Brain Structure and Function

, Volume 219, Issue 1, pp 61–69 | Cite as

Interleukin-1 beta C-511T polymorphism modulates functional connectivity of anterior midcingulate cortex in non-demented elderly Han males

  • Pei-Chi Tu
  • Tung-Ping Su
  • Chu-Chung Huang
  • Albert C. Yang
  • Heng-Liang Yeh
  • Chen-Jee Hong
  • Ying-Jay Liou
  • Mu-En Liu
  • Ching-Po Lin
  • Shih-Jen Tsai
Original Article

Abstract

Recent resting fMRI studies have suggested that the functional connectivity of the brain’s large-scale networks is associated with the cognitive decline of aging and is modulated by genetic factors. Our previous study found a significant association between interleukin-1 (IL-1 beta) C-511T polymorphism and working memory performance among elderly people. This study investigates the effects of IL-1 beta C-511T polymorphism on the functional connectivity of the cognitive division of the cingulate cortex [i.e., the anterior midcingulate (aMCC)] in non-demented Han elderly people and tests the hypothesis that T/T carriers are associated with lowered FC. Non-demented elderly males (n = 95) received resting MRI scanning, genotyping, and cognitive evaluation using the cognitive abilities screening instrument (CASI) and the Wechsler digit span task test. The functional connectivity map in each subject was derived based on positive correlations of low-frequency fMRI fluctuations with a seed in the aMCC according to structural definition. Between-group difference was compared by random effect analysis. Compared to the C/C or C/T carriers, the T/T carriers had a significantly worse CASI performance, especially in the abstraction scores. For the functional connectivity analysis, the T/T carriers exhibited significantly lower functional connectivity with several prefrontal areas and the left putamen. The cortico-striatal connection between the aMCC and left putamen was correlated with the CASI abstraction and attention scores. The results were consistent with our hypothesis and supported that the brains’ functional connectivity in elderly people may be modulated by genetic polymorphism associated with local inflammation processes.

Keywords

Interleukin-1 beta Functional connectivity Anterior midcingulate Aging 

References

  1. Allen G, Barnard H, McColl R, Hester AL, Fields JA, Weiner MF, Ringe WK, Lipton AM, Brooker M, McDonald E, Rubin CD, Cullum CM (2007) Reduced hippocampal functional connectivity in Alzheimer disease. Arch Neurol 64:1482–1487PubMedCrossRefGoogle Scholar
  2. Andrews-Hanna JR, Snyder AZ, Vincent JL, Lustig C, Head D, Raichle ME, Buckner RL (2007) Disruption of large-scale brain systems in advanced aging. Neuron 56:924–935PubMedCentralPubMedCrossRefGoogle Scholar
  3. Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34:537–541PubMedCrossRefGoogle Scholar
  4. Braver TS, Cohen JD (1999) Dopamine, cognitive control, and schizophrenia: the gating model. Prog Brain Res 121:327–349PubMedCrossRefGoogle Scholar
  5. Braver TS, Barch DM, Cohen JD (1999) Cognition and control in schizophrenia: a computational model of dopamine and prefrontal function. Biol Psychiatry 46:312–328PubMedCrossRefGoogle Scholar
  6. Dennis NA, Browndyke JN, Stokes J, Need A, Burke JR, Welsh-Bohmer KA, Cabeza R (2010) Temporal lobe functional activity and connectivity in young adult APOE varepsilon4 carriers. Alzheimers Dement 6:303–311PubMedCentralPubMedCrossRefGoogle Scholar
  7. Di Martino A, Scheres A, Margulies DS, Kelly AM, Uddin LQ, Shehzad Z, Biswal B, Walters JR, Castellanos FX, Milham MP (2008) Functional connectivity of human striatum: a resting state FMRI study. Cereb Cortex 18:2735–2747PubMedCrossRefGoogle Scholar
  8. Dosenbach NU, Fair DA, Miezin FM, Cohen AL, Wenger KK, Dosenbach RA, Fox MD, Snyder AZ, Vincent JL, Raichle ME, Schlaggar BL, Petersen SE (2007) Distinct brain networks for adaptive and stable task control in humans. Proc Natl Acad Sci USA 104:11073–11078PubMedCrossRefGoogle Scholar
  9. Dosenbach NU, Fair DA, Cohen AL, Schlaggar BL, Petersen SE (2008) A dual-networks architecture of top-down control. Trends Cogn Sci 12:99–105PubMedCentralPubMedCrossRefGoogle Scholar
  10. Drzezga A, Becker JA, Van Dijk KR, Sreenivasan A, Talukdar T, Sullivan C, Schultz AP, Sepulcre J, Putcha D, Greve D, Johnson KA, Sperling RA (2011) Neuronal dysfunction and disconnection of cortical hubs in non-demented subjects with elevated amyloid burden. Brain 134:1635–1646PubMedCrossRefGoogle Scholar
  11. Filippini N, Ebmeier KP, MacIntosh BJ, Trachtenberg AJ, Frisoni GB, Wilcock GK, Beckmann CF, Smith SM, Matthews PM, Mackay CE (2011) Differential effects of the APOE genotype on brain function across the lifespan. Neuroimage 54:602–610PubMedCrossRefGoogle Scholar
  12. Glahn DC, Winkler AM, Kochunov P, Almasy L, Duggirala R, Carless MA, Curran JC, Olvera RL, Laird AR, Smith SM, Beckmann CF, Fox PT, Blangero J (2010) Genetic control over the resting brain. Proc Natl Acad Sci USA 107:1223–1228PubMedCrossRefGoogle Scholar
  13. Greicius MD, Krasnow B, Reiss AL, Menon V (2003) Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci USA 100:253–258PubMedCrossRefGoogle Scholar
  14. Greicius MD, Srivastava G, Reiss AL, Menon V (2004) Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci USA 101:4637–4642PubMedCrossRefGoogle Scholar
  15. Hall SK, Perregaux DG, Gabel CA, Woodworth T, Durham LK, Huizinga TW, Breedveld FC, Seymour AB (2004) Correlation of polymorphic variation in the promoter region of the interleukin-1 beta gene with secretion of interleukin-1 beta protein. Arthritis Rheum 50:1976–1983PubMedCrossRefGoogle Scholar
  16. Han SD, Bondi MW (2008) Revision of the apolipoprotein E compensatory mechanism recruitment hypothesis. Alzheimers Dement 4:251–254PubMedCrossRefGoogle Scholar
  17. Hedden T, Gabrieli JD (2004) Insights into the ageing mind: a view from cognitive neuroscience. Nat Rev Neurosci 5:87–96PubMedCrossRefGoogle Scholar
  18. Hedden T, Van Dijk KR, Becker JA, Mehta A, Sperling RA, Johnson KA, Buckner RL (2009) Disruption of functional connectivity in clinically normal older adults harboring amyloid burden. J Neurosci 29:12686–12694PubMedCentralPubMedCrossRefGoogle Scholar
  19. Helmich RC, Derikx LC, Bakker M, Scheeringa R, Bloem BR, Toni I (2010) Spatial remapping of cortico-striatal connectivity in Parkinson’s disease. Cereb Cortex 20:1175–1186PubMedCrossRefGoogle Scholar
  20. Li Q, Cheung C, Wei R, Cheung V, Hui ES, You Y, Wong P, Chua SE, McAlonan GM, Wu EX (2010) Voxel-based analysis of postnatal white matter microstructure in mice exposed to immune challenge in early or late pregnancy. Neuroimage 52:1–8PubMedCrossRefGoogle Scholar
  21. Liu HC, Chou P, Lin KN, Wang SJ, Fuh JL, Lin HC, Liu CY, Wu GS, Larson EB, White LR et al (1994) Assessing cognitive abilities and dementia in a predominantly illiterate population of older individuals in Kinmen. Psychol Med 24:763–770PubMedCrossRefGoogle Scholar
  22. Liu B, Song M, Li J, Liu Y, Li K, Yu C, Jiang T (2010) Prefrontal-related functional connectivities within the default network are modulated by COMT val158met in healthy young adults. J Neurosci 30:64–69PubMedCrossRefGoogle Scholar
  23. Machulda MM, Jones DT, Vemuri P, McDade E, Avula R, Przybelski S, Boeve BF, Knopman DS, Petersen RC, Jack CR Jr (2011) Effect of APOE ε4 status on intrinsic network connectivity in cognitively normal elderly subjects. Arch Neurol 68:1131–1136Google Scholar
  24. Meisenzahl EM, Rujescu D, Kirner A, Giegling I, Kathmann N, Leinsinger G, Maag K, Hegerl U, Hahn K, Moller HJ (2001) Association of an interleukin-1beta genetic polymorphism with altered brain structure in patients with schizophrenia. Am J Psychiatry 158:1316–1319PubMedCrossRefGoogle Scholar
  25. Mormino EC, Smiljic A, Hayenga AO, Onami SH, Greicius MD, Rabinovici GD, Janabi M, Baker SL, Yen IV, Madison CM, Miller BL, Jagust WJ (2011) Relationships between beta-amyloid and functional connectivity in different components of the default mode network in aging. Cereb Cortex 21:2399–2407Google Scholar
  26. Murphy K, Birn RM, Handwerker DA, Jones TB, Bandettini PA (2009) The impact of global signal regression on resting state correlations: are anti-correlated networks introduced? Neuroimage 44:893–905PubMedCentralPubMedCrossRefGoogle Scholar
  27. Murty VP, Sambataro F, Radulescu E, Altamura M, Iudicello J, Zoltick B, Weinberger DR, Goldberg TE, Mattay VS (2011) Selective updating of working memory content modulates meso-cortico-striatal activity. Neuroimage 57:1264–1272PubMedCrossRefGoogle Scholar
  28. Onoda K, Ishihara M, Yamaguchi S (2012) Decreased functional connectivity by aging is associated with cognitive decline. J Cogn Neurosci 24:2186–2198PubMedCrossRefGoogle Scholar
  29. Papiol S, Molina V, Rosa A, Sanz J, Palomo T, Fananas L (2007) Effect of interleukin-1beta gene functional polymorphism on dorsolateral prefrontal cortex activity in schizophrenic patients. Am J Med Genet B Neuropsychiatr Genet 144B:1090–1093PubMedCrossRefGoogle Scholar
  30. Papiol S, Molina V, Desco M, Rosa A, Reig S, Sanz J, Palomo T, Fananas L (2008) Gray matter deficits in bipolar disorder are associated with genetic variability at interleukin-1 beta gene (2q13). Genes Brain Behav 7:796–801PubMedCrossRefGoogle Scholar
  31. Parent A, Hazrati LN (1995) Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res Brain Res Rev 20:91–127PubMedCrossRefGoogle Scholar
  32. Pociot F, Molvig J, Wogensen L, Worsaae H, Nerup J (1992) A TaqI polymorphism in the human interleukin-1 beta (IL-1 beta) gene correlates with IL-1 beta secretion in vitro. Eur J Clin Invest 22:396–402PubMedCrossRefGoogle Scholar
  33. Postuma RB, Dagher A (2006) Basal ganglia functional connectivity based on a meta-analysis of 126 positron emission tomography and functional magnetic resonance imaging publications. Cereb Cortex 16:1508–1521PubMedCrossRefGoogle Scholar
  34. Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H, Reiss AL, Greicius MD (2007) Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 27:2349–2356PubMedCentralPubMedCrossRefGoogle Scholar
  35. Sheehan DV, Lecrubier Y, Sheehan KH, Amorim P, Janavs J, Weiller E, Hergueta T, Baker R, Dunbar GC (1998) The Mini-International Neuropsychiatric Interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin Psychiatry 59(Suppl 20):22–33 (quiz 34–57)PubMedGoogle Scholar
  36. Sheline YI, Morris JC, Snyder AZ, Price JL, Yan Z, D’Angelo G, Liu C, Dixit S, Benzinger T, Fagan A, Goate A, Mintun MA (2010a) APOE4 allele disrupts resting state fMRI connectivity in the absence of amyloid plaques or decreased CSF Abeta42. J Neurosci 30:17035–17040PubMedCentralPubMedCrossRefGoogle Scholar
  37. Sheline YI, Raichle ME, Snyder AZ, Morris JC, Head D, Wang S, Mintun MA (2010b) Amyloid plaques disrupt resting state default mode network connectivity in cognitively normal elderly. Biol Psychiatry 67:584–587PubMedCentralPubMedCrossRefGoogle Scholar
  38. Sun X, Zhang X, Chen X, Zhang P, Bao M, Zhang D, Chen J, He S, Hu X (2005) Age-dependent brain activation during forward and backward digit recall revealed by fMRI. Neuroimage 26:36–47PubMedCrossRefGoogle Scholar
  39. Tanaka S, Kondo H, Kanda K, Ashino T, Nakamachi T, Sekikawa K, Iwakura Y, Shioda S, Numazawa S, Yoshida T (2011) Involvement of interleukin-1 in lipopolysaccharide-induced microglial activation and learning and memory deficits. J Neurosci Res 89:506–514PubMedCrossRefGoogle Scholar
  40. Teng EL, Hasegawa K, Homma A, Imai Y, Larson E, Graves A, Sugimoto K, Yamaguchi T, Sasaki H, Chiu D et al (1994) The Cognitive Abilities Screening Instrument (CASI): a practical test for cross-cultural epidemiological studies of dementia. Int Psychogeriatr 6:45–58 (discussion 62)PubMedCrossRefGoogle Scholar
  41. Thomason ME, Yoo DJ, Glover GH, Gotlib IH (2009) BDNF genotype modulates resting functional connectivity in children. Front Hum Neurosci 3:55PubMedCentralPubMedCrossRefGoogle Scholar
  42. Trompet S, de Craen AJ, Slagboom P, Shepherd J, Blauw GJ, Murphy MB, Bollen EL, Buckley BM, Ford I, Gaw A, Macfarlane PW, Packard CJ, Stott DJ, Jukema JW, Westendorp RG (2008) Genetic variation in the interleukin-1 beta-converting enzyme associates with cognitive function. The PROSPER study. Brain 131:1069–1077PubMedCrossRefGoogle Scholar
  43. Tsai SJ, Hong CJ, Liu ME, Hou SJ, Yen FC, Hsieh CH, Liou YJ (2010) Interleukin-1 beta (C-511T) genetic polymorphism is associated with cognitive performance in elderly males without dementia. Neurobiol Aging 31:1950–1955PubMedCrossRefGoogle Scholar
  44. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15:273–289PubMedCrossRefGoogle Scholar
  45. Vincent JL, Snyder AZ, Fox MD, Shannon BJ, Andrews JR, Raichle ME, Buckner RL (2006) Coherent spontaneous activity identifies a hippocampal-parietal memory network. J Neurophysiol 96:3517–3531PubMedCrossRefGoogle Scholar
  46. Vogt BA (2005) Pain and emotion interactions in subregions of the cingulate gyrus. Nat Rev Neurosci 6:533–544PubMedCentralPubMedCrossRefGoogle Scholar
  47. Wang L, Zang Y, He Y, Liang M, Zhang X, Tian L, Wu T, Jiang T, Li K (2006) Changes in hippocampal connectivity in the early stages of Alzheimer’s disease: evidence from resting state fMRI. Neuroimage 31:496–504PubMedCrossRefGoogle Scholar
  48. Ystad M, Hodneland E, Adolfsdottir S, Haasz J, Lundervold AJ, Eichele T, Lundervold A (2011) Cortico-striatal connectivity and cognition in normal aging: a combined DTI and resting state fMRI study. Neuroimage 55:24–31PubMedCrossRefGoogle Scholar
  49. Yu C, Zhou Y, Liu Y, Jiang T, Dong H, Zhang Y, Walter M (2011) Functional segregation of the human cingulate cortex is confirmed by functional connectivity based neuroanatomical parcellation. Neuroimage 54:2571–2581PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Pei-Chi Tu
    • 1
    • 2
    • 3
    • 4
  • Tung-Ping Su
    • 2
    • 4
  • Chu-Chung Huang
    • 9
  • Albert C. Yang
    • 4
    • 2
    • 6
  • Heng-Liang Yeh
    • 7
  • Chen-Jee Hong
    • 2
    • 4
    • 5
  • Ying-Jay Liou
    • 2
    • 4
  • Mu-En Liu
    • 10
  • Ching-Po Lin
    • 8
  • Shih-Jen Tsai
    • 2
    • 4
  1. 1.Department of Medical Research and EducationTaipei Veterans General HospitalTaipeiTaiwan
  2. 2.Department of PsychiatryTaipei Veterans General HospitalTaipeiTaiwan
  3. 3.Institute of Philosophy of Mind and CognitionNational Yang-Ming UniversityTaipeiTaiwan
  4. 4.Division of Psychiatry, School of MedicineNational Yang-Ming UniversityTaipeiTaiwan
  5. 5.Institute of Brain ScienceNational Yang-Ming UniversityTaipeiTaiwan
  6. 6.Center for Dynamical Biomarkers and Translational MedicineNational Central UniversityChungliTaiwan
  7. 7.Taipei Veterans HomeTaipeiTaiwan
  8. 8.School of Life Science, Institute of NeuroscienceNational Yang-Ming UniversityTaipeiTaiwan
  9. 9.Department of Biomedical Imaging and Radiological SciencesNational Yang-Ming UniversityTaipeiTaiwan
  10. 10.Department of PsychiatryKaohsiung Veterans General Hospital KaohsiungTaiwan

Personalised recommendations