Advertisement

Brain Structure and Function

, Volume 218, Issue 3, pp 805–816 | Cite as

Faster scaling of visual neurons in cortical areas relative to subcortical structures in non-human primate brains

  • C. E. Collins
  • D. B. Leitch
  • P. Wong
  • J. H. Kaas
  • Suzana Herculano-Houzel
Original Article

Abstract

Cortical expansion, both in absolute terms and in relation to subcortical structures, is considered a major trend in mammalian brain evolution with important functional implications, given that cortical computations should add complexity and flexibility to information processing. Here, we investigate the numbers of neurons that compose 4 structures in the visual pathway across 11 non-human primate species to determine the scaling relationships that apply to these structures and among them. We find that primary visual cortex, area V1, as well as the superior colliculus (SC) and lateral geniculate nucleus scale in mass faster than they gain neurons. Areas V1 and MT gain neurons proportionately to the entire cerebral cortex, and represent fairly constant proportions of all cortical neurons (36 and 3 %, respectively), while V1 gains neurons much faster than both subcortical structures examined. Larger primate brains therefore have increased ratios of cortical to subcortical neurons involved in processing visual information, as observed in the auditory pathway, but have a constant proportion of cortical neurons dedicated to the primary visual representation, and a fairly constant ratio of about 45 times more neurons in primary visual than in primary auditory cortical areas.

Keywords

Superior colliculus Visual cortex Lateral geniculate nucleus V1 Area MT Thalamus Allometry Brain size Evolution 

Notes

Acknowledgments

This research was supported by a grant from the NIH NS 16446 to JHK, and by grants from CNPq, Faperj, and the James S. McDonnell Foundation to SHH. This is publication number 1225 from the Duke University Lemur Center.

References

  1. Allman JM (1999) Evolving brains. WH Freeman and Co., New YorkGoogle Scholar
  2. Andrews TJ, Halpern SD, Purves D (1997) Correlated size variations in human visual cortex, lateral geniculate nucleus, and optic tract. J Neurosci 17:2859–2868PubMedGoogle Scholar
  3. Barton RA (1998) Visual specialization and brain evolution in primates. Proc Roy Soc Lond B265:1933–1937CrossRefGoogle Scholar
  4. Barton RA (2004) Binocularity and brain evolution in primates. Proc Natl Acad Sci USA 101:10113–10115PubMedCrossRefGoogle Scholar
  5. Barton RA (2007) Evolutionary specialization in mammalian cortical structure. J Evol Biol 20:1504–1511PubMedCrossRefGoogle Scholar
  6. Barton RA, Harvey PH (2000) Mosaic evolution of brain structure in mammals. Nature 405:1055–1058PubMedCrossRefGoogle Scholar
  7. Campi KL, Krubitzer L (2010) Comparative studies of diurnal and nocturnal rodents: differences in lifestyle result in alterations in cortical field size and number. J Comp Neurol 518:4491–4512PubMedCrossRefGoogle Scholar
  8. Casagrande V, Kaas JH (1994) The afferent, intrinsic, and efferent connections of primary visual cortex in primates. In: Peters A, Rockland K (eds) Cerebral cortex, vol 10, primary visual cortex in primates. Plenum Press, New York, pp 201–259Google Scholar
  9. Casagrande V, Norton T (1991) Lateral geniculate nucleus: a review of its physiology and function. In: Levelthal A (ed) Vision and visual dysfunction, vol 4: The Neural basis of visual function. MacMillan Press, London, pp 41–84Google Scholar
  10. Casagrande V, Royal DA, Sáry G (2005) Extra-retinal inputs and feedback mechanisms to the lateral geniculate nucleus (LGN). In: Kremers J (ed) The primate visual system: a comparative approach. Wiley, Chichester, pp 191–211Google Scholar
  11. Caviness VS Jr, Nowakowski RS, Bhide PG (2009) Neocortical neurogenesis: morphogenetic gradients and beyond. Trends Neurosci 32:443–450PubMedCrossRefGoogle Scholar
  12. Collins CE, Airey DC, Young NA, Leitch DB, Kaas JH (2010) Neuron densities vary across and within cortical areas in primates. Proc Natl Acad Sci USA 107:15927–15932PubMedCrossRefGoogle Scholar
  13. De Sousa AA, Sherwood CC, Mohlberg H, Amunts K, Schleicher A, MacLeod CE, Hof PR, Frahm H, Zilles K (2010) Hominoid visual brain structure volumes and the position of the lunate sulcus. J Hum Evol 58:281–291PubMedCrossRefGoogle Scholar
  14. Finlay BL, Darlington RB (1995) Linked regularities in the development and evolution of mammalian brains. Science 268:1578–1584PubMedCrossRefGoogle Scholar
  15. Finlay BL, Sengelaub DR, Berian CA (1986) Control of cell number in the developing mammalian visual system. Prog Neurobiol 32:207–234CrossRefGoogle Scholar
  16. Finlay BL, Franco ECS, Yamada ES, Crowley JC, Parsons M, Muniz JAPC, Silveira LCL (2008) Number and topography of cones, rods and optic nerve axons in New and Old World primates. Vis Neurosci 25:289–299PubMedCrossRefGoogle Scholar
  17. Frahm H, Stephan H, Baron G (1984) Comparison of brain structure volumes in insectivora and primates. V. Area Striata (AS). J Hirnforsch 25:537–557PubMedGoogle Scholar
  18. Gabi M, Collins CE, Wong P, Torres LB, Kaas JH, Herculano-Houzel S (2010) Cellular scaling rules for the brains of an extended number of primate species. Brain Behav Evol 76:32–44PubMedCrossRefGoogle Scholar
  19. Grove EA, Fukuschi-Shimogori T (2003) Generating the cerebral cortical area map. Annu Rev Neurosci 26:355–380PubMedCrossRefGoogle Scholar
  20. Heesy CP (2004) On the relationship between orbit orientation and binocular visual field overlap in mammals. Anat Rec 281A:1104–1110CrossRefGoogle Scholar
  21. Herculano-Houzel S (2011) Brains matter, bodies maybe not: the case for examining neuron numbers irrespective of body size. Ann NY Acad Sci 1225:191–199PubMedCrossRefGoogle Scholar
  22. Herculano-Houzel S, Lent R (2005) Isotropic fractionator: a simple, rapid method for the quantification of total cell and neuron numbers in the brain. J Neurosci 25:2518–2521PubMedCrossRefGoogle Scholar
  23. Herculano-Houzel S, Collins CE, Wong P, Kaas JH (2007) Cellular scaling rules for primate brains. Proc Natl Acad Sci USA 104:3562–3567PubMedCrossRefGoogle Scholar
  24. Herculano-Houzel S, Collins CE, Wong P, Kaas JH, Lent R (2008) The basic non-uniformity of the cerebral cortex. Proc Natl Acad Sci USA 105:12593–12598PubMedCrossRefGoogle Scholar
  25. Herculano-Houzel S, Ribeiro PFM, Campos L, da Silva AV, Torres LB, Catania KC, Kaas JH (2011) Updated neuronal scaling rules for the brains of Glires (rodents/lagomorphs). Brain Behav Evol 78:302–314PubMedCrossRefGoogle Scholar
  26. Kaas JH (2000) Organizing principles of sensory representations. Novartis Found Symp 228:188–198PubMedCrossRefGoogle Scholar
  27. Kaskan PM, Franco ECS, Yamada ES, de Lima Silveira LC, Darlington RB, Finlay BL (2005) Peripheral variability and central constancy in mammalian visual system evolution. Proc R Soc B 272:91–100PubMedCrossRefGoogle Scholar
  28. Kirk EC (2006) Visual influences on primate encephalization. J Hum Evol 51:76–90PubMedCrossRefGoogle Scholar
  29. Mullen RJ, Buck CR, Smith AM (1992) NeuN, a neuronal specific nuclear protein in vertebrates. Development 116:201–211PubMedGoogle Scholar
  30. Rilling JK, Insel TR (1999) The primate neocortex in comparative perspective using magnetic resonance imaging. J Hum Evol 37:191–223PubMedCrossRefGoogle Scholar
  31. Rockel AJ, Hiorns RW, Powell TP (1980) The basic uniformity in structure of the neocortex. Brain 103:221–244PubMedCrossRefGoogle Scholar
  32. Roe AW, Pallas SL, Hahm JO, Sur M (1990) A map of visual space induced in primary auditory cortex. Science 250:818–820PubMedCrossRefGoogle Scholar
  33. Rubenstein JLR, Shimamura K, Martinez S, Puelles L (1998) Regionalization of the prosencephalic neural plate. Annu Rev Neurosci 21:445–477PubMedCrossRefGoogle Scholar
  34. Schnupp JW, King AJ (1997) Coding for auditory space in the nucleus of the brachium of the inferior colliculus in the ferret. J Neurophysiol 78:2717–2731PubMedGoogle Scholar
  35. Sherwood CC, Raghanti MA, Stimpson CD, Bonar CJ, de Sousa AA, Preuss TM, Hof PR (2007) Scaling of inhibitory interneurons in areas v1 and v2 of anthropoid primates as revealed by calcium-binding protein immunohistochemistry. Brain Behav Evol 69:176–195PubMedCrossRefGoogle Scholar
  36. Shulz H-D (1967) Metrische Untersuchungen an den Schichten des Corpus Geniculatum Laterale tag- und Nachtaktiven Primaten. Thesis, Johann Wolfgang Goethe-Universitaet FrankfurtGoogle Scholar
  37. Song C, Schwarzkopf DS, Kanai R, Rees G (2011) Reciprocal anatomical relationship between primary sensory and prefrontal cortices in the human brain. J Neurosci 31:9472–9480PubMedCrossRefGoogle Scholar
  38. Stephan H, Frahm H, Baron G (1981) New and revised data on volumes of brain structures in insectivores and primates. Folia Primatol 35:1–29PubMedCrossRefGoogle Scholar
  39. Stevens CF (2001) An evolutionary scaling law for the primate visual system and its basis in cortical function. Nature 411:193–195PubMedCrossRefGoogle Scholar
  40. Von Melchner L, Pallas SL, Sur M (2000) Visual behaviour mediated by retinal projections directed to the auditory pathway. Nature 404:871–876CrossRefGoogle Scholar
  41. Wong P, Peebles JK, Asplund CL, Collins CE, Herculano-Houzel S, Kaas JH (2012) Faster scaling of auditory neurons in cortical areas relative to subcortical structures in primates (submitted)Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • C. E. Collins
    • 1
  • D. B. Leitch
    • 2
  • P. Wong
    • 1
    • 5
  • J. H. Kaas
    • 1
  • Suzana Herculano-Houzel
    • 3
    • 4
  1. 1.Department of PsychologyVanderbilt UniversityNashvilleUSA
  2. 2.Graduate Program in NeuroscienceVanderbilt University Medical CenterNashvilleUSA
  3. 3.Instituto de Ciências BiomédicasFederal University of Rio de JaneiroRio de JaneiroBrazil
  4. 4.Instituto Nacional de Neurociência TranslacionalRio de JaneiroBrazil
  5. 5.Laboratory of Molecular NeuroscienceDuke-NUS Graduate Medical School SingaporeSingaporeSingapore

Personalised recommendations