Brain Structure and Function

, Volume 218, Issue 1, pp 1–20 | Cite as

Functional anatomy of cortical areas characterized by Von Economo neurons

  • Franco Cauda
  • Diana M. E. Torta
  • Katiuscia Sacco
  • Federico D’Agata
  • Elisabetta Geda
  • Sergio Duca
  • Giuliano Geminiani
  • Alessandro Vercelli
Review

Abstract

Von Economo’s neurons (VENs) are large, bipolar or corkscrew-shaped neurons located in layers III and V of the frontoinsular and the anterior cingulate cortices. VENs are reported to be altered in pathologies such as frontotemporal dementia and autism, in which the individual’s self control is seriously compromised. To investigate the role of VENs in the active human brain, we have explored the functional connectivity of brain areas containing VENs by analyzing resting state functional connectivity (rsFC) in 20 healthy volunteers. Our results show that cortical areas containing VENs form a network of frontoparietal functional connectivity. With the use of fuzzy clustering techniques, we find that this network comprises four sub-networks: the first network cluster resembles a “saliency detection” attentional network, which includes superior frontal cortex (Brodmann’s Area, BA 10), inferior parietal lobe, anterior insula, and dorsal anterior cingulate cortex; the second cluster, part of a “sensory-motor network”, comprises the superior temporal, precentral and postcentral areas; the third cluster consists of frontal ventromedial and ventrodorsal areas constituted by parts of the “anterior default mode network”; and the fourth cluster encompasses dorsal anterior cingulate cortex, dorsomedial prefrontal, and superior frontal (BA 10) areas, resembling the anterior part of the “dorsal attentional network”. Thus, the network that emerges from analyzing functional connectivity among areas that are known to contain VENs is primarily involved in functions of saliency detection and self-regulation. In addition, parts of this network constitute sub-networks that partially overlap with the default mode, the sensory-motor and the dorsal attentional networks.

Keywords

Von Economo neurons Resting state Functional connectivity Clustering FMRI 

Abbreviations

VENs

Von Economo’s neurons

FI

Frontoinsular cortex

ACC

Anterior cingulate cortex

ATF3

Activating-transcription factor 3

IL4Ra

Interleukin 4 receptor

NMB

Neuromedin B

DTI

Diffusion tensor imaging

rsFC

Resting state functional connectivity

BOLD

Blood oxygen level-dependent

EPI

Echoplanar sequences

TR

Repetition time

FoV

Field of view

AC–PC

Anterior-posterior commissure

FFE

Fast field echo sequence

GLM

General linear model

FCM

Fuzzy-mean clustering technique

Supplementary material

429_2012_382_MOESM1_ESM.pdf (1.2 mb)
Supplementary material 1 (PDF 1272 kb)

References

  1. Achard S, Salvador R, Whitcher B, Suckling J, Bullmore E (2006) A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J Neurosci 26(1):63–72 (pii: 26/1/63)PubMedCrossRefGoogle Scholar
  2. Allman JM, Watson KK, Tetreault NA, Hakeem AY (2005) Intuition and autism: a possible role for Von Economo neurons. Trends Cogn Sci 9(8):367–373. pii: S1364-6613(05)00180-4PubMedCrossRefGoogle Scholar
  3. Allman JM, Tetreault NA, Hakeem AY, Manaye KF, Semendeferi K, Erwin JM, Park S, Goubert V, Hof PR (2010) The von Economo neurons in frontoinsular and anterior cingulate cortex in great apes and humans. Brain Struct Funct 214(5–6):495–517. doi:10.1007/s00429-010-0254-0 PubMedCrossRefGoogle Scholar
  4. Allman JM, Tetreault NA, Hakeem AY, Park S (2011) The von economo neurons in apes and humans. Am J Hum Biol 23(1):5–21. doi:10.1002/ajhb.21136 PubMedCrossRefGoogle Scholar
  5. Bandettini PA, Bullmore E (2008) Endogenous oscillations and networks in functional magnetic resonance imaging. Hum Brain Mapp 29(7):737–739. doi:10.1002/hbm.20607 PubMedCrossRefGoogle Scholar
  6. Bassett DS, Bullmore E, Verchinski BA, Mattay VS, Weinberger DR, Meyer-Lindenberg A (2008) Hierarchical organization of human cortical networks in health and schizophrenia. J Neurosci 28(37):9239–9248 (pii: 28/37/9239)PubMedCrossRefGoogle Scholar
  7. Beckmann CF, DeLuca M, Devlin JT, Smith SM (2005) Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond B Biol Sci 360(1457):1001–1013. pii: XT925HERTX30WFYPPubMedCrossRefGoogle Scholar
  8. Ben Shalom D, Mostofsky SH, Hazlett RL, Goldberg MC, Landa RJ, Faran Y, McLeod DR, Hoehn-Saric R (2006) Normal physiological emotions but differences in expression of conscious feelings in children with high-functioning autism. J Autism Dev Disord 36(3):395–400. doi:10.1007/s10803-006-0077-2 PubMedCrossRefGoogle Scholar
  9. Betz W (1874) Anatomischer Nachweis zweier Gehirncentra. Zentralbl Med Wiss 12:578–580Google Scholar
  10. Betz W (1881) Ueber die feinere Structur der Gehirnrinde des Menschen. Zentralbl Med Wiss 19:193–195Google Scholar
  11. Bilder RM, Sabb FW, Parker DS, Kalar D, Chu WW, Fox J, Freimer NB, Poldrack RA (2009) Cognitive ontologies for neuropsychiatric phenomics research. Cogn Neuropsychiatry 14(4–5):419–450. pii: 913383678PubMedCrossRefGoogle Scholar
  12. Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34(4):537–541PubMedCrossRefGoogle Scholar
  13. Brüne M, Schöbel A, Karau R, Faustmann PM, Dermietzel R, Juckel G, Petrasch-Parwez E (2011) Neuroanatomical correlates of suicide in psychosis: the possible role of von Economo neurons. PLoS One 6(6):e20936. doi:10.1371/journal.pone.0020936 PubMedCrossRefGoogle Scholar
  14. Buckner RL, Sepulcre J, Talukdar T, Krienen FM, Liu H, Hedden T, Andrews-Hanna JR, Sperling RA, Johnson KA (2009) Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer’s disease. J Neurosci 29(6):1860–1873. pii: 29/6/1860PubMedCrossRefGoogle Scholar
  15. Butti C, Hof PR (2010) The insular cortex: a comparative perspective. Brain Struct Funct 214(5–6):477–493. doi:10.1007/s00429-010-0264-y PubMedCrossRefGoogle Scholar
  16. Butti C, Sherwood CC, Hakeem AY, Allman JM, Hof PR (2009) Total number and volume of Von Economo neurons in the cerebral cortex of cetaceans. J Comp Neurol 515(2):243–259. doi:10.1002/cne.22055 PubMedCrossRefGoogle Scholar
  17. Butti C, Santos M, Uppal N, Hof PR (2011) Von Economo neurons: Clinical and evolutionary perspectives. Cortex. doi:10.1016/j.cortex.2011.10.004
  18. Buxhoeveden DP, Casanova MF (2002) The minicolumn and evolution of the brain. Brain Behav Evol 60(3):125–151. pii: 65935PubMedCrossRefGoogle Scholar
  19. Cauda F, Geminiani G, D’Agata F, Sacco K, Duca S, Bagshaw AP, Cavanna AE (2010a) Functional connectivity of the posteromedial cortex. PLoS One 5(9):e13107PubMedCrossRefGoogle Scholar
  20. Cauda F, Geminiani G, D’agata F, Duca S, Sacco K (2010b) Discovering the somatotopic organization of the motor areas of the medial wall using low-frequency bold fluctuations. Hum Brain Mapp. doi:10.1002/hbm.21132
  21. Cauda F, D’Agata F, Sacco K, Duca S, Geminiani G, Vercelli A (2011) Functional connectivity of the insula in the resting brain. Neuroimage 55(1):8–23. pii: S1053-8119(10)01527-2PubMedCrossRefGoogle Scholar
  22. Chubb JE, Bradshaw NJ, Soares DC, Porteous DJ, Millar JK (2008) The DISC locus in psychiatric illness. Mol Psychiatry 13(1):36–64. pii: 4002106PubMedCrossRefGoogle Scholar
  23. Cloutman LL, Binney RJ, Drakesmith M, Parker GJ, Lambon Ralph MA (2011) The variation of function across the human insula mirrors its patterns of structural connectivity: Evidence from in vivo probabilistic tractography. Neuroimage. pii: S1053-8119(11)01297-3Google Scholar
  24. Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3(3):201–215. doi:10.1038/nrn755 PubMedCrossRefGoogle Scholar
  25. Craig AD (2009) How do you feel–now? The anterior insula and human awareness. Nat Rev Neurosci 10(1):59–70. pii: nrn2555PubMedCrossRefGoogle Scholar
  26. Craig AD (2010) The sentient self. Brain Struct Funct 214(5–6):563–577. doi:10.1007/s00429-010-0248-y PubMedCrossRefGoogle Scholar
  27. Damoiseaux JS, Rombouts SA, Barkhof F, Scheltens P, Stam CJ, Smith SM, Beckmann CF (2006) Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci USA 103(37):13848–13853. pii: 0601417103PubMedCrossRefGoogle Scholar
  28. Dehaene S, Cohen L (1994) Dissociable mechanisms of subitizing and counting: neuropsychological evidence from simultanagnosic patients. J Exp Psychol Hum Percept Perform 20(5):958–975PubMedCrossRefGoogle Scholar
  29. Deshpande G, Santhanam P, Hu X (2011) Instantaneous and causal connectivity in resting state brain networks derived from functional MRI data. Neuroimage 54(2):1043–1052. pii: S1053-8119(10)01205-XPubMedCrossRefGoogle Scholar
  30. Dosenbach NU, Visscher KM, Palmer ED, Miezin FM, Wenger KK, Kang HC, Burgund ED, Grimes AL, Schlaggar BL, Petersen SE (2006) A core system for the implementation of task sets. Neuron 50(5):799–812. pii: S0896-6273(06)00349-7PubMedCrossRefGoogle Scholar
  31. Fadili MJ, Ruan S, Bloyet D, Mazoyer B (2000) A multistep unsupervised fuzzy clustering analysis of fMRI time series. Hum Brain Mapp 10(4):160–178PubMedCrossRefGoogle Scholar
  32. Fadili MJ, Ruan S, Bloyet D, Mazoyer B (2001) On the number of clusters and the fuzziness index for unsupervised FCA application to BOLD fMRI time series. Med Image Anal 5(1):55–67. pii: S1361-8415(00)00035-9PubMedCrossRefGoogle Scholar
  33. Fajardo C, Escobar MI, Buritica E, Arteaga G, Umbarila J, Casanova MF, Pimienta H (2008) Von Economo neurons are present in the dorsolateral (dysgranular) prefrontal cortex of humans. Neurosci Lett 435(3):215–218. pii: S0304-3940(08)00230-9PubMedCrossRefGoogle Scholar
  34. Ferrarini L, Veer IM, Baerends E, van Tol MJ, Renken RJ, van der Wee NJ, Veltman DJ, Aleman A, Zitman FG, Penninx BW, van Buchem MA, Reiber JH, Rombouts SA, Milles J (2009) Hierarchical functional modularity in the resting-state human brain. Hum Brain Mapp 30(7):2220–2231. doi:10.1002/hbm.20663 PubMedCrossRefGoogle Scholar
  35. Forman SD, Cohen JD, Fitzgerald M, Eddy WF, Mintun MA, Noll DC (1995) Improved assessment of significant activation in functional magnetic resonance imaging (fMRI): use of a cluster-size threshold. Magn Reson Med 33(5):636–647PubMedCrossRefGoogle Scholar
  36. Fox MD, Snyder AZ, Barch DM, Gusnard DA, Raichle ME (2005a) Transient BOLD responses at block transitions. Neuroimage 28(4):956–966. pii: S1053-8119(05)00464-7PubMedCrossRefGoogle Scholar
  37. Fox PT, Laird AR, Fox SP, Fox PM, Uecker AM, Crank M, Koenig SF, Lancaster JL (2005b) BrainMap taxonomy of experimental design: description and evaluation. Hum Brain Mapp 25(1):185–198. doi:10.1002/hbm.20141 PubMedCrossRefGoogle Scholar
  38. Fox MD, Corbetta M, Snyder AZ, Vincent JL, Raichle ME (2006) Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proc Natl Acad Sci USA 103(26):10046–10051. pii: 0604187103PubMedCrossRefGoogle Scholar
  39. Fox MD, Zhang D, Snyder AZ, Raichle ME (2009) The global signal and observed anticorrelated resting state brain networks. J Neurophysiol 101(6):3270–3283. pii: 90777.2008PubMedCrossRefGoogle Scholar
  40. Fransson P (2006) How default is the default mode of brain function? Further evidence from intrinsic BOLD signal fluctuations. Neuropsychologia 44(14):2836–2845. pii: S0028-3932(06)00251-XPubMedCrossRefGoogle Scholar
  41. Friston KJ, Frith CD, Liddle PF, Frackowiak RS (1993) Functional connectivity: the principal-component analysis of large (PET) data sets. J Cereb Blood Flow Metab 13(1):5–14. doi:10.1038/jcbfm.1993.4 PubMedCrossRefGoogle Scholar
  42. Goebel R, Esposito F, Formisano E (2006) Analysis of functional image analysis contest (FIAC) data with brainvoyager QX: From single-subject to cortically aligned group general linear model analysis and self-organizing group independent component analysis. Hum Brain Mapp 27(5):392–401. doi:10.1002/hbm.20249 PubMedCrossRefGoogle Scholar
  43. Golay X, Kollias S, Stoll G, Meier D, Valavanis A, Boesiger P (1998) A new correlation-based fuzzy logic clustering algorithm for fMRI. Magn Reson Med 40(2):249–260PubMedCrossRefGoogle Scholar
  44. Greicius M (2008) Resting-state functional connectivity in neuropsychiatric disorders. Curr Opin Neurol 21(4):424–430. doi:10.1097/WCO.0b013e328306f2c5 PubMedCrossRefGoogle Scholar
  45. Greicius MD, Krasnow B, Reiss AL, Menon V (2003) Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci USA 100(1):253–258. doi:10.1073/pnas.0135058100 PubMedCrossRefGoogle Scholar
  46. Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, Wedeen VJ, Sporns O (2008) Mapping the structural core of human cerebral cortex. PLoS Biol 6(7):e159. pii: 07-PLBI-RA-4028PubMedCrossRefGoogle Scholar
  47. Hakeem AY, Sherwood CC, Bonar CJ, Butti C, Hof PR, Allman JM (2009) Von Economo neurons in the elephant brain. Anat Rec (Hoboken) 292(2):242–248. doi:10.1002/ar.20829 CrossRefGoogle Scholar
  48. Hampson M, Peterson BS, Skudlarski P, Gatenby JC, Gore JC (2002) Detection of functional connectivity using temporal correlations in MR images. Hum Brain Mapp 15(4):247–262. doi:10.1002/hbm.10022 PubMedCrossRefGoogle Scholar
  49. He Y, Wang J, Wang L, Chen ZJ, Yan C, Yang H, Tang H, Zhu C, Gong Q, Zang Y, Evans AC (2009) Uncovering intrinsic modular organization of spontaneous brain activity in humans. PLoS One 4(4):e5226. doi:10.1371/journal.pone.0005226 PubMedCrossRefGoogle Scholar
  50. Hof PR, Van der Gucht E (2007) Structure of the cerebral cortex of the humpback whale, Megaptera novaeangliae (Cetacea, Mysticeti, Balaenopteridae). Anat Rec (Hoboken) 290(1):1–31. doi:10.1002/ar.20407 CrossRefGoogle Scholar
  51. Horwitz B (2003) The elusive concept of brain connectivity. Neuroimage 19(2 Pt 1):466–470. pii: S1053811903001125PubMedCrossRefGoogle Scholar
  52. Jaccard P (1901) Étude comparative de la distribution florale dans une portion des Alpes et des Jura. Bulletin de la Société Vaudoise des Sciences Naturelles 37:547–579Google Scholar
  53. Jafri MJ, Pearlson GD, Stevens M, Calhoun VD (2008) A method for functional network connectivity among spatially independent resting-state components in schizophrenia. Neuroimage 39(4):1666–1681. pii: S1053-8119(07)01028-2PubMedCrossRefGoogle Scholar
  54. Jakab A, Molnar PP, Bogner P, Beres M, Berenyi EL (2011) Connectivity-based parcellation reveals interhemispheric differences in the insula. Brain Topogr. doi:10.1007/s10548-011-0205-y
  55. Kaufman JA, Paul LK, Manaye KF, Granstedt AE, Hof PR, Hakeem AY, Allman JM (2008) Selective reduction of Von Economo neuron number in agenesis of the corpus callosum. Acta Neuropathol 116(5):479–489. doi:10.1007/s00401-008-0434-7 PubMedCrossRefGoogle Scholar
  56. Kennedy DP, Semendeferi K, Courchesne E (2007) No reduction of spindle neuron number in frontoinsular cortex in autism. Brain Cogn 64(2):124–129. pii: S0278-2626(07)00022-XPubMedCrossRefGoogle Scholar
  57. Kim EJ, Sidhu M, Gaus SE, Huang EJ, Hof PR, Miller BL, Dearmond SJ, Seeley WW (2012) Selective frontoinsular von economo neuron and fork cell loss in early behavioral variant frontotemporal dementia. Cereb Cortex 22(2):251–259Google Scholar
  58. Laird AR, Lancaster JL, Fox PT (2005) BrainMap: the social evolution of a human brain mapping database. Neuroinformatics 3(1):65–78. doi:10.1385/NI:3:1:065 PubMedCrossRefGoogle Scholar
  59. Margulies DS, Kelly AM, Uddin LQ, Biswal BB, Castellanos FX, Milham MP (2007) Mapping the functional connectivity of anterior cingulate cortex. Neuroimage 37(2):579–588. pii: S1053-8119(07)00409-0PubMedCrossRefGoogle Scholar
  60. Menon V, Uddin LQ (2010) Saliency, switching, attention and control: a network model of insula function. Brain Struct Funct 214(5–6):655–667. doi:10.1007/s00429-010-0262-0 PubMedCrossRefGoogle Scholar
  61. Meunier D, Lambiotte R, Fornito A, Ersche KD, Bullmore ET (2009) Hierarchical modularity in human brain functional networks. Front Neuroinformatics 3:37. doi:10.3389/neuro.11.037.2009 Google Scholar
  62. Miezin FM, Maccotta L, Ollinger JM, Petersen SE, Buckner RL (2000) Characterizing the hemodynamic response: effects of presentation rate, sampling procedure, and the possibility of ordering brain activity based on relative timing. Neuroimage 11(6 Pt 1):735–759. doi:10.1006/nimg.2000.0568 PubMedCrossRefGoogle Scholar
  63. Moller U, Ligges M, Georgiewa P, Grunling C, Kaiser WA, Witte H, Blanz B (2002) How to avoid spurious cluster validation? A methodological investigation on simulated and fMRI data. Neuroimage 17(1):431–446. pii: S1053811902911663PubMedCrossRefGoogle Scholar
  64. Napadow V, Dhond R, Conti G, Makris N, Brown EN, Barbieri R (2008) Brain correlates of autonomic modulation: combining heart rate variability with fMRI. Neuroimage 42(1):169–177. pii: S1053-8119(08)00509-0PubMedCrossRefGoogle Scholar
  65. Nelson SM, Dosenbach NU, Cohen AL, Wheeler ME, Schlaggar BL, Petersen SE (2010) Role of the anterior insula in task-level control and focal attention. Brain Struct Funct 214(5–6):669–680. doi:10.1007/s00429-010-0260-2 PubMedCrossRefGoogle Scholar
  66. Ngowyang G (1932) Beschreibung einer Art von Spezialzellen in der Inselrinde-zugleich Bemerkungen Ãber die v. Economoschen Spezialzellen. J Psychol Neurol 44:671–674Google Scholar
  67. Nimchinsky EA, Vogt BA, Morrison JH, Hof PR (1995) Spindle neurons of the human anterior cingulate cortex. J Comp Neurol 355(1):27–37. doi:10.1002/cne.903550106 PubMedCrossRefGoogle Scholar
  68. Nimchinsky EA, Gilissen E, Allman JM, Perl DP, Erwin JM, Hof PR (1999) A neuronal morphologic type unique to humans and great apes. Proc Natl Acad Sci USA 96(9):5268–5273PubMedCrossRefGoogle Scholar
  69. Parker DS, Chu WW, Sabb FW, Toga AW, Bilder RM (2009) Literature Mapping with PubAtlas: extending PubMed with a ‘BLASTing interface’. Summit on Translat Bioinforma 2009:90–94PubMedGoogle Scholar
  70. Penny WD, Friston KJ, Ashburner J, Kiebel SJ, Nichols TE (2006) Statistical parametric mapping: the analysis of functional brain images. Academic Publishers, London, pp 632–647. ISBN 13: 978-0-12-372560-8Google Scholar
  71. Preuss TM (2011) The human brain: rewired and running hot. Ann N Y Acad Sci 1225(Suppl 1):E182–E191. doi:10.1111/j.1749-6632.2011.06001.x PubMedCrossRefGoogle Scholar
  72. Raichle ME, Snyder AZ (2007) A default mode of brain function: a brief history of an evolving idea. Neuroimage 37(4):1083–1090 (discussion 1097-1089). pii: S1053-8119(07)00130-9PubMedCrossRefGoogle Scholar
  73. Ramon y Cajal S (1900) Studies on the human cerebral cortex III: structure of the acoustic cortex. Rev Trimest Microg 5:129–183Google Scholar
  74. Ramon y Cajal S (1904) Textura del Sistema Nervioso del Hombre y de losVertebrados. Nicolas Moya, MadridGoogle Scholar
  75. Santos M, Uppal N, Butti C, Wicinski B, Schmeidler J, Giannakopoulos P, Heinsen H, Schmitz C, Hof PR (2011) von Economo neurons in autism: a stereologic study of the frontoinsular cortex in children. Brain Res 1380:206–217. pii: S0006-8993(10)01881-0PubMedCrossRefGoogle Scholar
  76. Seeley WW (2008) Selective functional, regional, and neuronal vulnerability in frontotemporal dementia. Curr Opin Neurol 21(6):701–707. doi:10.1097/WCO.0b013e3283168e2d PubMedCrossRefGoogle Scholar
  77. Seeley WW, Carlin DA, Allman JM, Macedo MN, Bush C, Miller BL, Dearmond SJ (2006) Early frontotemporal dementia targets neurons unique to apes and humans. Ann Neurol 60(6):660–667. doi:10.1002/ana.21055 PubMedCrossRefGoogle Scholar
  78. Seeley WW, Allman JM, Carlin DA, Crawford RK, Macedo MN, Greicius MD, Dearmond SJ, Miller BL (2007a) Divergent social functioning in behavioral variant frontotemporal dementia and Alzheimer disease: reciprocal networks and neuronal evolution. Alzheimer Dis Assoc Disord 21(4):S50–S57. doi:10.1097/WAD.0b013e31815c0f14 PubMedCrossRefGoogle Scholar
  79. Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H, Reiss AL, Greicius MD (2007b) Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 27(9):2349–2356. pii: 27/9/2349PubMedCrossRefGoogle Scholar
  80. Seeley WW, Merkle FT, Gaus SE, Craig AD, Allman JM, Hof PR (2011) Distinctive neurons of the anterior cingulate and frontoinsular cortex: a historical perspective. Cereb Cortex. doi:10.1093/cercor/bhr005
  81. Simms ML, Kemper TL, Timbie CM, Bauman ML, Blatt GJ (2009) The anterior cingulate cortex in autism: heterogeneity of qualitative and quantitative cytoarchitectonic features suggests possible subgroups. Acta Neuropathol 118(5):673–684. doi:10.1007/s00401-009-0568-2 PubMedCrossRefGoogle Scholar
  82. Smolders A, De Martino F, Staeren N, Scheunders P, Sijbers J, Goebel R, Formisano E (2007) Dissecting cognitive stages with time-resolved fMRI data: a comparison of fuzzy clustering and independent component analysis. Magn Reson Imaging 25(6):860–868. pii: S0730-725X(07)00202-0PubMedCrossRefGoogle Scholar
  83. Sporns O, Honey CJ, Kotter R (2007) Identification and classification of hubs in brain networks. PLoS One 2(10):e1049. doi:10.1371/journal.pone.0001049 PubMedCrossRefGoogle Scholar
  84. Spreng RN, Stevens WD, Chamberlain JP, Gilmore AW, Schacter DL (2010) Default network activity, coupled with the frontoparietal control network, supports goal-directed cognition. Neuroimage 53(1):303–317. pii: S1053-8119(10)00860-8PubMedCrossRefGoogle Scholar
  85. Sridharan D, Levitin DJ, Menon V (2008) A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proc Natl Acad Sci USA 105(34):12569–12574. pii: 0800005105PubMedCrossRefGoogle Scholar
  86. Stimpson CD, Tetreault NA, Allman JM, Jacobs B, Butti C, Hof PR, Sherwood CC (2011) Biochemical specificity of von economo neurons in hominoids. Am J Hum Biol 23(1):22–28. doi:10.1002/ajhb.21135 PubMedCrossRefGoogle Scholar
  87. Torta DM, Cauda F (2011) Different functions in the cingulate cortex, a meta-analytic connectivity modeling study. Neuroimage 56(4):2157–2172. pii: S1053-8119(11)00345-4PubMedCrossRefGoogle Scholar
  88. Vercelli A, Repici M, Garbossa D, Grimaldi A (2000) Recent techniques for tracing pathways in the central nervous system of developing and adult mammals. Brain Res Bull 51(1):11–28. pii: S0361-9230(99)00229-4PubMedCrossRefGoogle Scholar
  89. Vincent T, Ciuciu P, Idier J (2007) Application and validation of spatial mixture modelling for the joint detection-estimation of brain activity in fMRI. Conf Proc IEEE Eng Med Biol Soc 2007:5218–5222. doi:10.1109/IEMBS.2007.4353518 PubMedGoogle Scholar
  90. Vincent JL, Kahn I, Snyder AZ, Raichle ME, Buckner RL (2008) Evidence for a frontoparietal control system revealed by intrinsic functional connectivity. J Neurophysiol 100(6):3328–3342. pii: 90355.2008PubMedCrossRefGoogle Scholar
  91. Von Economo C, Koskinas GN (1925) Die cytoarchitektonik der hirnrinde des erwachsenen menschen. Verlag von Julius Springer, BerlinGoogle Scholar
  92. Watson KK, Jones TK, Allman JM (2006) Dendritic architecture of the von Economo neurons. Neuroscience 141(3):1107–1112. pii: S0306-4522(06)00611-7PubMedCrossRefGoogle Scholar
  93. Weissenbacher A, Kasess C, Gerstl F, Lanzenberger R, Moser E, Windischberger C (2009) Correlations and anticorrelations in resting-state functional connectivity MRI: a quantitative comparison of preprocessing strategies. Neuroimage 47(4):1408–1416. pii: S1053-8119(09)00487-XPubMedCrossRefGoogle Scholar
  94. Woolrich MW, Ripley BD, Brady M, Smith SM (2001) Temporal autocorrelation in univariate linear modeling of FMRI data. Neuroimage 14(6):1370–1386. doi:10.1006/nimg.2001.0931 PubMedCrossRefGoogle Scholar
  95. Zadeh LA (1976) Fuzzy Set and Their Application to Pattern Recognition and Clustering Analysis. In: Van Ryzin J e (ed) Classification and clustering: proceedings of an Advanced Seminar conducted by the Mathematics Research Center, University of Wisconsin at Madison, 1976. Academic Press, pp 355–393Google Scholar
  96. Zamora-Lopez G, Zhou C, Kurths J (2010) Cortical hubs form a module for multisensory integration on top of the hierarchy of cortical networks. Front Neuroinformatics 4:1. doi:10.3389/neuro.11.001.2010 Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Franco Cauda
    • 1
    • 2
  • Diana M. E. Torta
    • 2
  • Katiuscia Sacco
    • 1
    • 2
  • Federico D’Agata
    • 1
    • 2
  • Elisabetta Geda
    • 1
    • 2
  • Sergio Duca
    • 1
    • 2
  • Giuliano Geminiani
    • 1
    • 2
  • Alessandro Vercelli
    • 3
  1. 1.CCS fMRIKoelliker HospitalTurinItaly
  2. 2.Department of PsychologyUniversity of TurinTurinItaly
  3. 3.Department of Anatomy, Pharmacology and Forensic Medicine, Neuroscience Institute of the Cavalieri OttolenghiUniversity of TurinOrbassanoItaly

Personalised recommendations