Brain Structure and Function

, Volume 218, Issue 2, pp 575–585 | Cite as

Neuroanatomical consequences of very preterm birth in middle childhood

  • Ilyse D. Lax
  • Emma G. Duerden
  • Sarah Y. Lin
  • M. Mallar Chakravarty
  • Elizabeth J. Donner
  • Jason P. Lerch
  • Margot J. TaylorEmail author
Original Article


Individuals born preterm can demonstrate reductions in brain volume, cortical surface area and thickness. However, the extent of these neuroanatomical deficits and the relation among these measures in middle childhood, a critical developmental period, have not been determined. We assessed differences in brain structure by acquiring high-resolution T1-weighted scans in 25 children born very preterm (<32 weeks gestational age) without significant post-natal neurological sequelae and 32 age-matched term-born children (7–10 years). Children born very preterm had decreased brain volume, surface area and cortical thickness compared to term-born children. Furthermore, children born preterm did not display the robust relation between total brain volume and basal ganglia and thalamic volume apparent in the term-born children. Cortical thickness analyses revealed that the cortex was thinner for children born preterm than term-born children in the anterior cingulate cortex/supplementary motor area, isthmus of the cingulate gyrus, right superior temporal sulcus, right anterior insula, postcentral gyrus and precuneus. Follow-up analyses revealed that right precuneus thickness was correlated with gestational age. Thus, even without significant postnatal medical sequelae, very preterm-born children showed atypical brain structure and developmental patterns in areas related to higher cognitive function. Disruptions of the typical neurodevelopmental trajectory in the third trimester of pregnancy likely underlie these differences persisting into middle childhood.


Preterm Brain structure Cortical thickness Volume Surface area Children 



This work was supported by the Canadian Institutes of Health Research [Grant Number MOP-81161 to MJT]. The authors thank Wayne Lee for MRI technical and analysis support and the staff at the Neonatology Follow-Up Clinics, Hospital for Sick Children. We also sincerely thank the children and their families who participated in this study.


  1. Ajayi-Obe M, Saeed N, Cowan FM, Rutherford MA, Edwards AD (2000) Reduced development of cerebral cortex in extremely preterm infants. Lancet 356(9236):1162–1163PubMedCrossRefGoogle Scholar
  2. Allin M, Henderson M, Suckling J, Nosarti C, Rushe T, Fearon P, Stewart AL, Bullmore ET, Rifkin L, Murray R (2004) Effects of very low birthweight on brain structure in adulthood. Dev Med Child Neurol 46(1):46–53PubMedCrossRefGoogle Scholar
  3. Als H, Duffy FH, McAnulty GB, Rivkin MJ, Vajapeyam S, Mulkern RV, Warfield SK, Huppi PS, Butler SC, Conneman N, Fischer C, Eichenwald EC (2004) Early experience alters brain function and structure. Pediatrics 113(4):846–857PubMedCrossRefGoogle Scholar
  4. Beck S, Wojdyla D, Say L, Betran AP, Merialdi M, Requejo JH, Rubens C, Menon R, Van Look PF (2010) The worldwide incidence of preterm birth: a systematic review of maternal mortality and morbidity. Bull World Health Organ 88(1):31–38PubMedCrossRefGoogle Scholar
  5. Bohm B, Katz-Salamon M, Institute K, Smedler AC, Lagercrantz H, Forssberg H (2002) Developmental risks and protective factors for influencing cognitive outcome at 5 1/2 years of age in very-low-birthweight children. Dev Med Child Neurol 44(8):508–516PubMedCrossRefGoogle Scholar
  6. Boucher M, Whitesides S, Evans A (2009) Depth potential function for folding pattern representation, registration and analysis. Med Image Anal 13(2):203–214PubMedCrossRefGoogle Scholar
  7. Breslau N, Chilcoat HD, Johnson EO, Andreski P, Lucia VC (2000) Neurologic soft signs and low birthweight: their association and neuropsychiatric implications. Biol Psychiatry 47(1):71–79PubMedCrossRefGoogle Scholar
  8. Chakravarty MM, Bertrand G, Hodge CP, Sadikot AF, Collins DL (2006) The creation of a brain atlas for image guided neurosurgery using serial histological data. NeuroImage 30(2):359–376PubMedCrossRefGoogle Scholar
  9. Chakravarty MM, Sadikot AF, Germann J, Bertrand G, Collins DL (2008) Towards a validation of atlas warping techniques. Med Image Anal 12(6):713–726PubMedCrossRefGoogle Scholar
  10. Chakravarty MM, Sadikot AF, Germann J, Hellier P, Bertrand G, Collins DL (2009) Comparison of piece-wise linear, linear, and nonlinear atlas-to-patient warping techniques: analysis of the labeling of subcortical nuclei for functional neurosurgical applications. Hum Brain Mapp 30(11):3574–3595PubMedCrossRefGoogle Scholar
  11. Chung MK, Taylor J (2006) Diffusion smoothing on brain surface via infinite element method. In: Proceedings of Biomedical Imaging: Macro to Nano, IEEE International Symposium, pp 432–435Google Scholar
  12. Collins DL, Neelin P, Peters TM, Evans AC (1994) Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. J Comput Assist Tomogr 18(2):192–205PubMedCrossRefGoogle Scholar
  13. Courchesne E, Pierce K, Schumann CM, Redcay E, Buckwalter JA, Kennedy DP, Morgan J (2007) Mapping early brain development in autism. Neuron 56(2):399–413PubMedCrossRefGoogle Scholar
  14. Fearon P, O’Connell P, Frangou S, Aquino P, Nosarti C, Allin M, Taylor M, Stewart A, Rifkin L, Murray R (2004) Brain volumes in adult survivors of very low birth weight: a sibling-controlled study. Pediatrics 114(2):367–371PubMedCrossRefGoogle Scholar
  15. Frisk V, Whyte H (1994) The long-term consequences of periventricular brain damage on language and verbal memory. Dev Neuropsych 10:313–333CrossRefGoogle Scholar
  16. Gimenez M, Junque C, Narberhaus A, Bargallo N, Botet F, Mercader JM (2006) White matter volume and concentration reductions in adolescents with history of very preterm birth: a voxel-based morphometry study. NeuroImage 32(4):1485–1498PubMedCrossRefGoogle Scholar
  17. Gioia GA, Isquith PK, Guy SC, Kenworthy L (2000) Behavior rating inventory of executive function. Child Neuropsychol 6(3):235–238PubMedCrossRefGoogle Scholar
  18. Gressens P, Rogido M, Paindaveine B, Sola A (2002) The impact of neonatal intensive care practices on the developing brain. J Pediatr 140(6):646–653PubMedCrossRefGoogle Scholar
  19. Huppi PS, Maier SE, Peled S, Zientara GP, Barnes PD, Jolesz FA, Volpe JJ (1998) Microstructural development of human newborn cerebral white matter assessed in vivo by diffusion tensor magnetic resonance imaging. Pediatr Res 44(4):584–590PubMedCrossRefGoogle Scholar
  20. Inder TE, Wells SJ, Mogridge NB, Spencer C, Volpe JJ (2003) Defining the nature of the cerebral abnormalities in the premature infant: a qualitative magnetic resonance imaging study. J Pediatr 143(2):171–179PubMedCrossRefGoogle Scholar
  21. Inder TE, Warfield SK, Wang H, Huppi PS, Volpe JJ (2005) Abnormal cerebral structure is present at term in premature infants. Pediatrics 115(2):286–294PubMedCrossRefGoogle Scholar
  22. Isaacs EB, Lucas A, Chong WK, Wood SJ, Johnson CL, Marshall C, Vargha-Khadem F, Gadian DG (2000) Hippocampal volume and everyday memory in children of very low birth weight. Pediatr Res 47(6):713–720PubMedCrossRefGoogle Scholar
  23. Isaacs EB, Edmonds CJ, Chong WK, Lucas A, Morley R, Gadian DG (2004) Brain morphometry and IQ measurements in preterm children. Brain 127(Pt 12):2595–2607PubMedCrossRefGoogle Scholar
  24. Jones SE, Buchbinder BR, Aharon I (2000) Three-dimensional mapping of cortical thickness using Laplace’s equation. Hum Brain Mapp 11(1):12–32PubMedCrossRefGoogle Scholar
  25. Kapellou O, Counsell SJ et al (2006) Abnormal cortical development after premature birth shown by altered allometric scaling of brain growth. PLoS Med 3(8):e265. doi: 10.1371/journal.pmed.0030265 PubMedCrossRefGoogle Scholar
  26. Kesler SR, Reiss AL, Vohr B, Watson C, Schneider KC, Katz KH, Maller-Kesselman J, Silbereis J, Constable RT, Makuch RW, Ment LR (2008) Brain volume reductions within multiple cognitive systems in male preterm children at age twelve. J Pediatr 152(4):513–520PubMedCrossRefGoogle Scholar
  27. Kostovic I, Jovanov-Milosevic N (2006) The development of cerebral connections during the first 20–45 weeks’ gestation. Semin Fetal Neonatal Med 11(6):415–422PubMedCrossRefGoogle Scholar
  28. Kostovic I, Judas M (2002) Correlation between the sequential ingrowth of afferents and transient patterns of cortical lamination in preterm infants. Anat Rec 267(1):1–6PubMedCrossRefGoogle Scholar
  29. Lenroot RK, Giedd JN (2006) Brain development in children and adolescents: insights from anatomical magnetic resonance imaging. Neurosci Biobehav Rev 30(6):718–772PubMedCrossRefGoogle Scholar
  30. Lerch JP, Evans AC (2005) Cortical thickness analysis examined through power analysis and a population simulation. NeuroImage 24(1):163–173PubMedCrossRefGoogle Scholar
  31. Limperopoulos C, Soul JS, Haidar H, Huppi PS, Bassan H, Warfield SK, Robertson RL, Moore M, Akins P, Volpe JJ, du Plessis AJ (2005) Impaired trophic interactions between the cerebellum and the cerebrum among preterm infants. Pediatrics 116(4):844–850PubMedCrossRefGoogle Scholar
  32. Lyttelton O, Boucher M, Robbins S, Evans A (2007) An unbiased iterative group registration template for cortical surface analysis. NeuroImage 34(4):1535–1544PubMedCrossRefGoogle Scholar
  33. Martinussen M, Fischl B, Larsson HB, Skranes J, Kulseng S, Vangberg TR, Vik T, Brubakk AM, Haraldseth O, Dale AM (2005) Cerebral cortex thickness in 15-year-old adolescents with low birth weight measured by an automated MRI-based method. Brain 128(Pt 11):2588–2596PubMedCrossRefGoogle Scholar
  34. Martinussen M, Flanders DW, Fischl B, Busa E, Lohaugen GC, Skranes J, Vangberg TR, Brubakk AM, Haraldseth O, Dale AM (2009) Segmental brain volumes and cognitive and perceptual correlates in 15-year-old adolescents with low birth weight. J Pediatric 155(6):848–853CrossRefGoogle Scholar
  35. Murphy BP, Inder TE, Huppi PS, Warfield S, Zientara GP, Kikinis R, Jolesz FA, Volpe JJ (2001) Impaired cerebral cortical gray matter growth after treatment with dexamethasone for neonatal chronic lung disease. Pediatrics 107(2):217–221PubMedCrossRefGoogle Scholar
  36. Nagy Z, Ashburner J, Andersson J, Jbabdi S, Draganski B, Skare S, Bohm B, Smedler AC, Forssberg H, Lagercrantz H (2009) Structural correlates of preterm birth in the adolescent brain. Pediatrics 124(5):e964–e972PubMedCrossRefGoogle Scholar
  37. Nagy Z, Lagercrantz H, Hutton C (2011) Effects of preterm birth on cortical thickness measured in adolescence. Cereb Cortex 21(2):300–306PubMedCrossRefGoogle Scholar
  38. Nosarti C, Al-Asady MH, Frangou S, Stewart AL, Rifkin L, Murray RM (2002) Adolescents who were born very preterm have decreased brain volumes. Brain 125(Pt 7):1616–1623PubMedCrossRefGoogle Scholar
  39. Nosarti C, Rushe TM, Woodruff PW, Stewart AL, Rifkin L, Murray RM (2004) Corpus callosum size and very preterm birth: relationship to neuropsychological outcome. Brain 127(Pt 9):2080–2089PubMedCrossRefGoogle Scholar
  40. Nosarti C, Giouroukou E, Healy E, Rifkin L, Walshe M, Reichenberg A, Chitnis X, Williams SC, Murray RM (2008) Grey and white matter distribution in very preterm adolescents mediates neurodevelopmental outcome. Brain 131(Pt 1):205–217PubMedGoogle Scholar
  41. Nosarti C, Shergill SS, Allin MP, Walshe M, Rifkin L, Murray RM, McGuire PK (2009) Neural substrates of letter fluency processing in young adults who were born very preterm: alterations in frontal and striatal regions. NeuroImage 47(4):1904–1913PubMedCrossRefGoogle Scholar
  42. O’Brien F, Roth S, Stewart A, Rifkin L, Rushe T, Wyatt J (2004) The neurodevelopmental progress of infants less than 33 weeks into adolescence. Arch Dis Child 89(3):207–211PubMedCrossRefGoogle Scholar
  43. Pennell CE, Jacobsson B, Williams SM, Buus RM, Muglia LJ, Dolan SM, Morken NH, Ozcelik H, Lye SJ, Relton C (2007) Genetic epidemiologic studies of preterm birth: guidelines for research. Am J Obstet Gynecol 196(2):107–118PubMedCrossRefGoogle Scholar
  44. Peterson BS, Vohr B, Staib LH, Cannistraci CJ, Dolberg A, Schneider KC, Katz KH, Westerveld M, Sparrow S, Anderson AW, Duncan CC, Makuch RW, Gore JC, Ment LR (2000) Regional brain volume abnormalities and long-term cognitive outcome in preterm infants. JAMA 284(15):1939–1947PubMedCrossRefGoogle Scholar
  45. Peterson BS, Anderson AW, Ehrenkranz R, Staib LH, Tageldin M, Colson E, Gore JC, Duncan CC, Makuch R, Ment LR (2003) Regional brain volumes and their later neurodevelopmental correlates in term and preterm infants. Pediatrics 111(5 Pt 1):939–948PubMedCrossRefGoogle Scholar
  46. Pharoah PO, Stevenson CJ, West CR (2003) General certificate of secondary education performance in very low birthweight infants. Arch Dis Child 88(4):295–298PubMedCrossRefGoogle Scholar
  47. Rakic P (1988) Specification of cerebral cortical areas. Science 241(4862):170–176PubMedCrossRefGoogle Scholar
  48. Shaw P, Greenstein D, Lerch J, Clasen L, Lenroot R, Gogtay N, Evans A, Rapoport J, Giedd J (2006) Intellectual ability and cortical development in children and adolescents. Nature 440(7084):676–679PubMedCrossRefGoogle Scholar
  49. Shaw P, Eckstrand K, Sharp W, Blumenthal J, Lerch JP, Greenstein D, Clasen L, Evans A, Giedd J, Rapoport JL (2007) Attention-deficit/hyperactivity disorder is characterized by a delay in cortical maturation. PNAS 104(49):19649–19654PubMedCrossRefGoogle Scholar
  50. Shaw P, Kabani NJ, Lerch JP, Eckstrand K, Lenroot R, Gogtay N, Greenstein D, Clasen L, Evans A, Rapoport JL, Giedd JN, Wise SP (2008) Neurodevelopmental trajectories of the human cerebral cortex. J Neurosci 28(14):3586–3594PubMedCrossRefGoogle Scholar
  51. Sie LT, van der Knaap MS, Oosting J, de Vries LS, Lafeber HN, Valk J (2000) MR patterns of hypoxic-ischemic brain damage after prenatal, perinatal or postnatal asphyxia. Neuropediatrics 31(3):128–136PubMedCrossRefGoogle Scholar
  52. Sled JG, Zijdenbos AP, Evans AC (1998) A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 17(1):87–97PubMedCrossRefGoogle Scholar
  53. Smith SM (2002) Fast robust automated brain extraction. Hum Brain Mapp 17(3):143–155PubMedCrossRefGoogle Scholar
  54. Srinivasan L, Dutta R, Counsell SJ, Allsop JM, Boardman JP, Rutherford MA, Edwards AD (2007) Quantification of deep gray matter in preterm infants at term-equivalent age using manual volumetry of 3-tesla magnetic resonance images. Pediatrics 119(4):759–765PubMedCrossRefGoogle Scholar
  55. Taylor HG, Klein N, Minich NM, Hack M (2000) Middle-school-age outcomes in children with very low birthweight. Child Dev 71(6):1495–1511PubMedCrossRefGoogle Scholar
  56. Taylor HG, Filipek PA, Juranek J, Bangert B, Minich N, Hack M (2011) Brain volumes in adolescents with very low birth weight: effects on brain structure and associations with neuropsychological outcomes. Dev Neuropsychol 36(1):96–117PubMedCrossRefGoogle Scholar
  57. Thompson DK, Warfield SK, Carlin JB, Pavlovic M, Wang HX, Bear M, Kean MJ, Doyle LW, Egan GF, Inder TE (2007) Perinatal risk factors altering regional brain structure in the preterm infant. Brain 130(Pt 3):667–677PubMedCrossRefGoogle Scholar
  58. Tohka J, Zijdenbos A, Evans A (2004) Fast and robust parameter estimation for statistical partial volume models in brain MRI. NeuroImage 23(1):84–97PubMedCrossRefGoogle Scholar
  59. Van Reempts P, Gortner L, Milligan D, Cuttini M, Petrou S, Agostino R, Field D, den Ouden L, Borch K, Mazela J, Carrapato M, Zeitlin J (2007) Characteristics of neonatal units that care for very preterm infants in Europe: results from the MOSAIC study. Pediatrics 120(4):e815–e825PubMedCrossRefGoogle Scholar
  60. Volpe JJ (2009) Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol 8(1):110–124PubMedCrossRefGoogle Scholar
  61. Wechsler D (2003) Wechsler Intelligence Scale for Children, 4th edn. Psychological Corporation, San Antonio, TXGoogle Scholar
  62. Worsley KJ, Andermann M, Koulis T, MacDonald D, Evans AC (1999) Detecting changes in nonisotropic images. Hum Brain Mapp 8(2–3):98–101PubMedCrossRefGoogle Scholar
  63. Worsley KJ, Taylor JE, Carbonell F, Chung MK, Duerden E, Bernhardt B, Lyttelton O, Boucher M, Evans AC (2009) SurfStat: A Matlab toolbox for the statistical analysis of univariate and multivariate surface and volumetric data using linear mixed effects models and random field theory. NeuroImage 47 (S102)Google Scholar
  64. Zijdenbos AP, Forghani R, Evans AC (2002) Automatic “pipeline” analysis of 3-D MRI data for clinical trials: application to multiple sclerosis. IEEE Trans Med Imaging 21(10):1280–1291PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Ilyse D. Lax
    • 1
  • Emma G. Duerden
    • 1
    • 3
  • Sarah Y. Lin
    • 1
    • 4
  • M. Mallar Chakravarty
    • 3
    • 5
  • Elizabeth J. Donner
    • 2
  • Jason P. Lerch
    • 3
    • 4
    • 7
  • Margot J. Taylor
    • 1
    • 2
    • 3
    • 6
    Email author
  1. 1.Department of Diagnostic ImagingHospital for Sick ChildrenTorontoCanada
  2. 2.Department of NeurologyHospital for Sick ChildrenTorontoCanada
  3. 3.Department of Neuroscience and Mental Health, Research InstituteHospital for Sick ChildrenTorontoCanada
  4. 4.Mouse Imaging CentreHospital for Sick ChildrenTorontoCanada
  5. 5.Kimel Family Translational Imaging-Genetics Research Laboratory, Research Imaging CentreCentre for Addiction and Mental HealthTorontoCanada
  6. 6.Department of PsychologyUniversity of TorontoTorontoCanada
  7. 7.Department of Medical BiophysicsUniversity of TorontoTorontoCanada

Personalised recommendations