Brain Structure and Function

, Volume 217, Issue 3, pp 735–746 | Cite as

The role of temporo-parietal junction (TPJ) in global Gestalt perception

  • Elisabeth HuberleEmail author
  • Hans-Otto Karnath
Original Article


Grouping processes enable the coherent perception of our environment. A number of brain areas has been suggested to be involved in the integration of elements into objects including early and higher visual areas along the ventral visual pathway as well as motion-processing areas of the dorsal visual pathway. However, integration not only is required for the cortical representation of individual objects, but is also essential for the perception of more complex visual scenes consisting of several different objects and/or shapes. The present fMRI experiments aimed to address such integration processes. We investigated the neural correlates underlying the global Gestalt perception of hierarchically organized stimuli that allowed parametrical degrading of the object at the global level. The comparison of intact versus disturbed perception of the global Gestalt revealed a network of cortical areas including the temporo-parietal junction (TPJ), anterior cingulate cortex and the precuneus. The TPJ location corresponds well with the areas known to be typically lesioned in stroke patients with simultanagnosia following bilateral brain damage. These patients typically show a deficit in identifying the global Gestalt of a visual scene. Further, we found the closest relation between behavioral performance and fMRI activation for the TPJ. Our data thus argue for a significant role of the TPJ in human global Gestalt perception.


fMRI Global/Local Perception Simultanagnosia Temporal cortex Parietal cortex Human 



The authors would like to thank Prof. W. Grodd and the staff of the Section Experimental Research of the CNS located at the University of Tübingen for their support.


  1. Alivisatos B, Wilding J (1982) Hemispheric specialization in matching Stroop-type letter stimuli. Cortex 18:5–21PubMedGoogle Scholar
  2. Altmann CF, Bülthoff HH, Kourtzi Z (2003) Perceptual organization of local elements into global shapes in the human visual cortex. Curr Biol 13:342–349PubMedCrossRefGoogle Scholar
  3. Assmus A, Marshall JC, Noth J, Zilles K, Fink GR (2005) Difficulty of perceptual spatiotemporal integration modulates the neural activity of left inferior parietal cortex. Neuroscience 132:923–927PubMedCrossRefGoogle Scholar
  4. Bálint R (1909) Seelenlähmung des “Schauens”, optische Ataxie, räumliche Störung der Aufmerksamkeit. Monatsschrift für Psychiatrie und Neurologie 25:51–81CrossRefGoogle Scholar
  5. Buckner RL, Goodman J, Burck M, Roote M, Koutstall W, Schacter D, Rosen B, Dale AM (1998) Functional-anatomic correlates of object priming in humans revealed by rapid presentation event related fMRI. Neuron 20:285–296PubMedCrossRefGoogle Scholar
  6. Burock MA, Buckner RL, Woldorff MG, Rosen BR, Dale AM (1998) Randomized event-related experimental designs allow for extremely rapid presentation rates using functional MRI. Neuroreport 9:3735–3739PubMedCrossRefGoogle Scholar
  7. Chechlacz M, Rotshtein P, Hansen PC, Riddoch JM, Deb S, Humphreys GW (2011) The neural underpinings of simultanagnosia: disconnecting the visuospatial attention network. J Cogn Neurosci [Epub ahead of print]Google Scholar
  8. Cornette L, Dupont P, Salmon E, Orban GA (2004) The neural substrate of orientation working memory. J Cogn Neurosci 13:813–828CrossRefGoogle Scholar
  9. Costen NP, Parker DM, Craw I (1994) Spatial content and spatial quantisation effects in face recognition. Perception 23:129–146PubMedCrossRefGoogle Scholar
  10. Costen NP, Parker DM, Craw I (1996) Effects of high-pass and low-pass spatial filtering on face identification. Percept Psychophys 58:602–612PubMedCrossRefGoogle Scholar
  11. Dakin SC, Bex PJ (2001) Local and global visual grouping: tuning for spatial frequency and contrast. J Vis 1:99–111PubMedCrossRefGoogle Scholar
  12. Danckert J, Maruff P, Ymer C, Kinsella G, Yucel M, de Graaff S, Currie J (2000) Goal-directed selective attention and response competition monitoring: evidence from unilateral parietal and anterior cingulate lesions. Neuropsychology 14:16–28PubMedCrossRefGoogle Scholar
  13. Delis DC, Robertson LC, Efron R (1986) Hemispheric specialization of memory for visual hierarchical stimuli. Neuropsychologia 24:205–214PubMedCrossRefGoogle Scholar
  14. Desimone R (1996) Neural mechanisms for visual memory and their role in attention. Proc Natl Acad Sci USA 93:13494–13499PubMedCrossRefGoogle Scholar
  15. Ferber S, Humphreys GK, Vilis T (2003) The lateral occipital complex subserves the perceptual persistence of motion-defined groupings. Cereb Cortex 13:716–721PubMedCrossRefGoogle Scholar
  16. Fink GR, Halligan PW, Marshall JC, Frith CD, Frackowiak RS, Doaln RJ (1997) Neural mechanisms involved in the processing of global and local aspects of hierarchically organized visual stimuli. Brain 120:1779–1791PubMedCrossRefGoogle Scholar
  17. Fink GR, Marshall JC, Halligan PW, Dolan RJ (1999) Hemispheric asymmetries in global/local processing are modulated by perceptual salience. Neuropsychologia 37:31–40PubMedCrossRefGoogle Scholar
  18. Freeman E, Driver J, Sagi D, Zhaoping L (2003) Top-down modulation of lateral interactions in early vision: does attention affect integration of the whole or just perception of the parts? Curr Biol 27:985–989Google Scholar
  19. Friedman-Hill SR, Robertson LC, Treisman A (1995) Parietal contributions to visual feature binding: evidence from a patient with bilateral lesions. Science 269:853–855PubMedCrossRefGoogle Scholar
  20. Friston KJ, Frith CD, Turner R, Frackowiak RS (1995) Characterizing evoked hemodynamics with fMRI. Neuroimage 2:45–53PubMedCrossRefGoogle Scholar
  21. Gerlach C, Law I, Gade A, Paulson OB (1999) Perceptual differentiation and category effects in normal object recognition: a PET study. Brain 122:2159–2170PubMedCrossRefGoogle Scholar
  22. Gilbert CD, Das A, Ito M, Kapadia M, Westheimer G (1996) Spatial integration and cortical dynamics. Proc Natl Acad Sci USA 93:615–622PubMedCrossRefGoogle Scholar
  23. Gould RL, Brown RG, Owen AM, ffytche DH, Howard RJ (2003) fMRI BOLD response to increasing task difficulty during successful paired associates learning. Neuroimage 20:1006–1019PubMedCrossRefGoogle Scholar
  24. Green MF, Glahn D, Engel SA, Nuechterlein KH, Sabb S, Stojwas M, Cohen MS (2005) Regional brain activity associated with visual backward masking. J Cogn Neurosci 17:13–23PubMedCrossRefGoogle Scholar
  25. Grill-Spector K, Malach R (2001) fMR-adaptation: a tool for studying the functional properties of human cortical neurons. Acta Psychol (Amst) 107:293–321CrossRefGoogle Scholar
  26. Grill-Spector K, Kushnir T, Edelman S, Avidan G, Itzchak Y, Malach R (1999) Differential processing of objects under various viewing conditions in the human lateral occipital complex. Neuron 24:187–203PubMedCrossRefGoogle Scholar
  27. Grill-Spector K, Kourtzi Z, Kanwisher N (2001) The lateral occipital complex and its role in object recognition. Vis Res 41:1409–1422PubMedCrossRefGoogle Scholar
  28. Heinze HJ, Hinrichs H, Scholz M, Burchert W, Mangun GR (1998) Neural mechanisms of global and local processing. A combined PE and ERP study. J Cogn Neurosci 10:485–498PubMedCrossRefGoogle Scholar
  29. Himmelbach M, Erb M, Klockgether T, Moskau S, Karnath H-O (2009) fMRI of global visual perception in simultanagnosia. Neuropsychologia 47:1173–1177PubMedCrossRefGoogle Scholar
  30. Huberle E, Karnath H-O (2006) Global shape recognition is modulated by the spatial distance of local elements—evidence from simultanagnosia. Neuropsychologia 44:905–911PubMedCrossRefGoogle Scholar
  31. Huberle E, Karnath H-O (2010) Saliency modulates global perception in simultanagnosia. Exp Brain Res 204:595–603PubMedCrossRefGoogle Scholar
  32. Hughes HC, Fendrich R, Reuter-Lorenz PA (1990) Global versus local processing in the absence of low spatial frequencies. J Cogn Neurosci 2:272–282CrossRefGoogle Scholar
  33. Inoue M, Mikami A, Ando I, Tsukada H (2004) Functional brain mapping of macaque related to spatial working memory as revealed by PET. Cereb Cortex 14:106–119PubMedCrossRefGoogle Scholar
  34. Ito M, Fujita I, Tamura H, Tanaka K (1995) Size and position invariance of neuronal responses in monkey inferotemporal cortex. J Neurophysiol 73:218–226PubMedGoogle Scholar
  35. Kapadia MK, Ito M, Gilbert CD, Westheimer G (1995) Improvement in visual sensitivity by changes in local context: parallel studies in human observers and in V1 of alert monkeys. Neuron 15:843–856PubMedCrossRefGoogle Scholar
  36. Karnath H-O, Zihl J (2003) Disorders of spatial orientation. In: Brandt T, Caplan LR, Dichgans J, Diener HC, Kennard C (Hrsg.) Neurological Disorders: Course and Treatment, 2nd edn. Academic Press, San Diego, pp 277–286Google Scholar
  37. Karnath H-O, Ferber S, Rorden C, Driver J (2000) The fate of global information in dorsal simultanagnosia. Neurocase 6:295–306CrossRefGoogle Scholar
  38. Kimchi P, Palmer SE (1982) Form and texture in hierarchically constructed patterns. J Exp Psychol Hum Percept Perform 8:521–535PubMedCrossRefGoogle Scholar
  39. Koffka K (1935) Principles of Gestalt Psychology. Harcourt, New YorkGoogle Scholar
  40. Kourtzi Z, Kanwisher N (2001) Representation of perceived object shape by the human lateral occipital complex. Science 293:1506–1509PubMedCrossRefGoogle Scholar
  41. Kourtzi Z, Tolias AS, Altmann CF, Augath M, Logothetis NK (2003) Integration of local features into global shapes: monkey and human FMRI studies. Neuron 37:333–346PubMedCrossRefGoogle Scholar
  42. Kovacs I, Julesz B (1993) A closed curve is much more than an incomplete one: effect of closure in figure-ground segmentation. Proc Natl Acad Sci USA 90:7495–7497PubMedCrossRefGoogle Scholar
  43. Kramer AF, Jacobsen A (1991) Perceptual organization and focused attention: the role of objects and proximity in visual processing. Percept Psychol 50:267–284CrossRefGoogle Scholar
  44. Lamb MR, Robertson LC (1988) The processing of hierarchical stimuli: effects of retinal locus, locational uncertainty, and stimulus identity. Percept Psychophys 44:172–181PubMedCrossRefGoogle Scholar
  45. Lerner Y, Hendler T, Ben-Bashat D, Harel M, Malach R (2001) A hierarchical axis of object processing stages in the human visual cortex. Cereb Cortex 11:287–297PubMedCrossRefGoogle Scholar
  46. Livesey AC, Wall MB, Smith AT (2007) Time perception: manipulation of task difficulty dissociates clock functions from other cognitive demands. Neuopsychologia 45:321–331CrossRefGoogle Scholar
  47. Luria AR (1959) Disorders of “simultaneous perception” in a case of bilateral occipitoparietal brain injury. Brain 82:437–449PubMedCrossRefGoogle Scholar
  48. Lux S, Marshall JC, Ritzl A, Weiss PH, Pietrzyk U, Shah NJ, Zilles K, Fink GR (2004) A functional magnetic resonance imaging study of local/global processing with stimulus presentation in the peripheral visual hemifields. Neuroscience 124:113–120PubMedCrossRefGoogle Scholar
  49. Malach R, Reppas JB, Benson RR, Kwong KK, Jiang H, Kennedy WA, Ledden PJ, Brady TJ, Rosen BR, Tootell RB (1995) Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. Proc Natl Acad Sci USA 92:8135–8139PubMedCrossRefGoogle Scholar
  50. Martin M (1979) Hemispheric specialization for local nd global processing. Neuropsychologia 17:33–40PubMedCrossRefGoogle Scholar
  51. Mozer MC (1991) The perception of multiple objects. MIT Press, CambridgeGoogle Scholar
  52. Mozer MC, Sitton M (1998) Computational modeling of spatial attention. Psychology Press, ErlbaumGoogle Scholar
  53. Nagahama Y, Okada T, Katsumi Y, Hayashi T, Yamauchi H, Sawamoto N, Toma K, Nakamura K, Hanakawa T, Konishi J, Fukuyama H, Shibasaki H (1999) Transient neural activity in the medial superior frontal gyrus and precuneus time locked with attention shift between object features. Neuroimage 10:193–199PubMedCrossRefGoogle Scholar
  54. Navon D (1977) Forest before trees: the precedence of global features in visual perception. Cogn Psychol 9:353–383CrossRefGoogle Scholar
  55. Nishijo H, Yamamoto Y, Ono T, Uwano T, Yamashita J, Yamashima T (1997) Single neuron responses in the monkey anterior cingulate cortex during visual discrimination. Neurosci Lett 227:79–82PubMedCrossRefGoogle Scholar
  56. Pathel GA, Sathian k (2000) Visual search: bottom-up or top-down? Front Biosci 5:169–193Google Scholar
  57. Pouget P, Emeric FE, Suphorn V, Reis K, Schall JD (2005) Chronometry of visual response in frontal eye field, supplementary field, and anterior cingulate cortex. J Neurophysiol 94:2086–2092PubMedCrossRefGoogle Scholar
  58. Rafal RD (1997) Balint syndrome. In: Feinberg TE, Farah MJ (eds.) Behavioral Neurology and Neuropsychology. McGraw-Hill, New York, pp 337–356Google Scholar
  59. Rao H, Zhou T, Zhuo Y, Fan S, Chen L (2003) Spatiotemporal activation of the two visual pathways in form discrimination and spatial location: a brain mapping study. Hum Brain Mapp 18:79–89PubMedCrossRefGoogle Scholar
  60. Rees G, Frackowiak R, Frith C (1997) Two modulatory effects of attention that mediate object categorization in human cortex. Science 275:835–838PubMedCrossRefGoogle Scholar
  61. Riesenhuber M, Poggio T (1999a) Hierarchical models of object recognition in cortex. Nat Neurosci 2:1019–1025PubMedCrossRefGoogle Scholar
  62. Riesenhuber M, Poggio T (1999b) Are cortical models really bound by the “binding problem”? Neuron 24(87–93):111–125Google Scholar
  63. Rizzo M, Hurtig R (1987) Looking but not seeing: attention, perception, and eye movements in simultanagnosia. Neurology 37:1642–1648PubMedCrossRefGoogle Scholar
  64. Robertson LC, Lamb MR, Knight RT (1988) Effects of lesions of temporal-parietal junction on perceptual and attentional processing in humans. J Neurosci 8:3757–3769PubMedGoogle Scholar
  65. Robertson LC, Egly R, Lamb MR, Kerth L (1993) Spatial attention and cueing to global and local levels of hierarchical structure. J Exp Hum Psychol Percept Perform 19:471–487CrossRefGoogle Scholar
  66. Roelfsema PR (1998) Solutions for the binding problem. Z Naturforsch 53:691–715Google Scholar
  67. Ruby P, Sirigu A, Decety J (2002) Distinct areas in parietal cortex involved in long-term and short-term action planning: a PET investigation. Cortex 38:321–339PubMedCrossRefGoogle Scholar
  68. Schacter DL, Buckner RL (1998) Priming and the brain. Neuron 20:185–195PubMedCrossRefGoogle Scholar
  69. Shafritz KM, Gore J, Marois R (2002) The role of the parietal cortex in visual feature binding. Proc Natl Acad Sci USA 99:10917–10922PubMedCrossRefGoogle Scholar
  70. Singer W (2001) Consciousness and the binding problem. Ann N Y Acad Sci 9:123–146Google Scholar
  71. Sporns O, Tononi G, Edelman GM (1991) Modeling perceptual grouping and figure-ground segregation by means of active reentrant connections. Proc Natl Acad Sci USA 88:129–133PubMedCrossRefGoogle Scholar
  72. Sunaert S, Van Hecke P, Marchal G, Orban GA (2000) Attention to speed of motion, speed discrimination, and task difficulty: an fMRI study. Neuroimage 11:612–623PubMedCrossRefGoogle Scholar
  73. Tang-Wai DF, Graff-Radford NR, Boeve BF, Dickson DW, Parisi JE, Crook R, Caselli RJ, Knopman DS, Petersen RC (2004) Clinical, genetic, and neuropathologic characteristics of posterior cortical atrophy. Neurology 63:1168–1174PubMedCrossRefGoogle Scholar
  74. Treisman AM, Gelade G (1980) A feature-integration theory of attention. Cogn Psychol 12:97–136PubMedCrossRefGoogle Scholar
  75. Uttal WR, Baruch T, Allen L (1995) The effects of combinations of image degradations in a discrimination task. Percept Psychophys 57:668–681PubMedCrossRefGoogle Scholar
  76. Valenza N, Murray MM, Ptak R, Viulleumier P (2004) The space of senses: impaired crossmodal interactions in a patient with Balint syndrome after bilateral parietal damage. Neuropsychologia 42:1737–1748PubMedCrossRefGoogle Scholar
  77. von der Malsburg C (1995) Binding in models of perception and brain function. Curr Opin Neurobiol 5:520–526PubMedCrossRefGoogle Scholar
  78. von der Malsburg C, Willshaw DJ (1981) Cooperativity and brain organization. Trends Neurosci 4:80–83CrossRefGoogle Scholar
  79. Weissman DH, Woldorff MG (2005) Hemispheric asymmetries for different components of global/local attention occur in distinct temporo-parietal loci. Cereb Cortex 15:870–876 Google Scholar
  80. Wertheimer M (1923) Untersuchungen zur Lehre von der Gestalt. II. Psychologische Forschung 4:301–350CrossRefGoogle Scholar
  81. Wiggs CL, Martin A (1998) Properties and mechanisms of perceptual priming. Curr Opin Neurobiol 8:227–233PubMedCrossRefGoogle Scholar
  82. Wilkinson DT, Halligan PW, Marshall JC, Buchel C, Dolan RJ (2001) Switching between the forest and the trees: brain systems involved in local/global changed level judgements. Neuroimage 13:56–67PubMedCrossRefGoogle Scholar
  83. Wolpert I (1924) Die Simultanagnosie - Störung der Gesamtauffassung. Zeitschrift für die Gesamte Neurologie und Psychiatrie 93:397–415CrossRefGoogle Scholar
  84. Yamaguchi S, Yamagata S, Kobayashi S (2000) Cerebral asymmetry of the ‘top down’ allocation of attention to global and local features. J Neurosci 20:1–5Google Scholar
  85. Zurowski G, Gostomzyk J, Gron G, Weller R, Schirrmeister H, Neumeier B, Spitzer M, Reske SN, Walter H (2002) Dissociating a common working memory network from different neural substrates of phonological and spatial stimulus processing. Neuroimage 15:45–57Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Center of Neurology, Division of Neuropsychology, Hertie-Institute for Clinical Brain ResearchUniversity of TübingenTübingenGermany
  2. 2.Department of NeurologyState Hospital LucerneLucerneSwitzerland

Personalised recommendations