Brain Structure and Function

, Volume 218, Issue 6, pp 1419–1427 | Cite as

Imitation and speech: commonalities within Broca’s area

Original Article

Abstract

The so-called embodiment of communication has attracted considerable interest. Recently a growing number of studies have proposed a link between Broca’s area’s involvement in action processing and its involvement in speech. The present quantitative meta-analysis set out to test whether neuroimaging studies on imitation and overt speech show overlap within inferior frontal gyrus. By means of activation likelihood estimation (ALE), we investigated concurrence of brain regions activated by object-free hand imitation studies as well as overt speech studies including simple syllable and more complex word production. We found direct overlap between imitation and speech in bilateral pars opercularis (BA 44) within Broca’s area. Subtraction analyses revealed no unique localization neither for speech nor for imitation. To verify the potential of ALE subtraction analysis to detect unique involvement within Broca’s area, we contrasted the results of a meta-analysis on motor inhibition and imitation and found separable regions involved for imitation. This is the first meta-analysis to compare the neural correlates of imitation and overt speech. The results are in line with the proposed evolutionary roots of speech in imitation.

Keywords

Imitation Speech Broca’s area Inferior frontal gyrus Activation likelihood estimation Meta-analysis Gesture 

Notes

Acknowledgments

SK is a Postdoctoral Fellow of the Research Foundation Flanders (FWO). The work was supported in part by the BMBF 01GS08159.

Conflict of interest

The authors report no conflict of interest.

Supplementary material

429_2012_467_MOESM1_ESM.doc (66 kb)
Supplementary material 1 (DOC 65 kb)

References

  1. Arbib MA (2005) From monkey-like action recognition to human language: An evolutionary framework for neurolinguistics. Behav Brain Sci 28:105–167PubMedGoogle Scholar
  2. Aron AR, Poldrack RA (2005) The cognitive neuroscience of response inhibition: relevance for genetic research in attention-deficit/hyperactivity disorder. Biol Psychiatry 57:1285–1292PubMedCrossRefGoogle Scholar
  3. Aron AR, Robbins TW, Poldrack RA (2004) Inhibition and the right inferior frontal cortex. Trends Cogn Sci 8:170–177PubMedCrossRefGoogle Scholar
  4. Bookheimer S (2002) Functional MRI of language: new approaches to understanding the cortical organization of semantic processing. Annu Rev Neurosci 25:151–188PubMedCrossRefGoogle Scholar
  5. Brass M, Derrfuss J, von Cramon DY (2005) The inhibition of imitative and overlearned responses: a functional double dissociation. Neuropsychologia 43:89–98PubMedCrossRefGoogle Scholar
  6. Broca P (1861) Remarques sur le siège de la faculté de la parole articulée, suivies d’une observation d’aphémie (perte de parole). Bulletin de la Société d’Anatomie 36:330–357Google Scholar
  7. Brown S, Ingham RJ, Ingham JC, Laird AR, Fox PT (2005) Stuttered and fluent speech production: an ALE meta-analysis of functional neuroimaging studies. Hum Brain Mapp 25(1):105–117Google Scholar
  8. Buccino G, Binkofski F, Fink GR, Fadiga L, Fogassi L, Gallese V, Seitz RJ, Zilles K, Rizzolatti G, Freund HJ (2001) Action observation activates premotor and parietal areas in a somatotopic manner: an fMRI study. Eur J Neurosci 13:400–404PubMedGoogle Scholar
  9. Caspers S, Zilles K, Laird AR, Eickhoff SB (2010) ALE meta-analysis of action observation and imitation in the human brain. NeuroImage 50:1148–1167PubMedCrossRefGoogle Scholar
  10. Eickhoff SB, Laird AR, Grefkes C, Wang LE, Zilles K, Fox PT (2009) Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: a random effects approach based on empirical estimates of spatial uncertainty. Hum Brain Mapp 30:2907–2926PubMedCrossRefGoogle Scholar
  11. Gallese V, Fadiga L, Fogassi L, Rizzolatti G (1996) Action recognition in the premotor cortex. Brain 119:593–609PubMedCrossRefGoogle Scholar
  12. Gerstman HL (1964) A case of aphasia. J Speech Hear Disord 29:89–91PubMedGoogle Scholar
  13. Gough PM, Nobre AC, Devlin JT (2005) Dissociating linguistic processes in the left inferior frontal cortex with transcranial magnetic stimulation. J Neurosci 25:8010–8016PubMedCrossRefGoogle Scholar
  14. Hamzei F, Rijntjes M, Dettmers C, Glauche V, Weiller C, Buchel C (2003) The human action recognition system and its relationship to Broca’s area: an fMRI study. NeuroImage 19:637–644PubMedCrossRefGoogle Scholar
  15. Heilman KM, Valenstein E (2002) Clinical neuropsychology. Oxford University Press, New YorkGoogle Scholar
  16. Iacoboni M, Woods RP, Brass M, Bekkering H, Mazziotta JC, Rizzolatti G (1999) Cortical mechanisms of human imitation. Science 286:2526–2528PubMedCrossRefGoogle Scholar
  17. Iverson JM, Goldin-Meadow S (1998) Why people gesture when they speak. Nature 396:228PubMedCrossRefGoogle Scholar
  18. Kohler E, Keysers C, Umilta MA, Fogassi L, Gallese V, Rizzolatti G (2002) Hearing sounds, understanding actions: action representation in mirror neurons. Science 297:846–848PubMedCrossRefGoogle Scholar
  19. Kühn S, Brass M (2008) Testing the connection of the mirror system and speech: how articulation affects imitation in a simple response task. Neuropsychologia 46:1513–1521PubMedCrossRefGoogle Scholar
  20. Laird AR, Fox PM, Price CJ, Glahn DC, Uecker AM, Lancaster JL, Turkeltaub PE, Kochunov P, Fox PT (2005) ALE meta-analysis: controlling the false discovery rate and performing statistical contrasts. Hum Brain Mapp 25:155–164PubMedCrossRefGoogle Scholar
  21. Lancaster JL, Tordesillas-Guiérrez D, Martinez M, Salinas F, Evans A, Zilles K, Mazziotta JC, Fox PT (2007) Bias between MNI and Talairach coordinates analyzed using the ICBM-152 brain template. Hum Brain Mapp 28:1194–1205PubMedCrossRefGoogle Scholar
  22. Levänen S, Uutela K, Salenius S, Hari R (2001) Cortical representation of sign language: comparison of deaf signers and hearing non-signers. Cereb Cortex 11:506–512PubMedCrossRefGoogle Scholar
  23. Liberman AM, Mattingly IG (1985) The motor theory of speech perception revised. Cognition 21:1–36PubMedCrossRefGoogle Scholar
  24. Liberman AM, Delattre PC, Cooper FS (1952) The role of selected stimulus variables in the perception of the unvoiced stop consonants. Am J Psychol 65:497–516PubMedCrossRefGoogle Scholar
  25. Mayberry RI, Jacques J (2000) Gesture production during stuttered speech: insights into the nature of gesture-speech integration. In: McNeill D (ed) Language and gesture. Cambridge University Press, CambridgeGoogle Scholar
  26. Meyer M, Alter K, Friederici AD, Lohmann G, von Cramon DY (2002) FMRI reveals brain regions mediating slow prosodic modulations in spoken sentences. Hum Brain Mapp 17:73–88PubMedCrossRefGoogle Scholar
  27. Molenberghs P, Cunnington R, Mattingley JB (2009) Is the mirror neuron system involved in imitation? A short review and meta-analysis. Neurosci Biobehav Rev 33:975–980PubMedCrossRefGoogle Scholar
  28. Moss HE, Abdallah S, Fletcher P, Bright P, Pilgrim L, Acres K, Tyler LK (2005) Selecting among competing alternatives: selection and retrieval in the left inferior frontal gyrus. Cereb Cortex 15:1723–1735PubMedCrossRefGoogle Scholar
  29. Nishitani N, Schurmann M, Amunts K, Hari R (2005) Broca’s region: from action to language. Physiology 20:60–69PubMedCrossRefGoogle Scholar
  30. Ozdemir E, Norton A, Schlaug G (2006) Shared and distinct neural correlates of singing and speaking. NeuroImage 33:628–635PubMedCrossRefGoogle Scholar
  31. Rizzolatti G, Arbib MA (1998) Language within our grasp. Trends Neurosci 21:188–194PubMedCrossRefGoogle Scholar
  32. Rizzolatti G, Craighero L (2004) The mirror-neuron system. Ann Rev Neurosci 27:169–192PubMedCrossRefGoogle Scholar
  33. Rizzolatti G, Fadiga L, Gallese V, Fogassi L (1996) Premotor cortex and the recognition of motor actions. Brain Res Cogn Brain Res 3:131–141PubMedCrossRefGoogle Scholar
  34. Turkeltaub PE, Eden GF, Jones KM, Zeffiro TA (2002) Meta-analysis of the functional neuroanatomy of single-word reading: method and validation. NeuroImage 16:765–780PubMedCrossRefGoogle Scholar
  35. Watkins K, Paus T (2004) Modulation of motor excitability during speech perception: the role of Broca’s area. J Cogn Neurosci 16:978–987PubMedCrossRefGoogle Scholar
  36. Yamadori A, Osumi Y, Masuhara S, Okubo M (1977) Preservation of singing in Broca’s aphasia. J Neurol Neurosurg Psychiatry 40:221–224PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Simone Kühn
    • 1
    • 2
    • 3
  • Marcel Brass
    • 1
  • Jürgen Gallinat
    • 2
  1. 1.Department of Experimental Psychology and Ghent Institute for Functional and Metabolic Imaging, Faculty of Psychology and Educational SciencesGhent UniversityGhentBelgium
  2. 2.Charité University Medicine, St. Hedwig Krankenhaus, Clinic for Psychiatry and PsychotherapyBerlinGermany
  3. 3.Max Planck Institute for Human DevelopmentBerlinGermany

Personalised recommendations