Brain Structure and Function

, Volume 218, Issue 1, pp 269–281 | Cite as

A 3-dimensional digital atlas of the ascending sensory and the descending motor systems in the pigeon brain

  • Onur GüntürkünEmail author
  • Marleen Verhoye
  • Geert De Groof
  • Annemie Van der Linden
Original Article


Pigeons are classic animal models for learning, memory, and cognition. The majority of the current understanding about avian neurobiology outside of the domain of the song system has been established using pigeons. Since MRI represents an increasingly relevant tool for comparative neuroscience, a 3-dimensional MRI-based atlas of the pigeon brain becomes essential. Using multiple imaging protocols, we delineated diverse ascending sensory and descending motor systems as well as the hippocampal formation. This pigeon brain atlas can easily be used to determine the stereotactic location of identified neural structures at any angle of the head. In addition, the atlas is useful to find the optimal angle of sectioning for slice experiments, stereotactic injections and electrophysiological recordings. This pigeon brain atlas is freely available for the scientific community.


Bird High-field MRI Visual system Basal ganglia Hippocampus 



Supported by the Deutsche Forschungsgemeinschaft through its SFB 874 (O.G.). We are grateful to Steven Staelens, Steven Deleye and Philippe Joye from MICA (Universiteit Antwerpen) for support during CT scans and Ariane Schwarz as well as Felix Ströckens for help with histology and microscopy.


  1. Adams A, Santi A (2011) Pigeons exhibit higher accuracy for chosen memory tests than for forced memory tests in duration matching-to-sample. Learn Behav 39:1–11PubMedGoogle Scholar
  2. Arends JJ, Zeigler HP (1986) Anatomical identification of an auditory pathway from a nucleus of the lateral lemniscal system to the frontal telencephalon (nucleus basalis) of the pigeon. Brain Res 398:375–381PubMedCrossRefGoogle Scholar
  3. Atoji Y, Wild JM (2004) Fiber connections of the hippocampal formation and septum and subdivisions of the hippocampal formation in the pigeon as revealed by tract tracing and kainic acid lesions. J Comp Neurol 475:426–461PubMedCrossRefGoogle Scholar
  4. Atoji Y, Wild JM, Yamamoto Y, Suzuki Y (2002) Intratelencephalic connections of the hippocampus in pigeons. J Comp Neurol 447:177–199PubMedCrossRefGoogle Scholar
  5. Atoji Y, Saito S, Wild JM (2006) Fiber connections of the compact division of the posterior pallial amygdala and lateral part of the bed nucleus of the stria terminalis in the pigeon (Columba livia). J Comp Neurol 499:161–182PubMedCrossRefGoogle Scholar
  6. Bingman VP, Casini G, Nocjar C, Jones TJ (1994) Connections of the piriform cortex in homing pigeons (Columba livia) studied with fast blue and WGA-HRP. Brain Behav Evol 43:206–218PubMedCrossRefGoogle Scholar
  7. Bonke BA, Bonke D, Scheich H (1979) Connectivity of the auditory forebrain nuclei in the guinea fowl (Numida meleagris). Cell Tissue Res 200:101–121PubMedCrossRefGoogle Scholar
  8. Brecha N, Karten HJ, Hunt SP (1980) Projections of the nucleus of basal optic root in the pigeon: an autoradiographic and horseradish peroxidase study. J Comp Neurol 189:615–670PubMedCrossRefGoogle Scholar
  9. Browning R, Overmier JB, Colombo M (2011) Delay activity in avian prefrontal cortex—sample code or reward code? Eur J Neurosci 33:726–735PubMedCrossRefGoogle Scholar
  10. Carvalho LS, Cowing JA, Wilkie SE, Bowmaker JK, Hunt DM (2007) The molecular evolution of avian ultraviolet- and violet-sensitive visual pigments. Mol Biol Evol 24:1843–1852PubMedCrossRefGoogle Scholar
  11. Casini G, Bingman VP, Bagnoli P (1986) Connections of pigeon dorsomedial forebrain studied with HRP and 3H-proline. J Comp Neurol 245:454–470PubMedCrossRefGoogle Scholar
  12. Catsicas S, Catsicas M, Clarke PGH (1987) Long-distance intraretinal connections in birds. Nature 326:186–187PubMedCrossRefGoogle Scholar
  13. Cheng M-F, Chaiken M, Zuo M, Miller H (1999) Nucleus taeniae of the amygdala of birds: anatomical and suctional studies in ring doves (Streptopelia risoria) and European starlings (Sturnus vulgaris). Brain Behav Evol 53:243–270PubMedCrossRefGoogle Scholar
  14. Colombo M, Broadbent NJ (2000) Is the avian hippocampus a functional homologue of the mammalian hippocampus? Neurosci Biobehav Rev 24:465–484PubMedCrossRefGoogle Scholar
  15. De Groof G, Verhoye M, Van Meir V, Tindemans I, Leemans A, Van der Linden A (2006) In vivo diffusion tensor imaging (DTI) of brain subdivisions and vocal pathways in songbirds. Neuroimage 29:754–763PubMedCrossRefGoogle Scholar
  16. Deng C, Wang B (1992) Overlap of somatic and visual response areas in the Wulst of pigeon. Brain Res 582:320–322PubMedCrossRefGoogle Scholar
  17. Desai M, Kahn I, Knoblich U, Bernstein J, Atallah H, Yang A, Kopell N, Buckner RL, Graybiel AM, Moore CI, Boyden ES (2011) Mapping brain networks in awake mice using combined optical neural control and fMRI. J Neurophysiol 105:1393–1405PubMedCrossRefGoogle Scholar
  18. Diekamp B, Hellmann B, Troje NF, Wang SR, Güntürkün O (2001) Electrophysiological and anatomical evidence for a direct projection from the nucleus of the basal optic root to the nucleus rotundus in pigeons. Neurosci Lett 305:103–106PubMedCrossRefGoogle Scholar
  19. Dubbeldam JL, Den Boer-Visser AM, Bout RG (1997) Organization and efferent connections of the archistriatum of the Mallard, Anas platyrhynchos L.: an anterograde and retrograde tracing study. J Comp Neurol 388:632–657PubMedCrossRefGoogle Scholar
  20. Ferster CB, Skinner BF (1957) Schedules of reinforcement. Appleton-Century-Crofts, New YorkCrossRefGoogle Scholar
  21. Fredes F, Tapia S, Letelier JC, Marín G, Mpodozis J (2010) Topographic arrangement of the rotundo-entopallial projection in the pigeon (Columba livia). J Comp Neurol 518(21):4342–4361PubMedCrossRefGoogle Scholar
  22. Friedrich AM, Clement TS, Zentall TR (2004) Functional equivalence in pigeons involving a four-member class. Behav Process 67(3):395–403CrossRefGoogle Scholar
  23. Gagliardo A, Ioale P, Bingman VP (1999) Homing in pigeons: the role of the hippocampal formation in the representation of landmarks used for navigation. J Neurosci 19(1):311–315PubMedGoogle Scholar
  24. Gruberg E, Dudkin E, Wang Y, Marín G, Salas C, Sentis E, Letelier J, Mpodozis J, Malpeli J, Cui H, Ma R, Northmore D, Udin S (2006) Influencing and interpreting visual input: the role of a visual feedback system. J Neurosci 26(41):10368–10371PubMedCrossRefGoogle Scholar
  25. Güntürkün O (1987) A Golgi study of the isthmic nuclei in the pigeon (Columba livia). Cell Tissue Res 248:439–448PubMedCrossRefGoogle Scholar
  26. Güntürkün O (2000) Sensory physiology: vision. In: Whittow GC (ed) Sturkie’s avian physiology. Academic Press, Orlando, pp 1–19CrossRefGoogle Scholar
  27. Güntürkün O, Karten HJ (1991) An immunocytochemical analysis of the lateral geniculate complex in the pigeon (Columba livia). J Comp Neurol 314:721–749PubMedCrossRefGoogle Scholar
  28. Güntürkün O, Kröner S (1999) A polysensory pathway to the forebrain of the pigeon: the ascending projections of the n. dorsolateralis possterior thalami (DLP). Eur J Morphol 37:124–128CrossRefGoogle Scholar
  29. Güntürkün O, Remy M (1990) The topographical projection of the n. isthmi pars parvocellularis (Ipc) onto the tectum opticum in the pigeon. Neurosci Lett 111:18–22PubMedCrossRefGoogle Scholar
  30. Güntürkün O, Melsbach G, Hörster W, Daniel S (1993) Different sets of afferents are demonstrated by the two fluorescent tracers fast blue and rhodamine. J Neurosci Methods 49:103–111PubMedCrossRefGoogle Scholar
  31. Güntürkün O, Hellmann B, Melsbach G, Prior H (1998) Asymmetries of representation in the visual system of pigeons. NeuroReport 9:4127–4130PubMedCrossRefGoogle Scholar
  32. Hellmann B, Güntürkün O (2001) The structural organization of parallel information processing within the tectofugal visual system of the pigeon. J Comp Neurol 429:94–112PubMedCrossRefGoogle Scholar
  33. Herold C, Palomero-Gallagher N, Hellmann B, Kröner S, Theiss C, Güntürkün O, Zilles K (2011) The receptorarchitecture of the pigeons’ nidopallium caudolaterale—an avian analogue to the prefrontal cortex. Brain Struct Funct 216:239–254PubMedCrossRefGoogle Scholar
  34. Heyers D, Manns M, Luksch H, Güntürkün O, Mouritsen H (2007) A visual pathway links brain structures active during magnetic compass orientation. PLoS ONE 2(9):e937PubMedCrossRefGoogle Scholar
  35. Jarvis ED, Güntürkün O, Bruce L, Csillag A, Karten HJ, Kuenzel W, Medina L, Paxinos G, Perkel DJ, Shimizu T, Striedter G, Wild M, Ball GF, Dugas-Ford J, Durand S, Hough G, Husband S, Kubikova L, Lee D, Mello CV, Powers A, Siang C, Smulders TV, Wada K, White SA, Yamamoto K, Yu J, Reiner A, Butler AB (2005) Avian brains and a new understanding of vertebrate brain evolution. Nat Rev Neurosci 6:151–159PubMedCrossRefGoogle Scholar
  36. Joly O, Ramus F, Pressnitzer D, Vanduffel W, Orban GA (2011) Interhemispheric differences in auditory processing revealed by fMRI in awake rhesus monkeys. Cereb Cortex [Epub ahead of print]Google Scholar
  37. Kahn MC, Bingman VP (2009) Avian hippocampal role in space and content memory. Eur J Neurosci 30:1900–1908PubMedCrossRefGoogle Scholar
  38. Kahn MC, Hough GE II, Eyck GRT, Bingman VP (2003) Internal connectivity of the homing pigeon (Columba livia) hippocampal formation: an anterograde and retrograde tracer study. J Comp Neurol 459:127–141PubMedCrossRefGoogle Scholar
  39. Kangas BD, Vaidya M, Branch MN (2010) Titrating-delay matching-to-sample in the pigeon. J Exp Anal Behav 94:69–81PubMedCrossRefGoogle Scholar
  40. Karten HJ, Hodos W (1967) A stereotaxic atlas of the brain of the pigeon. Johns Hopkins Press, BaltimoreGoogle Scholar
  41. Karten HJ, Hodos W, Nauta WJ, Revzin AM (1973) Neural connections of the “visual wulst” of the avian telencephalon. Experimental studies in the pigeon (Columba livia) and owl (Speotyto cunicularia). J Comp Neurol 150:253–278PubMedCrossRefGoogle Scholar
  42. Knudsen EI (2011) Control from below: the role of a midbrain network in spatial attention. Eur J Neurosci 33:1961–1972PubMedCrossRefGoogle Scholar
  43. Korzeniewska E, Güntürkün O (1990) Sensory properties and afferents of the n. dorsolateralis posterior thalami (DLP) of the pigeon. J Comp Neurol 292:457–479PubMedCrossRefGoogle Scholar
  44. Krützfeldt NO, Wild JM (2005) Definition and novel connections of the entopallium in the pigeon (Columba livia). J Comp Neurol 490:40–56PubMedCrossRefGoogle Scholar
  45. Logerot P, Krützfeldt NO, Wild JM, Kubke MF (2011) Subdivisions of the auditory midbrain (n. mesencephalicus lateralis, pars dorsalis) in zebra finches using calcium-binding protein immunocytochemistry. PLoS ONE 6:e20686PubMedCrossRefGoogle Scholar
  46. Marín G, Letelier JC, Henny P, Sentis E, Farfán G, Fredes F, Pohl N, Karten H, Mpodozis J (2003) Spatial organization of the pigeon tectorotundal pathway: an interdigitating topographic arrangement. J Comp Neurol 45:361–380CrossRefGoogle Scholar
  47. Miceli D, Repérant J, Villalobos J, Dionne L (1987) Extratelencephalic projections of the avian visual Wulst. A quantitative autoradiographic study in the pigeon Columba livia. J Hirnforsch 28:45–57PubMedGoogle Scholar
  48. Miceli D, Marchand L, Repérant J, Rio J-P (1990) Projections of the dorsolateral anterior complex and adjacent thalamic nuclei upon the visual Wulst in the pigeon. Brain Res 518:317–323PubMedCrossRefGoogle Scholar
  49. Necker R (2000) The avian ear and hearing. In: Whittow GC (ed) Sturkie’s avian physiology. Academic Press, Orlando, pp 21–38CrossRefGoogle Scholar
  50. Patzke N, Manns M, Güntürkün O (2011) Telencephalic organisation of the olfactory system in homing pigeons (Columba livia). Neuroscience 194:53–61PubMedCrossRefGoogle Scholar
  51. Poirier C, Vellema M, Verhoye M, Van Meir V, Wild JM, Balthazart J, Van Der Linden A (2008) A three-dimensional MRI atlas of the zebra finch brain in stereotaxic coordinates. Neuroimage 41:1–6PubMedCrossRefGoogle Scholar
  52. Poirier C, Boumans T, Verhoye M, Balthazart J, Van der Linden A (2009) Own-song recognition in the songbird auditory pathway: selectivity and lateralization. J Neurosci 29:2252–2258PubMedCrossRefGoogle Scholar
  53. Prior H, Wiltschko R, Stapput K, Güntürkün O, Wiltschko W (2004) Visual lateralization and homing in pigeons. Behav Brain Res 154:301–310PubMedCrossRefGoogle Scholar
  54. Redies C, Medina L, Puelles L (2001) Cadherin expression by embryonic divisions and derived gray matter structures in the telencephalon of the chicken. J Comp Neurol 438:253–285PubMedCrossRefGoogle Scholar
  55. Reiner A, Karten HJ (1985) Comparison of olfactory bulb projections in pigeons and turtles. Brain Behav Evol 27:11–27PubMedCrossRefGoogle Scholar
  56. Reiner A, Medina L, Veenman CL (1998) Structural and functional evolution of the basal ganglia in vertebrates. Brain Res Brain Res Rev 28:235–285PubMedCrossRefGoogle Scholar
  57. Reiner A, Bruce L, Butler A, Csillag A, Kuenzel W, Medina L, Paxinos G, Perkel D, Powers A, Shimizu T, Striedter G, Wild M, Ball G, Durand S, Güntürkün O, Lee D, Mello C, White S, Hough G, Kubikova L, Smulders T, Wada K, Dugas-Ford J, Husband S, Yamamoto K, Yu J, Siang C, Jarvis ED (2004) Revised nomenclature for avian telencephalon and some related brainstem nuclei. J Comp Neurol 473:377–414PubMedCrossRefGoogle Scholar
  58. Remy M, Güntürkün O (1991) Retinal afferents of the tectum opticum and the nucleus opticus principalis thalami in the pigeon. J Comp Neurol 305:57–70PubMedCrossRefGoogle Scholar
  59. Rose J, Schiffer A-M, Dittrich L, Güntürkün O (2010) The role of dopamine in maintenance and distractability of attention in the ‘prefrontal cortex’ of pigeons. Neuroscience 167:232–237PubMedCrossRefGoogle Scholar
  60. Scarf D, Colombo M (2010) Representation of serial order in pigeons (Columba livia). J Exp Psychol Anim Behav Process 36:423–429PubMedCrossRefGoogle Scholar
  61. Schall U, Güntürkün O, Delius JD (1986) Sensory projections to the nucleus basalis prosencephali of the pigeon. Cell Tissue Res 245:539–546PubMedCrossRefGoogle Scholar
  62. Shimizu T, Karten HJ (1990) Immunohistochemical analysis of the visual Wulst of the pigeon (Columba livia). J Comp Neurol 300:346–369PubMedCrossRefGoogle Scholar
  63. Shimizu T, Karten HJ (1993) The avian visual system and the evolution of the neocortex. In: Zeigler HP, Bischof H-J (eds) Vision, brain and behavior in birds. MIT Press, CambridgeGoogle Scholar
  64. Székely AD (1999) The avian hippocampal formation: subdivisions and connectivity. Behav Brain Res 98:219–225PubMedCrossRefGoogle Scholar
  65. Uchiyama H (1989) Centrifugal pathways to the retina: influence of the optic tectum. Visual Neurosci 3:183–206CrossRefGoogle Scholar
  66. Van Meir V, Boumans T, De Groof G, Van Audekerke J, Smolders A, Scheunders P, Sijbers J, Verhoye M, Balthazart J, Van der Linden A (2005) Spatiotemporal properties of the BOLD response in the songbirds’ auditory circuit during a variety of listening tasks. Neuroimage 25:1242–1255PubMedCrossRefGoogle Scholar
  67. Vargas JP, Petruso EJ, Bingman VP (2004) Hippocampal formation is required for geometric navigation in pigeons. Eur J Neurosci 20:1937–1944PubMedCrossRefGoogle Scholar
  68. Veenman CL, Wild JM, Reiner A (1995) Organization of the avian ‘corticostriatal’ projection system: a retrograde and anterograde pathway tracing study in pigeons. J Comp Neurol 354:87–126PubMedCrossRefGoogle Scholar
  69. Vellema M, Verschuerena J, Van Meira V, Van der Linden A (2011) A customizable 3-dimensional digital atlas of the canary brain in multiple modalities. Neuroimage 57:352–361PubMedCrossRefGoogle Scholar
  70. Wang Y, Major DE, Karten HJ (2004) Morphology and connections of nucleus isthmi pars magnocellularis in chicks (Gallus gallus). J Comp Neurol 469:275–297PubMedCrossRefGoogle Scholar
  71. Wang Y, Luksch H, Brecha NC, Karten HJ (2006) Columnar projections from the cholinergic nucleus isthmi to the optic tectum in chicks (Gallus gallus): a possible substrate for synchronizing tectal channels. J Comp Neurol 494:7–35PubMedCrossRefGoogle Scholar
  72. Watanabe M, Ito H, Masai H (1983) Cytoarchitecture and visual receptive neurons in the Wulst of the Japanese quail (Coturnix coturnix japonica). J Comp Neurol 213:188–198PubMedCrossRefGoogle Scholar
  73. Wild JM (1985) The avian somatosensory system. I. Primary spinal afferent input to the spinal cord and brainstem in the pigeon (Columba livia). J Comp Neurol 240:377–395PubMedCrossRefGoogle Scholar
  74. Wild JM (1987) The avian somatosensory system: connections of regions of body representation in the forebrain of the body. Brain Res 412:205–223PubMedCrossRefGoogle Scholar
  75. Wild JM (1992) Direct and indirect “cortico”-rubral and rubro-cerebellar cortical projections in the pigeon. J Comp Neurol 326:623–636PubMedCrossRefGoogle Scholar
  76. Wild JM (1995) Convergence of somatosensory and auditory projections in the avian torus semicircularis, including the central auditory nucleus. J Comp Neurol 358:465–486PubMedCrossRefGoogle Scholar
  77. Wild JM, Zeigler HP (1996) Central projections and somatotopic organisation of trigeminal primary afferents in pigeon (Columba livia). J Comp Neurol 368:136–152PubMedCrossRefGoogle Scholar
  78. Wild JM, Karten HJ, Frost BJ (1993) Connections of the auditory forebrain in the pigeon (Columba livia). J Comp Neurol 337:32–62PubMedCrossRefGoogle Scholar
  79. Wilzeck C, Wiltschko W, Güntürkün O, Wiltschko R, Prior H (2010) Lateralization of magnetic compass orientation in pigeons. J R Soc Interface 7:235–240CrossRefGoogle Scholar
  80. Wylie DRW, Linkenhoker B, Lau KL (1997) Projections of the nucleus of the basal optic root in pigeons (Columba livia) revealed with biotinylated dextrane amine. J Comp Neurol 384:517–536PubMedCrossRefGoogle Scholar
  81. Xiao Q, Güntürkün O (2008) Do pigeons perceive the motion aftereffect? A behavioral study. Behav Brain Res 187:327–333PubMedCrossRefGoogle Scholar
  82. Yamazaki Y, Aust U, Huber L, Güntürkün O (2007) Lateralized cognition: asymmetrical and complementary strategies of pigeons during discrimination of the “human” concept. Cognition 104:315–344PubMedCrossRefGoogle Scholar
  83. Zapka M, Heyers D, Hein CM, Engels S, Schneider NL, Hans J, Weiler S, Dreyer D, Kishkinev D, Wild JM, Mouritsen H (2009) Visual but not trigeminal mediation of magnetic compass information in a migratory bird. Nature 461:1274–1277PubMedCrossRefGoogle Scholar
  84. Zeier H, Karten HJ (1971) The archistriatum of the pigeon: organization of afferent and efferent connections. Brain Res 31:313–326PubMedCrossRefGoogle Scholar
  85. Zentall TR, Weaver JE, Clement TS (2004) Pigeons group time intervals according to their relative duration. Psychon Bull Rev 11(1):113–117PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Onur Güntürkün
    • 1
    Email author
  • Marleen Verhoye
    • 2
  • Geert De Groof
    • 2
  • Annemie Van der Linden
    • 2
  1. 1.Department of Biopsychology, Faculty of PsychologyInstitute of Cognitive Neuroscience, Ruhr-University BochumBochumGermany
  2. 2.Bio-Imaging LabUniversity of AntwerpWilrijkBelgium

Personalised recommendations