Brain Structure and Function

, Volume 219, Issue 1, pp 105–118 | Cite as

Neuritin 1 promotes neuronal migration

  • Arianna Zito
  • Daniele Cartelli
  • Graziella Cappelletti
  • Anna Cariboni
  • William Andrews
  • John Parnavelas
  • Angelo PolettiEmail author
  • Mariarita Galbiati
Original Article


Neuritin 1 (Nrn1 or cpg15-1) is an activity-dependent protein involved in synaptic plasticity during brain development, a process that relies upon neuronal migration. By analyzing Nrn1 expression, we found that it is highly expressed in a mouse model of migrating immortalized neurons (GN11 cells), but not in a mouse model of non-migrating neurons (GT1-7 cells). We thus hypothesized that Nrn1 might control neuronal migration. By using complementary assays, as Boyden’s microchemotaxis, scratch-wounding and live cell imaging, we found that GN11 cell migration is enhanced when Nrn1 is overexpressed and decreased when Nrn1 is silenced. The effects of Nrn1 in promoting neuronal migration have been then confirmed ex vivo, on rat cortical interneurons, by Boyden chamber assays and focal electroporation of acute embryonic brain slices. Furthermore, we found that Nrn1 level modulation affects GN11 cell morphology. The process is also paralleled by Nrn1-induced α-tubulin post-translational modifications, a well-recognized marker of microtubule stability. Altogether, the data demonstrate a novel function of Nrn1 in promoting migration of neuronal cells and indicate that Nrn1 levels impact on microtubule stability.


Neuritin Cpg15 Cell migration GnRH neurons Ganglionic eminence Microtubule 



Telethon-Italy to AP (GGP07063); Fondazione CARIPLO to AP (2008–2307); AriSLA, Italy to AP; Italian Ministry of Labour, Health and Social Affairs to AP (Convenzione Fondazione Mondino/UNIMI); Fondation Thierry Latran, France to AP; Italian Ministry of University and Research to MG; “Dote ricerca”, FSE, Regione Lombardia, to DC and to AP.

Supplementary material

429_2012_487_MOESM1_ESM.tif (1.1 mb)
Controls for the silencing effect on Nrn1. A) RT-qPCR analysis of Nrn1 mRNA levels in control, silenced (shRNA-Nrn1) and scramble transfected (shRNA-Scr) GN11 cells. *p<0.01 vs. control and shRNA-Scr. B) Immunoblot and densitometric analyses of Nrn1 in silenced GN11 cells. *p<0.01 vs. control and shRNA-Scr. Supplementary material 1 (TIFF 1166 kb)
429_2012_487_MOESM2_ESM.tif (1.1 mb)
Controls for the overexpression of Nrn1. A) RT-qPCR analysis of Nrn1 mRNA levels in control and Nrn1 overexpressing (pIRES-Nrn1) GN11 cells. *p<0.01 vs. Control. B) Immunoblot of Nrn1 overexpressing GN11 cells. Membranes have been processed with anti-Nrn1 and anti-Flag antibodies. Supplementary material 2 (TIFF 1149 kb)

This movie shows shRNA-Scr control GN11 cells undergoing migration. The cells were cultured in serum free medium for 3 hours and, then, recorded for 8 h. Time-lapse microscopy images were taken at 10 minutes intervals. The neurons, both spindle shaped or multipolar, exhibit a spontaneous migratory ability. Supplementary material 3 (MPG 324 kb)

This movie shows Nrn1 silenced GN11 cells undergoing migration. The cells were cultured in serum free medium for 3 hours and, then, recorded for 8 h. Time-lapse microscopy images were taken at 10 minutes intervals. The neurons do not show any appreciable migration at all the monitored time even if displaying a spindle-shaped morphology. Supplementary material 4 (MPG 408 kb)

This movie shows Nrn1 overexpressing GN11 cells undergoing migration. The cells were cultured in serum free medium for 3 hours and, then, recorded for 8 h. Time-lapse microscopy images were taken at 10 minutes intervals. The neurons migrate considerably, moving faster and at distance longer than that observed for control cells. Supplementary material 5 (MPG 490 kb)

This movie shows pEGFP-N1 transfected control GN11 cells undergoing migration. The cells were cultured in serum free medium for 3 hours and, then, recorded for 8 h. Time-lapse microscopy images were taken at 10 minutes intervals. The neurons, both spindle shaped or multipolar, exhibit a spontaneous migratory ability. Supplementary material 6 (MPG 406 kb)

429_2012_487_MOESM7_ESM.doc (30 kb)
Supplementary material 7 (DOC 30 kb)


  1. Alifragis P, Liapi A, Parnavelas JG (2004) Lhx6 regulates the migration of cortical interneurons from the ventral telencephalon but does not specify their GABA phenotype. J Neurosci 24(24):5643–5648. doi: 10.1523/JNEUROSCI.1245-04.2004.24/24/5643 PubMedCrossRefGoogle Scholar
  2. Antypa M, Faux C, Eichele G, Parnavelas JG, Andrews WD (2011) Differential gene expression in migratory streams of cortical interneurons. Eur J Neurosci 34(10):1584–1594. doi: 10.1111/j.1460-9568.2011.07896.x PubMedCentralPubMedCrossRefGoogle Scholar
  3. Borghesani PR, Peyrin JM, Klein R, Rubin J, Carter AR, Schwartz PM, Luster A, Corfas G, Segal RA (2002) BDNF stimulates migration of cerebellar granule cells. Development 129(6):1435–1442PubMedGoogle Scholar
  4. Bradshaw NJ, Porteous DJ (2012) DISC1-binding proteins in neural development, signalling and schizophrenia. Neuropharmacology 62(3):1230–1241. doi: 10.1016/j.neuropharm.2010.12.027 PubMedCentralPubMedCrossRefGoogle Scholar
  5. Cantallops I, Cline HT (2008) Rapid activity-dependent delivery of the neurotrophic protein CPG15 to the axon surface of neurons in intact Xenopus tadpoles. Dev Neurobiol 68(6):744–759. doi: 10.1002/dneu.20529 PubMedCrossRefGoogle Scholar
  6. Cappelletti G, Galbiati M, Ronchi C, Maggioni MG, Onesto E, Poletti A (2007) Neuritin (cpg15) enhances the differentiating effect of NGF on neuronal PC12 cells. J Neurosci Res 85(12):2702–2713. doi: 10.1002/jnr.21235 PubMedCrossRefGoogle Scholar
  7. Cariboni A, Rakic S, Liapi A, Maggi R, Goffinet A, Parnavelas JG (2005) Reelin provides an inhibitory signal in the migration of gonadotropin-releasing hormone neurons. Development 132(21):4709–4718. doi: 10.1242/dev.02033 PubMedCrossRefGoogle Scholar
  8. Cariboni A, Maggi R, Parnavelas JG (2007) From nose to fertility: the long migratory journey of gonadotropin-releasing hormone neurons. Trends Neurosci 30(12):638–644. doi: 10.1016/j.tins.2007.09.002 PubMedCrossRefGoogle Scholar
  9. Cartelli D, Goldwurm S, Casagrande F, Pezzoli G, Cappelletti G (2012) Microtubule destabilization is shared by genetic and idiopathic Parkinson’s disease patient fibroblasts. PLoS One 7(5):e37467. doi: 10.1371/journal.pone.0037467PONE-D-11-21802 PubMedCentralPubMedCrossRefGoogle Scholar
  10. Corriveau RA, Shatz CJ, Nedivi E (1999) Dynamic regulation of cpg15 during activity-dependent synaptic development in the mammalian visual system. J Neurosci 19(18):7999–8008PubMedCentralPubMedGoogle Scholar
  11. Creppe C, Malinouskaya L, Volvert ML, Gillard M, Close P, Malaise O, Laguesse S, Cornez I, Rahmouni S, Ormenese S, Belachew S, Malgrange B, Chapelle JP, Siebenlist U, Moonen G, Chariot A, Nguyen L (2009) Elongator controls the migration and differentiation of cortical neurons through acetylation of alpha-tubulin. Cell 136(3):551–564. doi: 10.1016/j.cell.2008.11.043 PubMedCrossRefGoogle Scholar
  12. Dent EW, Gertler FB (2003) Cytoskeletal dynamics and transport in growth cone motility and axon guidance. Neuron 40(2):209–227PubMedCrossRefGoogle Scholar
  13. Di Giovanni S, De Biase A, Yakovlev A, Finn T, Beers J, Hoffman EP, Faden AI (2005a) In vivo and in vitro characterization of novel neuronal plasticity factors identified following spinal cord injury. J Biol Chem 280(3):2084–2091. doi: 10.1074/jbc.M411975200 PubMedCrossRefGoogle Scholar
  14. Di Giovanni S, Faden AI, Yakovlev A, Duke-Cohan JS, Finn T, Thouin M, Knoblach S, De Biase A, Bregman BS, Hoffman EP (2005b) Neuronal plasticity after spinal cord injury: identification of a gene cluster driving neurite outgrowth. FASEB J 19(1):153–154. doi: 10.1096/fj.04-2694fje PubMedGoogle Scholar
  15. Etienne-Manneville S (2010) From signaling pathways to microtubule dynamics: the key players. Curr Opin Cell Biol 22(1):104–111. doi: 10.1016/ PubMedCrossRefGoogle Scholar
  16. Fargo KN, Alexander TD, Tanzer L, Poletti A, Jones KJ (2008) Androgen regulates neuritin mRNA levels in an in vivo model of steroid-enhanced peripheral nerve regeneration. J Neurotrauma 25(5):561–566. doi: 10.1089/neu.2007.0466 PubMedCrossRefGoogle Scholar
  17. Friocourt G, Liu JS, Antypa M, Rakic S, Walsh CA, Parnavelas JG (2007) Both doublecortin and doublecortin-like kinase play a role in cortical interneuron migration. J Neurosci 27(14):3875–3883. doi: 10.1523/JNEUROSCI.4530-06.2007 PubMedCrossRefGoogle Scholar
  18. Fujino T, Leslie JH, Eavri R, Chen JL, Lin WC, Flanders GH, Borok E, Horvath TL, Nedivi E (2011) CPG15 regulates synapse stability in the developing and adult brain. Genes Dev 25(24):2674–2685. doi: 10.1101/gad.176172.111 PubMedCrossRefGoogle Scholar
  19. Fukuda T, Sugita S, Inatome R, Yanagi S (2010) CAMDI, a novel disrupted in schizophrenia 1 (DISC1)-binding protein, is required for radial migration. J Biol Chem 285(52):40554–40561. doi: 10.1074/jbc.M110.179481 PubMedCrossRefGoogle Scholar
  20. Galbiati M, Saredi S, Romano N, Martini L, Motta M, Melcangi RC (2005) Smad proteins are targets of transforming growth factor beta1 in immortalised gonadotrophin-releasing hormone releasing neurones. J Neuroendocrinol 17(11):753–760. doi: 10.1111/j.1365-2826.2005.01366.x PubMedCrossRefGoogle Scholar
  21. Galbiati M, Onesto E, Zito A, Crippa V, Rusmini P, Mariotti R, Bentivoglio M, Bendotti C, Poletti A (2012) The anabolic/androgenic steroid nandrolone exacerbates gene expression modifications induced by mutant SOD1 in muscles of mice models of amyotrophic lateral sclerosis. Pharmacol Res 65(2):221–230. doi: 10.1016/j.phrs.2011.12.001 PubMedCentralPubMedCrossRefGoogle Scholar
  22. Gao WQ, Zheng JL, Karihaloo M (1995) Neurotrophin-4/5 (NT-4/5) and brain-derived neurotrophic factor (BDNF) act at later stages of cerebellar granule cell differentiation. J Neurosci 15(4):2656–2667PubMedGoogle Scholar
  23. Giacobini P, Giampietro C, Fioretto M, Maggi R, Cariboni A, Perroteau I, Fasolo A (2002) Hepatocyte growth factor/scatter factor facilitates migration of GN-11 immortalized LHRH neurons. Endocrinology 143(9):3306–3315PubMedCrossRefGoogle Scholar
  24. Han D, Qin B, Liu G, Liu T, Ji G, Wu Y, Yu L (2011) Characterization of neuritin as a novel angiogenic factor. Biochem Biophys Res Commun 415(4):608–612. doi: 10.1016/j.bbrc.2011.10.118 PubMedCrossRefGoogle Scholar
  25. Jaglin XH, Chelly J (2009) Tubulin-related cortical dysgeneses: microtubule dysfunction underlying neuronal migration defects. Trends Genet 25(12):555–566. doi: 10.1016/j.tig.2009.10.003 PubMedCrossRefGoogle Scholar
  26. Janke C, Bulinski JC (2011) Post-translational regulation of the microtubule cytoskeleton: mechanisms and functions. Nat Rev Mol Cell Biol 12(12):773–786. doi: 10.1038/nrm3227nrm3227 PubMedCrossRefGoogle Scholar
  27. Javaherian A, Cline HT (2005) Coordinated motor neuron axon growth and neuromuscular synaptogenesis are promoted by CPG15 in vivo. Neuron 45(4):505–512. doi: 10.1016/j.neuron.2004.12.051 PubMedCrossRefGoogle Scholar
  28. Keays DA, Tian G, Poirier K, Huang GJ, Siebold C, Cleak J, Oliver PL, Fray M, Harvey RJ, Molnar Z, Pinon MC, Dear N, Valdar W, Brown SD, Davies KE, Rawlins JN, Cowan NJ, Nolan P, Chelly J, Flint J (2007) Mutations in alpha-tubulin cause abnormal neuronal migration in mice and lissencephaly in humans. Cell 128(1):45–57. doi: 10.1016/j.cell.2006.12.017 PubMedCentralPubMedCrossRefGoogle Scholar
  29. Le Jan S, Le Meur N, Cazes A, Philippe J, Le Cunff M, Leger J, Corvol P, Germain S (2006) Characterization of the expression of the hypoxia-induced genes neuritin, TXNIP and IGFBP3 in cancer. FEBS Lett 580(14):3395–3400. doi: 10.1016/j.febslet.2006.05.011 PubMedCrossRefGoogle Scholar
  30. Lee WC, Nedivi E (2002) Extended plasticity of visual cortex in dark-reared animals may result from prolonged expression of cpg15-like genes. J Neurosci 22(5):1807–1815PubMedCentralPubMedGoogle Scholar
  31. Maggi R, Pimpinelli F, Molteni L, Milani M, Martini L, Piva F (2000) Immortalized luteinizing hormone-releasing hormone neurons show a different migratory activity in vitro. Endocrinology 141(6):2105–2112PubMedCrossRefGoogle Scholar
  32. Marron TU, Guerini V, Rusmini P, Sau D, Brevini TA, Martini L, Poletti A (2005) Androgen-induced neurite outgrowth is mediated by neuritin in motor neurones. J Neurochem 92(1):10–20. doi: 10.1111/j.1471-4159.2004.02836.x PubMedCrossRefGoogle Scholar
  33. Melcangi RC, Martini L, Galbiati M (2002) Growth factors and steroid hormones: a complex interplay in the hypothalamic control of reproductive functions. Prog Neurobiol 67(6):421–449PubMedCrossRefGoogle Scholar
  34. Messina A, Ferraris N, Wray S, Cagnoni G, Donohue DE, Casoni F, Kramer PR, Derijck AA, Adolfs Y, Fasolo A, Pasterkamp RJ, Giacobini P (2011) Dysregulation of Semaphorin7A/beta1-integrin signaling leads to defective GnRH-1 cell migration, abnormal gonadal development and altered fertility. Hum Mol Genet 20(24):4759–4774. doi: 10.1093/hmg/ddr403 PubMedCrossRefGoogle Scholar
  35. Morii H, Shiraishi-Yamaguchi Y, Mori N (2006) SCG10, a microtubule destabilizing factor, stimulates the neurite outgrowth by modulating microtubule dynamics in rat hippocampal primary cultured neurons. J Neurobiol 66(10):1101–1114. doi: 10.1002/neu.20295 PubMedCrossRefGoogle Scholar
  36. Nadarajah B, Parnavelas JG (2002) Modes of neuronal migration in the developing cerebral cortex. Nat Rev Neurosci 3(6):423–432. doi: 10.1038/nrn845nrn845 PubMedCrossRefGoogle Scholar
  37. Naeve GS, Ramakrishnan M, Kramer R, Hevroni D, Citri Y, Theill LE (1997) Neuritin: a gene induced by neural activity and neurotrophins that promotes neuritogenesis. Proc Natl Acad Sci USA 94(6):2648–2653PubMedCrossRefGoogle Scholar
  38. Nedivi E, Hevroni D, Naot D, Israeli D, Citri Y (1993) Numerous candidate plasticity-related genes revealed by differential cDNA cloning. Nature 363(6431):718–722. doi: 10.1038/363718a0 PubMedCrossRefGoogle Scholar
  39. Nedivi E, Fieldust S, Theill LE, Hevron D (1996) A set of genes expressed in response to light in the adult cerebral cortex and regulated during development. Proc Natl Acad Sci USA 93(5):2048–2053PubMedCrossRefGoogle Scholar
  40. Orso F, Jager R, Calogero RA, Schorle H, Sismondi P, De Bortoli M, Taverna D (2009) AP-2alpha regulates migration of GN-11 neurons via a specific genetic programme involving the Axl receptor tyrosine kinase. BMC Biol 7:25. doi: 10.1186/1741-7007-7-25 PubMedCentralPubMedCrossRefGoogle Scholar
  41. Pandithage R, Lilischkis R, Harting K, Wolf A, Jedamzik B, Luscher-Firzlaff J, Vervoorts J, Lasonder E, Kremmer E, Knoll B, Luscher B (2008) The regulation of SIRT2 function by cyclin-dependent kinases affects cell motility. J Cell Biol 180(5):915–929. doi: 10.1083/jcb.200707126 PubMedCrossRefGoogle Scholar
  42. Petridis AK, El Maarouf A (2011) Brain-derived neurotrophic factor levels influence the balance of migration and differentiation of subventricular zone cells, but not guidance to the olfactory bulb. J Clin Neurosci 18(2):265–270. doi: 10.1016/j.jocn.2010.06.021 PubMedCrossRefGoogle Scholar
  43. Pimpinelli F, Redaelli E, Restano-Cassulini R, Curia G, Giacobini P, Cariboni A, Wanke E, Bondiolotti GP, Piva F, Maggi R (2003) Depolarization differentially affects the secretory and migratory properties of two cell lines of immortalized luteinizing hormone–releasing hormone (LHRH) neurons. Eur J Neurosci 18(6):1410–1418PubMedCrossRefGoogle Scholar
  44. Putz U, Harwell C, Nedivi E (2005) Soluble CPG15 expressed during early development rescues cortical progenitors from apoptosis. Nat Neurosci 8(3):322–331. doi: 10.1038/nn1407 PubMedCentralPubMedCrossRefGoogle Scholar
  45. Raggo C, Ruhl R, McAllister S, Koon H, Dezube BJ, Fruh K, Moses AV (2005) Novel cellular genes essential for transformation of endothelial cells by Kaposi’s sarcoma-associated herpesvirus. Cancer Res 65(12):5084–5095. doi: 10.1158/0008-5472.CAN-04-2822 PubMedCrossRefGoogle Scholar
  46. Rickhag M, Teilum M, Wieloch T (2007) Rapid and long-term induction of effector immediate early genes (BDNF, Neuritin and Arc) in peri-infarct cortex and dentate gyrus after ischemic injury in rat brain. Brain Res 1151:203–210. doi: 10.1016/j.brainres.2007.03.005 PubMedCrossRefGoogle Scholar
  47. Tran AD, Marmo TP, Salam AA, Che S, Finkelstein E, Kabarriti R, Xenias HS, Mazitschek R, Hubbert C, Kawaguchi Y, Sheetz MP, Yao TP, Bulinski JC (2007) HDAC6 deacetylation of tubulin modulates dynamics of cellular adhesions. J Cell Sci 120(Pt 8):1469–1479. doi: 10.1242/jcs.03431 PubMedCrossRefGoogle Scholar
  48. Westerlund N, Zdrojewska J, Padzik A, Komulainen E, Bjorkblom B, Rannikko E, Tararuk T, Garcia-Frigola C, Sandholm J, Nguyen L, Kallunki T, Courtney MJ, Coffey ET (2011) Phosphorylation of SCG10/stathmin-2 determines multipolar stage exit and neuronal migration rate. Nat Neurosci 14(3):305–313. doi: 10.1038/nn.2755 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Arianna Zito
    • 1
  • Daniele Cartelli
    • 2
  • Graziella Cappelletti
    • 2
  • Anna Cariboni
    • 1
    • 3
  • William Andrews
    • 3
  • John Parnavelas
    • 3
  • Angelo Poletti
    • 1
    • 4
    Email author
  • Mariarita Galbiati
    • 1
    • 4
  1. 1.Dipartimento di Scienze Farmacologiche e Biomolecolari and Centre of Excellence on Neurodegenerative DiseasesUniversità degli Studi di Milano, ItaliaMilanItaly
  2. 2.Dipartimento di BioscienzeUniversità degli Studi di Milano, ItaliaMilanItaly
  3. 3.Department of Cell and Developmental BiologyUniversity College LondonLondonUK
  4. 4.Inter-University Research Centre on the Molecular Basis of Neurodegenerative DiseasesRomeItaly

Personalised recommendations