sisodiya SM, Shorvon SD (2003) Reliable callosal measurement: population normative data confirm sex-related differences. AJNR Am J Neuroradiol 24:410–418PubMedGoogle Scholar
  30. Morris JC (1993) The Clinical Dementia Rating (CDR): current version and scoring rules. Neurology 43:2412–2414PubMedCrossRefGoogle Scholar
  31. Poline JB, Breeze JL, Ghosh S, Gorgolewski K, Halchenko YO, Hanke M, Haselgrove C, Helmer KG, Keator DB, Marcus DS, Poldrack RA, Schwartz Y, Ashburner J, Kennedy DN (2012) Data sharing in neuroimaging research. Front Neuroinform 6:1–13CrossRefGoogle Scholar
  32. Ramsay JO, Silverman BW (2005) Functional data analysis, 2nd edn. Springer, New YorkGoogle Scholar
  33. Rauch RA, Jinkins JR (1996) Variability of corpus callosal area measurements from midsagittal MR images: effect of subject placement within the scanner. Am J Neuroradial 17:27–28Google Scholar
  34. Rohlfing T, Brandt R, Menzel R, Maurer CR Jr (2004) Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains. Neuroimage 21:1428–1442PubMedCrossRefGoogle Scholar
  35. Ryberg C, Rostrup E, Paulson OB, Barkhof F, Scheltens P, van Straaten EC, van der Flier WM, Fazekas F, Schmidt R, Ferro JM, Baezner H, Erkinjuntti T, Jokinen H, Wahlund LO, Poggesi A, Pantoni L, Inzitari D, Waldemar G, LADIS study group (2011) Corpus callosum atrophy as a predictor of age-related cognitive and motor impairment: a 3-year follow-up of the LADIS study cohort. J Neurol Sci 307:100–105Google Scholar
  36. Smith RJ (2005) Relative size versus controlling for size: interpretation of ratios in research on sexual dimorphism in the human corpus callosum. Curr Anthropol 46:249–273CrossRefGoogle Scholar
  37. Teipel SJ, Bayer W, Alexander GE, Zebuhr Y, Teichberg D, Kulic L, Schapiro MB, Möller HJ, Rapoport SI, Hampel H (2002) Progression of corpus callosum atrophy in Alzheimer disease. Arch Neurol 59:243–248PubMedCrossRefGoogle Scholar
  38. Teipel SJ, Bayer W, Alexander GE, Bokde AL, Zebuhr Y, Teichberg D, Müller-Spahn F, Schapiro MB, Möller HJ, Rapoport SI, Hampel H (2003) Regional pattern of hippocampus and corpus callosum atrophy in Alzheimer’s disease in relation to dementia severity: evidence for early neocortical degeneration. Neurobiol Aging 24:85–94PubMedCrossRefGoogle Scholar
  39. Thomann PA, Wustenberg T, Pantel J, Essig M, Schroder J (2006) Structural changes of the corpus callosum in mild cognitive impairment and Alzheimer's disease. Dement Geriatr Cogn Disord 21:215–220Google Scholar
  40. Wang PJ, Saykin AJ, Flashman LA, Wishart HA, Rabin LA, Santulli RB, McHugh TL, MacDonald JW, Mamourian AC (2006) Regionally specific atrophy of the corpus callosum in AD, MCI and cognitive complaints. Neurobiol Aging 27:1613–1617PubMedCentralPubMedCrossRefGoogle Scholar
  41. Weis S, Jellinger K, Wenger E (1991) Morphology of the corpus callosum in normal aging and Alzheimer’s disease. J Neural Transm Suppl 33:35–38PubMedGoogle Scholar
  42. Witelson SF (1985) The brain connection: the callosum is larger in left-handers. Science 229:665–668PubMedCrossRefGoogle Scholar
  43. Yasar AS, Monkul ES, Sassi RB, Axelson D, Brambilla P, Nicoletti MA, Hatch JP, Keshavan M, Ryan N, Birmaher B, Soares JC (2006) MRI study of corpus callosum in children and adolescents with bipolar disorder. Psychiatry Res 146:83–85PubMedCrossRefGoogle Scholar
  44. Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, Gerig G (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31:1116–1128PubMedCrossRefGoogle Scholar
  45. Zhu M, Gao W, Wang X, Shi C, Lin Z (2012) Progression of corpus callosum atrophy in early stage of Alzheimer’s disease: MRI based study. Acad Radiol 19:512–517PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Babak A. Ardekani
    • 1
    • 2
    • 3
    Email author
  • Alvin H. Bachman
    • 1
  • Khadija Figarsky
    • 1
  • John J. Sidtis
    • 1
    • 2
  1. 1.The Nathan S. Kline Institute for Psychiatric ResearchOrangeburgUSA
  2. 2.Department of PsychiatryNew York University School of MedicineNew YorkUSA
  3. 3.Center for Advanced Brain ImagingNathan Kline InstituteOrangeburgUSA

Personalised recommendations