Brain Structure and Function

, Volume 217, Issue 2, pp 503–515

Structural correlates of cognitive domains in normal aging with diffusion tensor imaging

  • Efrat Sasson
  • Glen M. Doniger
  • Ofer Pasternak
  • Ricardo Tarrasch
  • Yaniv Assaf
Original Article

Abstract

The involvement of brain structures in specific cognitive functions is not straightforward. In order to characterize the brain micro-structural correlates of cognitive domains, 52 healthy subjects, age 25–82 years, completed a computerized neuropsychological battery and were scanned using magnetic resonance diffusion tensor imaging. Factor analysis of 44 different cognitive scores was performed, isolating three cognitive domains—executive function, information processing speed and memory. Partial correlation was conducted between DTI parameters and each of the three cognitive domains controlling for age and motor function. Regions showing significant correlations with cognitive domains are domain-specific and are consistent with previous knowledge. While executive function was correlated with diffusion tensor imaging (DTI) parameters in frontal white matter and in the superior longitudinal fasciculus, information processing speed was correlated with DTI parameters in the cingulum, corona radiata, inferior longitudinal fasciculus, parietal white matter and in the thalamus. Memory performance was correlated with DTI measures in temporal and frontal gray matter and white matter regions, including the cingulate cortex and the parahippocampus. Thus, inter-subject variability in cognitive performance and tissue morphology, as expressed by diffusion tensor magnetic resonance imaging, can be used to relate tissue microstructure with cognitive performance and to provide information to corroborate other functional localization techniques.

Keywords

Magnetic resonance imaging Diffusion tensor imaging Executive function Information processing speed Memory Aging 

Supplementary material

429_2011_344_MOESM1_ESM.docx (25 kb)
Supplementary material 1 (DOCX 25 kb)
429_2011_344_MOESM2_ESM.tif (273 kb)
Supplementary Figure (TIF 273 kb)

References

  1. Alvarez JA, Emory E (2006) Executive function and the frontal lobes: a meta-analytic review. Neuropsychol Rev 16(1):17–42. doi:10.1007/s11065-006-9002-x PubMedCrossRefGoogle Scholar
  2. Ashburner J, Friston KJ (2000) Voxel-based morphometry—the methods. Neuroimage 11(6 Pt 1):805–821PubMedCrossRefGoogle Scholar
  3. Basser PJ, Pierpaoli C (1998) A simplified method to measure the diffusion tensor from seven MR images. Magn Reson Med 39(6):928–934PubMedCrossRefGoogle Scholar
  4. Bauer RH, Fuster JM (1976) Delayed-matching and delayed-response deficit from cooling dorsolateral prefrontal cortex in monkeys. J Comp Physiol Psychol 90(3):293–302PubMedCrossRefGoogle Scholar
  5. Bench CJ, Frith CD, Grasby PM, Friston KJ, Paulesu E, Frackowiak RS, Dolan RJ (1993) Investigations of the functional anatomy of attention using the Stroop test. Neuropsychologia 31(9):907–922. ppi: 0028-3932(93)90147-RPubMedCrossRefGoogle Scholar
  6. Blumenfeld-Katzir T, Pasternak O, Dagan M, Assaf Y (2011) Diffusion MRI of structural brain plasticity induced by a learning and memory task. PLoS One 6(6):e20678. doi:10.1371/journal.pone.0020678
  7. Bookstein FL (2001) “Voxel-based morphometry” should not be used with imperfectly registered images. Neuroimage 14(6):1454–1462. doi:10.1006/nimg.2001.0770 PubMedCrossRefGoogle Scholar
  8. Bush G, Whalen PJ, Rosen BR, Jenike MA, McInerney SC, Rauch SL (1998) The counting Stroop: an interference task specialized for functional neuroimaging—validation study with functional MRI. Hum Brain Mapp 6(4):270–282. doi:10.1002/(SICI)1097-0193(1998)6:4<270:AID-HBM6>3.0.CO;2-0 PubMedCrossRefGoogle Scholar
  9. Cabeza R, Nyberg L (2000) Imaging cognition ii: an empirical review of 275 pet and fMRI studies. J Cogn Neurosci 12(1):1–47PubMedCrossRefGoogle Scholar
  10. Carpenter PA, Just MA, Reichle ED (2000) Working memory and executive function: evidence from neuroimaging. Curr Opin Neurobiol 10(2):195–199. pii: S0959-4388(00)00074-XPubMedCrossRefGoogle Scholar
  11. Carter CS, Mintun M, Cohen JD (1995) Interference and facilitation effects during selective attention: An h215o pet study of Stroop task performance. Neuroimage 2(4):264–272. doi:10.1006/nimg.1995.1034 PubMedCrossRefGoogle Scholar
  12. Cavanna AE, Trimble MR (2006) The precuneus: a review of its functional anatomy and behavioural correlates. Brain 129(Pt 3):564–583. doi:10.1093/brain/awl004 PubMedCrossRefGoogle Scholar
  13. Charlton RA, Barrick TR, McIntyre DJ, Shen Y, O’Sullivan M, Howe FA, Clark CA, Morris RG, Markus HS (2006) White matter damage on diffusion tensor imaging correlates with age-related cognitive decline. Neurology 66(2):217–222PubMedCrossRefGoogle Scholar
  14. Constable RT, Carpentier A, Pugh K, Westerveld M, Oszunar Y, Spencer DD (2000) Investigation of the human hippocampal formation using a randomized event-related paradigm and z-shimmed functional MRI. Neuroimage 12(1):55–62. doi:10.1006/nimg.2000.0583 PubMedCrossRefGoogle Scholar
  15. Cowell SF, Egan GF, Code C, Harasty J, Watson JD (2000) The functional neuroanatomy of simple calculation and number repetition: a parametric pet activation study. Neuroimage 12(5):565–573PubMedCrossRefGoogle Scholar
  16. Craik FI, Byrd M, Swanson JM (1987) Patterns of memory loss in three elderly samples. Psychol Aging 2(1):79–86PubMedCrossRefGoogle Scholar
  17. Davachi L, Wagner AD (2002) Hippocampal contributions to episodic encoding: insights from relational and item-based learning. J Neurophysiol 88(2):982–990PubMedGoogle Scholar
  18. Dehaene S, Tzourio N, Frak V, Raynaud L, Cohen L, Mehler J, Mazoyer B (1996) Cerebral activations during number multiplication and comparison: a pet study. Neuropsychologia 34(11):1097–1106PubMedCrossRefGoogle Scholar
  19. D’Esposito M, Aguirre GK, Zarahn E, Ballard D, Shin RK, Lease J (1998) Functional MRI studies of spatial and nonspatial working memory. Brain Res Cogn Brain Res 7(1):1–13. pii: S0926-6410(98)00004-4PubMedCrossRefGoogle Scholar
  20. Drewe EA (1974) The effect of type and area of brain lesion on wisconsin card sorting test performance. Cortex 10(2):159–170PubMedGoogle Scholar
  21. Duzel E, Habib R, Rotte M, Guderian S, Tulving E, Heinze HJ (2003) Human hippocampal and parahippocampal activity during visual associative recognition memory for spatial and nonspatial stimulus configurations. J Neurosci 23(28):9439–9444. pii: 23/28/9439PubMedGoogle Scholar
  22. Dwolatzky T, Whitehead V, Doniger GM, Simon ES, Schweiger A, Jaffe D, Chertkow H (2003) Validity of a novel computerized cognitive battery for mild cognitive impairment. BMC Geriatr 3:4PubMedCrossRefGoogle Scholar
  23. Forstmann BU, Jahfari S, Scholte HS, Wolfensteller U, van den Wildenberg WP, Ridderinkhof KR (2008) Function and structure of the right inferior frontal cortex predict individual differences in response inhibition: a model-based approach. J Neurosci 28(39):9790–9796. doi:10.1523/JNEUROSCI.1465-08.2008 PubMedCrossRefGoogle Scholar
  24. Frankland PW, Bontempi B (2005) The organization of recent and remote memories. Nat Rev Neurosci 6(2):119–130. doi:10.1038/nrn1607 PubMedCrossRefGoogle Scholar
  25. Funahashi S, Bruce CJ, Goldman-Rakic PS (1989) Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex. J Neurophysiol 61(2):331–349PubMedGoogle Scholar
  26. Funahashi S, Bruce CJ, Goldman-Rakic PS (1993) Dorsolateral prefrontal lesions and oculomotor delayed-response performance: evidence for mnemonic “Scotomas”. J Neurosci 13(4):1479–1497PubMedGoogle Scholar
  27. Geschwind N (1965a) Disconnexion syndromes in animals and man I. Brain 88(2):237–294PubMedCrossRefGoogle Scholar
  28. Geschwind N (1965b) Disconnexion syndromes in animals and man Ii. Brain 88(3):585–644PubMedCrossRefGoogle Scholar
  29. Giovanello KS, Schnyer DM, Verfaellie M (2004) A critical role for the anterior hippocampus in relational memory: Evidence from an fMRI study comparing associative and item recognition. Hippocampus 14(1):5–8. doi:10.1002/hipo.10182 PubMedCrossRefGoogle Scholar
  30. Gold BT, Powell DK, Xuan L, Jicha GA, Smith CD (2008) Age-related slowing of task switching is associated with decreased integrity of frontoparietal white matter. Neurobiol Aging 31(3):512–522. doi:10.1016/j.neurobiolaging.2008.04.005 PubMedCrossRefGoogle Scholar
  31. Gouw AA, Seewann A, Vrenken H, van der Flier WM, Rozemuller JM, Barkhof F, Scheltens P, Geurts JJ (2008) Heterogeneity of white matter hyperintensities in alzheimer’s disease: post-mortem quantitative MRI and neuropathology. Brain 131(Pt 12):3286–3298. doi:10.1093/brain/awn265 PubMedCrossRefGoogle Scholar
  32. Grabner RH, Ansari D, Reishofer G, Stern E, Ebner F, Neuper C (2007) Individual differences in mathematical competence predict parietal brain activation during mental calculation. Neuroimage 38(2):346–356PubMedCrossRefGoogle Scholar
  33. Grieve SM, Williams LM, Paul RH, Clark CR, Gordon E (2007) Cognitive aging, executive function, and fractional anisotropy: a diffusion tensor mr imaging study. AJNR Am J Neuroradiol 28(2):226–235. pii: 28/2/226PubMedGoogle Scholar
  34. Heilman KM, Pandya DN, Geschwind N (1970) Trimodal inattention following parietal lobe ablations. Trans Am Neurol Assoc 95:259–261PubMedGoogle Scholar
  35. Henke K, Weber B, Kneifel S, Wieser HG, Buck A (1999) Human hippocampus associates information in memory. Proc Natl Acad Sci USA 96(10):5884–5889PubMedCrossRefGoogle Scholar
  36. Henson R (2005) A mini-review of fMRI studies of human medial temporal lobe activity associated with recognition memory. Q J Exp Psychol B 58(3–4):340–360PubMedGoogle Scholar
  37. Hu Y, Geng F, Tao L, Hu N, Du F, Fu K, Chen F (2011) Enhanced white matter tracts integrity in children with abacus training. Hum Brain Mapp 32(1):10–21Google Scholar
  38. Hultsch DF (1998) Memory change in the aged. Cambridge University Press, New YorkGoogle Scholar
  39. Klingberg T, Hedehus M, Temple E, Salz T, Gabrieli JD, Moseley ME, Poldrack RA (2000) Microstructure of temporo-parietal white matter as a basis for reading ability: evidence from diffusion tensor magnetic resonance imaging. Neuron 25(2):493–500. pii: S0896-6273(00)80911-3PubMedCrossRefGoogle Scholar
  40. Leung HC, Skudlarski P, Gatenby JC, Peterson BS, Gore JC (2000) An event-related functional MRI study of the Stroop color word interference task. Cereb Cortex 10(6):552–560PubMedCrossRefGoogle Scholar
  41. Lichtheim L (1885) On aphasia. Brain 7:433–484Google Scholar
  42. Madden DJ, Whiting WL, Huettel SA, White LE, MacFall JR, Provenzale JM (2004) Diffusion tensor imaging of adult age differences in cerebral white matter: relation to response time. Neuroimage 21(3):1174–1181. doi:10.1016/j.neuroimage.2003.11.004 PubMedCrossRefGoogle Scholar
  43. Madden DJ, Spaniol J, Costello MC, Bucur B, White LE, Cabeza R, Davis SW, Dennis NA, Provenzale JM, Huettel SA (2009) Cerebral white matter integrity mediates adult age differences in cognitive performance. J Cogn Neurosci 21(2):289–302PubMedCrossRefGoogle Scholar
  44. Maldjian JA, Laurienti PJ, Kraft RA, Burdette JH (2003) An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. Neuroimage 19(3):1233–1239PubMedCrossRefGoogle Scholar
  45. Milner B (1971) Interhemispheric differences in the localization of psychological processes in man. Br Med Bull 27(3):272–277PubMedGoogle Scholar
  46. Pardo JV, Pardo PJ, Janer KW, Raichle ME (1990) The anterior cingulate cortex mediates processing selection in the Stroop attentional conflict paradigm. Proc Natl Acad Sci USA 87(1):256–259PubMedCrossRefGoogle Scholar
  47. Perret E (1974) The left frontal lobe of man and the suppression of habitual responses in verbal categorical behaviour. Neuropsychologia 12(3):323–330PubMedCrossRefGoogle Scholar
  48. Perry ME, McDonald CR, Hagler DJ Jr, Gharapetian L, Kuperman JM, Koyama AK, Dale AM, McEvoy LK (2009) White matter tracts associated with set-shifting in healthy aging. Neuropsychologia 47(13):2835–2842PubMedCrossRefGoogle Scholar
  49. Persson J, Nyberg L, Lind J, Larsson A, Nilsson LG, Ingvar M, Buckner RL (2006) Structure-function correlates of cognitive decline in aging. Cereb Cortex 16(7):907–915PubMedCrossRefGoogle Scholar
  50. Petersen RC, Smith G, Kokmen E, Ivnik RJ, Tangalos EG (1992) Memory function in normal aging. Neurology 42(2):396–401PubMedGoogle Scholar
  51. Peterson BS, Skudlarski P, Gatenby JC, Zhang H, Anderson AW, Gore JC (1999) An fMRI study of Stroop word-color interference: evidence for cingulate subregions subserving multiple distributed attentional systems. Biol Psychiatry 45(10):1237–1258. pii: S0006-3223(99)00056-6PubMedCrossRefGoogle Scholar
  52. Posner MI, Dehaene S (1994) Attentional networks. Trends Neurosci 17(2):75–79PubMedCrossRefGoogle Scholar
  53. Posner MI, Petersen SE (1990) The attention system of the human brain. Annu Rev Neurosci 13:25–42. doi:10.1146/annurev.ne.13.030190.000325 PubMedCrossRefGoogle Scholar
  54. Rickard TC, Romero SG, Basso G, Wharton C, Flitman S, Grafman J (2000) The calculating brain: an fMRI study. Neuropsychologia 38(3):325–335PubMedCrossRefGoogle Scholar
  55. Rocha FT, Rocha AF, Massad E, Menezes R (2005) Brain mappings of the arithmetic processing in children and adults. Brain Res Cogn Brain Res 22(3):359–372. doi:10.1016/j.cogbrainres.2004.09.008 PubMedCrossRefGoogle Scholar
  56. Rowe AD, Bullock PR, Polkey CE, Morris RG (2001) “Theory of mind” Impairments and their relationship to executive functioning following frontal lobe excisions. Brain 124(Pt 3):600–616PubMedCrossRefGoogle Scholar
  57. Salthouse TA (2000) Aging and measures of processing speed. Biol Psychol 54(1–3):35–54. pii: S0301051100000521PubMedCrossRefGoogle Scholar
  58. Sasson E, Doniger GM, Pasternak O, Assaf Y (2010) Structural correlates of memory performance with diffusion tensor imaging. Neuroimage 50(3):1231–1242. doi:10.1016/j.neuroimage.2009.12.079 PubMedCrossRefGoogle Scholar
  59. Schaie KW (1996) Intellectual development in adulthood: the seattle longitudinal study. Cambridge University Press, New YorkGoogle Scholar
  60. Scoville WB, Milner B (1957) Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiatry 20(1):11–21PubMedCrossRefGoogle Scholar
  61. Small SA (2001) Age-related memory decline: current concepts and future directions. Arch Neurol 58(3):360–364PubMedCrossRefGoogle Scholar
  62. Sullivan EV, Adalsteinsson E, Pfefferbaum A (2006) Selective age-related degradation of anterior callosal fiber bundles quantified in vivo with fiber tracking. Cereb Cortex 16(7):1030–1039PubMedCrossRefGoogle Scholar
  63. Swartz BE, Halgren E, Fuster JM, Simpkins E, Gee M, Mandelkern M (1995) Cortical metabolic activation in humans during a visual memory task. Cereb Cortex 5(3):205–214PubMedCrossRefGoogle Scholar
  64. Tanabe H, Sawada T, Inoue N, Ogawa M, Kuriyama Y, Shiraishi J (1987) Conduction aphasia and arcuate fasciculus. Acta Neurol Scand 76(6):422–427PubMedCrossRefGoogle Scholar
  65. Taylor SF, Kornblum S, Lauber EJ, Minoshima S, Koeppe RA (1997) Isolation of specific interference processing in the Stroop task: pet activation studies. Neuroimage 6(2):81–92. doi:10.1006/nimg.1997.0285 PubMedCrossRefGoogle Scholar
  66. Thompson RF, Kim JJ (1996) Memory systems in the brain and localization of a memory. Proc Natl Acad Sci USA 93(24):13438–13444PubMedCrossRefGoogle Scholar
  67. Tuch DS, Salat DH, Wisco JJ, Zaleta AK, Hevelone ND, Rosas HD (2005) Choice reaction time performance correlates with diffusion anisotropy in white matter pathways supporting visuospatial attention. Proc Natl Acad Sci USA 102(34):12212–12217. doi:10.1073/pnas.0407259102 PubMedCrossRefGoogle Scholar
  68. van Eimeren L, Grabner RH, Koschutnig K, Reishofer G, Ebner F, Ansari D (2010) Structure-function relationships underlying calculation: a combined diffusion tensor imaging and fMRI study. Neuroimage 52(1):358–363. doi:10.1016/j.neuroimage.2010.04.001 PubMedCrossRefGoogle Scholar
  69. Walhovd KB, Fjell AM, Reinvang I, Lundervold A, Dale AM, Eilertsen DE, Quinn BT, Salat D, Makris N, Fischl B (2005) Effects of age on volumes of cortex, white matter and subcortical structures. Neurobiol Aging 26(9):1261–1270 (discussion 1275–1268)PubMedCrossRefGoogle Scholar
  70. Youngjohn JR, Crook TH 3rd (1993) Learning, forgetting, and retrieval of everyday material across the adult life span. J Clin Exp Neuropsychol 15(4):447–460PubMedCrossRefGoogle Scholar
  71. Zahr NM, Rohlfing T, Pfefferbaum A, Sullivan EV (2009) Problem solving, working memory, and motor correlates of association and commissural fiber bundles in normal aging: a quantitative fiber tracking study. Neuroimage 44(3):1050–1062PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Efrat Sasson
    • 1
  • Glen M. Doniger
    • 2
  • Ofer Pasternak
    • 3
  • Ricardo Tarrasch
    • 4
  • Yaniv Assaf
    • 1
  1. 1.Department of Neurobiology, Faculty of Life SciencesTel Aviv UniversityTel AvivIsrael
  2. 2.Department of Clinical ScienceNeuroTrax CorporationFresh MeadowsUSA
  3. 3.Psychiatry Neourimaging Laboratory, Department of PsychiatryBrigham and Women’s Hospital, Harvard Medical SchoolBostonUSA
  4. 4.Department of PsychologyTel Aviv UniversityTel AvivIsrael

Personalised recommendations