Brain Structure and Function

, Volume 218, Issue 4, pp 951–968 | Cite as

Human middle longitudinal fascicle: variations in patterns of anatomical connections

  • N. Makris
  • M. G. Preti
  • T. Asami
  • P. Pelavin
  • B. Campbell
  • G. M. Papadimitriou
  • J. Kaiser
  • G. Baselli
  • C. F. Westin
  • M. E. Shenton
  • M. Kubicki
Original Article


Based on high-resolution diffusion tensor magnetic resonance imaging (DTI) tractographic analyses in 39 healthy adult subjects, we derived patterns of connections and measures of volume and biophysical parameters, such as fractional anisotropy (FA) for the human middle longitudinal fascicle (MdLF). Compared to previous studies, we found that the cortical connections of the MdLF in humans appear to go beyond the superior temporal (STG) and angular (AG) gyri, extending to the temporal pole (TP), superior parietal lobule (SPL), supramarginal gyrus, precuneus and the occipital lobe (including the cuneus and lateral occipital areas). Importantly, the MdLF showed a striking lateralized pattern with predominant connections between the TP, STG and AG on the left and TP, STG and SPL on the right hemisphere. In light of the results of the present study, and of the known functional role of the cortical areas interconnected by the MdLF, we suggested that this fiber pathway might be related to language, high order auditory association, visuospatial and attention functions.


Diffusion tensor tractography Middle longitudinal fascicle Angular gyrus Superior parietal lobule Superior temporal gyrus Language 


  1. Aja-Fernandez S, Niethammer M, Kubicki M, Shenton ME, Westin CF (2008) Restoration of DWI data using a Rician LMMSE estimator. IEEE Trans Med Imaging 27(10):1389–1403CrossRefPubMedGoogle Scholar
  2. Alexander AL, Tsuruda JS, Parker DL (1997) Elimination of eddy current artifacts in diffusion-weighted echo-planar images: the use of bipolar gradients. Magn Reson Med 38(6):1016–1021CrossRefPubMedGoogle Scholar
  3. Basser PJ (2004) Scaling laws for myelinated axons derived from an electrotonic core-conductor model. J Integr Neurosci 3(2):227–244CrossRefPubMedGoogle Scholar
  4. Basser PJ, Pierpaoli C (1996) Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson Ser B 111:209–219CrossRefGoogle Scholar
  5. Basser PJ, Mattiello J, LeBihan D (1994) MR diffusion tensor spectroscopy and imaging. Biophys J 66(1):259–267CrossRefPubMedGoogle Scholar
  6. Bruce C, Desimone R, Gross CG (1981) Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. J Neurophysiol 46(2):369–384PubMedGoogle Scholar
  7. Burdach CF (1822) Baue und Leben des Gehirns. In: deer Dyk’schen Buchhandlung LeipzigGoogle Scholar
  8. Catani M, Howard RJ, Pajevic S, Jones DK (2002) Virtual in vivo interactive dissection of white matter fasciculi in the human brain. Neuroimage 17(1):77–94CrossRefPubMedGoogle Scholar
  9. Caviness VSJ, Makris N, Meyer J, Kennedy DN (1996) MRI-based parcellation of human neocortex: an anatomically specified method with estimate of reliability. J Cogn Neurosci 8:566–588CrossRefGoogle Scholar
  10. De Witt Hamer PC, Moritz-Gasser S, Gatignol P, Duffau H (2011) Is the human left middle longitudinal fascicle essential for language? A brain electrostimulation study. Hum Brain Mapp 32(6):962–973CrossRefPubMedGoogle Scholar
  11. Dejerine J (1895) Anatomie des Centres Nerveux. Tome 1. Rueff et Cie Paris, FranceGoogle Scholar
  12. Ding SL, Van Hoesen GW, Cassell MD, Poremba A (2009) Parcellation of human temporal polar cortex: a combined analysis of multiple cytoarchitectonic, chemoarchitectonic, and pathological markers. J Comp Neurol 514(6):595–623CrossRefPubMedGoogle Scholar
  13. Duffy FH, Burchfiel JL (1971) Somatosensory system: organizational hierarchy from single units in monkey area 5. Science 172(3980):273–275CrossRefPubMedGoogle Scholar
  14. Eccles J (1989) Evolution of the brain: creation of the self. Routledge, LondonGoogle Scholar
  15. Evans AC, Collins DL, Mills SR, Brown ED, Kelly RL, Peters TM (1993) 3D statistical neuroanatomical model from 305 MRI volumes. Nuclear Science Symposium and Medical Imaging Conference, 1993 IEEE Conference Record, vol 3, pp 1813–1817Google Scholar
  16. Filipek PA, Richelme C, Kennedy DN, Caviness VS Jr (1994) The young adult human brain: an MRI-based morphometric analysis. Cereb Cortex 4:344–360CrossRefPubMedGoogle Scholar
  17. First M, Spitzer R, Gibbon M, Williams J (1997) Structured clinical interview for DSM-IV Axis I disorders. American Psychiatric Press, Washington, DCGoogle Scholar
  18. Fitzsimmons J, Kubicki M, Smith K, Bushell G, Estepar RS, Westin CF, Nestor PG, Niznikiewicz MA, Kikinis R, McCarley RW, Shenton ME (2009) Diffusion tractography of the fornix in schizophrenia. Schizophr Res 107(1):39–46CrossRefPubMedGoogle Scholar
  19. Flechsig P (1901) Developmental (myelogenetic) localization of the cerebral cortex in the human subject. Lancet 2:1027CrossRefGoogle Scholar
  20. Galaburda AM, Corsiglia J, Rosen GD, Sherman GF (1987) Planum temporale asymmetry, reappraisal since Geschwind and Levitsky. Neuropsychologia 25(6):853–868CrossRefGoogle Scholar
  21. Geschwind N, Galaburda AM (1987) Cerebral lateralization: biological mechanisms, associations and pathology. MIT Press, CambridgeGoogle Scholar
  22. Geschwind N, Levitsky W (1968) Human brain: left-right asymmetries in temporal speech region. Science 161(3837):186–187CrossRefPubMedGoogle Scholar
  23. Heid O (2000). Eddy current-nulled diffusion weighted. In: Proceedings, International Society of Magnetic Resonance in Medicine. Denver, DenverGoogle Scholar
  24. Heilman KM, Van Den Abell T (1980) Right hemisphere dominance for attention: the mechanism underlying hemispheric asymmetries of inattention (neglect). Neurology 30(3):327–330CrossRefPubMedGoogle Scholar
  25. Hickok G (2001) Functional anatomy of speech perception and speech production: psycholinguistic implications. J Psycholinguist Res 30(3):225–235CrossRefPubMedGoogle Scholar
  26. Hickok G, Poeppel D (2000) Towards a functional neuroanatomy of speech perception. Trends Cogn Sci 4(4):131–138CrossRefPubMedGoogle Scholar
  27. Hickok G, Poeppel D (2007) The cortical organization of speech processing. Nat Rev Neurosci 8(5):393–402CrossRefPubMedGoogle Scholar
  28. Jones DK, Catani M, Pierpaoli C, Reeves SJ, Shergill SS, O’Sullivan M, Golesworthy P, McGuire P, Horsfield MA, Simmons A, Williams SC, Howard RJ (2006) Age effects on diffusion tensor magnetic resonance imaging tractography measures of frontal cortex connections in schizophrenia. Hum Brain Mapp 27(3):230–238CrossRefPubMedGoogle Scholar
  29. Klingberg T, Hedehus M, Temple E, Salz T, Gabrieli JD, Moseley ME, Poldrack RA (2000) Microstructure of temporo-parietal white matter as a basis for reading ability: evidence from diffusion tensor magnetic resonance imaging. Neuron 25(2):493–500CrossRefPubMedGoogle Scholar
  30. Lacquaniti F, Guigon E, Bianchi L, Ferraina S, Caminiti R (1995) Representing spatial information for limb movement: role of area 5 in the monkey. Cereb Cortex 5(5):391–409CrossRefPubMedGoogle Scholar
  31. Lori NF, Akbudak E, Shimony JS, Cull TS, Snyder AZ, Guillory RK, Conturo TE (2002) Diffusion tensor fiber tracking of human brain connectivity: acquisition methods, reliability analysis and biological results. NMR Biomed 15(7–8):494–515CrossRefPubMedGoogle Scholar
  32. Ludwig E, Klingler J (1956) Atlas Cerebri Humani. The inner structure of the brain demonstrated on the basis of macroscopical preparations. Little Brown, BostonGoogle Scholar
  33. Makris N, Pandya DN (2009) The extreme capsule in humans and rethinking of the language circuitry. Brain Struct Funct 213(3):343–358CrossRefPubMedGoogle Scholar
  34. Makris N, Worth AJ, Sorensen AG, Papadimitriou GM, Wu O, Reese TG, Wedeen VJ, Davis TL, Stakes JW, Caviness VS, Kaplan E, Rosen BR, Pandya DN, Kennedy DN (1997) Morphometry of in vivo human white matter association pathways with diffusion-weighted magnetic resonance imaging. Ann Neurol 42(6):951–962CrossRefPubMedGoogle Scholar
  35. Makris N, Meyer JW, Bates JF, Yeterian EH, Kennedy DN, Caviness VS (1999) MRI-Based topographic parcellation of human cerebral white matter and nuclei II. Rationale and applications with systematics of cerebral connectivity. Neuroimage 9(1):18–45CrossRefPubMedGoogle Scholar
  36. Makris N, Pandya DN, Normandin JJ (2002a) Quantitative DT-MRI investigations of the human cingulum bundle. CNS Spectr 7(7):522–528Google Scholar
  37. Makris N, Papadimitriou GM, Worth AJ, Jenkins BG, Garrido L, Sorensen AG, Wedeen V, Tuch DS, Wu O, Cudkowicz ME, Caviness VS, Jr, Rosen B, Kennedy DN (2002b) Diffusion tensor imaging. In: Nemeroff C (ed) Neuropsychopharmacology: the fifth generation of progress, vol 3, Chap. 27. Lippincott, Williams, and Wilkins, New YorkGoogle Scholar
  38. Makris N, Kennedy DN, McInerney S, Sorensen AG, Wang R, Caviness VS Jr, Pandya DN (2005) Segmentation of subcomponents within the superior longitudinal fascicle in humans: a quantitative, in vivo, DT-MRI study. Cereb Cortex 15(6):854–869CrossRefPubMedGoogle Scholar
  39. Makris N, Papadimitriou GM, Sorg S, Kennedy DN, Caviness VS, Pandya DN (2007) The occipitofrontal fascicle in humans: a quantitative, in vivo, DT-MRI study. Neuroimage 37(4):1100–1111CrossRefPubMedGoogle Scholar
  40. Makris N, Papadimitriou GM, Kaiser JR, Sorg S, Kennedy DN, Pandya DN (2009) Delineation of the middle longitudinal fascicle in humans: a quantitative, in vivo, DT-MRI study. Cereb Cortex 19(4):777–785CrossRefPubMedGoogle Scholar
  41. Makris N, Seidman LJ, Ahern T, Kennedy DN, Caviness VS, Tsuang MT, Goldstein JM (2010) White matter volume abnormalities and associations with symptomatology in schizophrenia. Psychiatry Res 183(1):21–29CrossRefPubMedGoogle Scholar
  42. Molholm S, Sehatpour P, Mehta AD, Shpaner M, Gomez-Ramirez M, Ortigue S, Dyke JP, Schwartz TH, Foxe JJ (2006) Audio-visual multisensory integration in superior parietal lobule revealed by human intracranial recordings. J Neurophysiol 96(2):721–729CrossRefPubMedGoogle Scholar
  43. Mori S (2002) Two and three-dimensional analyses of brain white matter architecture using diffusion imaging. CNS Spectr 7(7):529–534Google Scholar
  44. Mori S, Crain BJ, Chacko VP, van Zijl PC (1999) Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 45(2):265–269CrossRefPubMedGoogle Scholar
  45. Mountcastle VB, Lynch JC, Georgopoulos A, Sakata H, Acuna C (1975) Posterior parietal association cortex of the monkey: command functions for operations within extrapersonal space. J Neurophysiol 38(4):871–908PubMedGoogle Scholar
  46. Nucifora PG, Verma R, Melhem ER, Gur RE, Gur RC (2005) Leftward asymmetry in relative fiber density of the arcuate fasciculus. NeuroReport 16(8):791–794CrossRefPubMedGoogle Scholar
  47. Oh JS, Kubicki M, Rosenberger G, Bouix S, Levitt JJ, McCarley RW, Westin CF, Shenton ME (2009) Thalamo-frontal white matter alterations in chronic schizophrenia: a quantitative diffusion tractography study. Hum Brain Mapp 30(11):3812–3825CrossRefPubMedGoogle Scholar
  48. Ono M, Kubicki M, Abernathey CD (1990) Atlas of cerebral sulci. Thieme, New YorkGoogle Scholar
  49. Petrides M, Pandya DN (2002) Association pathways of the prefrontal cortex and functional observations. In: Struss DT, Knight RT (eds) Principles of frontal lobe function. Oxford University Press, Oxford, pp 31–50CrossRefGoogle Scholar
  50. Pierpaoli C, Basser PJ (1996) Toward a quantitative assessment of diffusion anisotropy. Magn Reson Med 36(6):893–906CrossRefPubMedGoogle Scholar
  51. Poremba A, Saunders RC, Crane AM, Cook M, Sokoloff L, Mishkin M (2003) Functional mapping of the primate auditory system. Science 299(5606):568–572CrossRefPubMedGoogle Scholar
  52. Rademacher J, Galaburda AM, Kennedy DN, Filipek PA, Caviness VSj (1992) Human cerebral cortex: localization, parcellation, and morphometry with magnetic resonance imaging. J Cogn Neurosci 4(4):352–374CrossRefGoogle Scholar
  53. Rademacher J, Caviness VS Jr, Steinmetz H, Galaburda AM (1993) Topographical variation of the human primary cortices: implications for neuroimaging, brain mapping, and neurobiology. Cereb Cortex 3(4):313–329CrossRefPubMedGoogle Scholar
  54. Rajarethinam R, Sahni S, Rosenberg DR, Keshavan MS (2004) Reduced superior temporal gyrus volume in young offspring of patients with schizophrenia. Am J Psychiatry 161(6):1121–1124CrossRefPubMedGoogle Scholar
  55. Rilling JK, Glasser MF, Preuss TM, Ma X, Zhao T, Hu X, Behrens TE (2008) The evolution of the arcuate fasciculus revealed with comparative DTI. Nat Neurosci 11(4):426–428CrossRefPubMedGoogle Scholar
  56. Rodrigo S, Naggara O, Oppenheim C, Golestani N, Poupon C, Cointepas Y, Mangin JF, Le Bihan D, Meder JF (2007) Human subinsular asymmetry studied by diffusion tensor imaging and fiber tracking. AJNR Am J Neuroradiol 28(8):1526–1531CrossRefPubMedGoogle Scholar
  57. Rosenberger G, Kubicki M, Nestor PG, Connor E, Bushell GB, Markant D, Niznikiewicz M, Westin CF, Kikinis R, Saykin JA, McCarley RW, Shenton ME (2008) Age-related deficits in fronto-temporal connections in schizophrenia: a diffusion tensor imaging study. Schizophr Res 102(1–3):181–188CrossRefPubMedGoogle Scholar
  58. Rubens AB, Mahowald MW, Hutton JT (1976) Asymmetry of the lateral (sylvian) fissures in man. Neurology 26(7):620–624CrossRefPubMedGoogle Scholar
  59. Sakata H, Takaoka Y, Kawarasaki A, Shibutani H (1973) Somatosensory properties of neurons in the superior parietal cortex (area 5) of the rhesus monkey. Brain Res 64:85–102CrossRefPubMedGoogle Scholar
  60. Sanides F (1962) Architectonics of the human frontal lobe of the brain. With a demonstration of the principles of its formation as a reflection of phylogenetic differentiation of the cerebral cortex. Monogr Gesamtgeb Neurol Psychiatr 98:1–201PubMedGoogle Scholar
  61. Sapolsky D, Bakkour A, Negreira A, Nalipinski P, Weintraub S, Mesulam MM, Caplan D, Dickerson BC (2010) Cortical neuroanatomic correlates of symptom severity in primary progressive aphasia. Neurology 75(4):358–366CrossRefPubMedGoogle Scholar
  62. Schmahmann JD, Pandya DN (2006) Fiber pathways of the brain. Oxford University Press, New YorkCrossRefGoogle Scholar
  63. Schmahmann JD, Pandya DN, Wang R, Dai G, D’Arceuil HE, de Crespigny AJ, Wedeen VJ (2007) Association fibre pathways of the brain: parallel observations from diffusion spectrum imaging and autoradiography. Brain 130(Pt 3):630–653CrossRefPubMedGoogle Scholar
  64. Seltzer B, Pandya DN (1978) Afferent cortical connections and architectonics of the superior temporal sulcus and surrounding cortex in the rhesus monkey. Brain Res 149(1):1–24CrossRefPubMedGoogle Scholar
  65. Seltzer B, Pandya DN (1984) Further observations on parieto-temporal connections in the rhesus monkey. Exp Brain Res 55(2):301–312CrossRefPubMedGoogle Scholar
  66. Seltzer B, Pandya DN (1991) Post-rolandic cortical projections of the superior temporal sulcus in the rhesus monkey. J Comp Neurol 312(4):625–640CrossRefPubMedGoogle Scholar
  67. Song SK, Sun SW, Ramsbottom MJ, Chang C, Russell J, Cross AH (2002) Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. Neuroimage 17(3):1429–1436CrossRefPubMedGoogle Scholar
  68. Song SK, Sun SW, Ju WK, Lin SJ, Cross AH, Neufeld AH (2003) Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia. Neuroimage 20(3):1714–1722CrossRefPubMedGoogle Scholar
  69. Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. Thieme, New YorkGoogle Scholar
  70. Thiebaut de Schotten M, Dell’Acqua F, Forkel SJ, Simmons A, Vergani F, Murphy DG, Catani M (2011a) A lateralized brain network for visuospatial attention. Nat Neurosci 14(10):1245–1246CrossRefPubMedGoogle Scholar
  71. Thiebaut de Schotten M, Ffytche DH, Bizzi A, Dell’Acqua F, Allin M, Walshe M, Murray R, Williams SC, Murphy DG, Catani M (2011b) Atlasing location, asymmetry and inter-subject variability of white matter tracts in the human brain with MR diffusion tractography. Neuroimage 54(1):49–59CrossRefPubMedGoogle Scholar
  72. Turken AU, Dronkers NF (2011) The neural architecture of the language comprehension network: converging evidence from lesion and connectivity analyses. Front Syst Neurosci 5:1CrossRefPubMedGoogle Scholar
  73. Wang R, Benner T, Sorensen AG, Wedeen V (2007) Diffusion toolkit: a software package for diffusion imaging data processing and tractography. In: Proceedings, International Society for Magnetic Resonance in Medicine, Berlin, GermanyGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • N. Makris
    • 1
    • 2
    • 3
  • M. G. Preti
    • 4
    • 5
  • T. Asami
    • 2
  • P. Pelavin
    • 2
  • B. Campbell
    • 1
  • G. M. Papadimitriou
    • 1
  • J. Kaiser
    • 1
  • G. Baselli
    • 4
  • C. F. Westin
    • 7
  • M. E. Shenton
    • 2
    • 6
  • M. Kubicki
    • 2
  1. 1.Departments of Psychiatry, Neurology and Radiology Services, Center for Morphometric Analysis, A. Martinos Center for Biomedical ImagingMassachusetts General Hospital, Harvard Medical SchoolBostonUSA
  2. 2.Psychiatry Neuroimaging Laboratory, Department of PsychiatryBrigham and Women’s Hospital, Harvard Medical SchoolBostonUSA
  3. 3.Department of Anatomy and NeurobiologyBoston University School of MedicineBostonUSA
  4. 4.Department of BioengineeringPolitecnico di MilanoMilanItaly
  5. 5.Magnetic Resonance LaboratoryDon Gnocchi FoundationMilanItaly
  6. 6.Laboratory of Neuroscience, Clinical Neuroscience Division, Department of Psychiatry, Veterans Affairs Boston Healthcare System, Brockton DivisionHarvard Medical SchoolBrocktonUSA
  7. 7.Laboratory of Mathematics in Imaging, Surgical Planning Laboratory, MRI Division, Department of RadiologyBrigham and Women’s Hospital, Harvard Medical SchoolBostonUSA

Personalised recommendations