Brain Structure and Function

, Volume 217, Issue 1, pp 127–139 | Cite as

Quantitative in vivo MRI measurement of cortical development in the fetus

  • Cédric Clouchoux
  • Dimitri Kudelski
  • Ali Gholipour
  • Simon K. Warfield
  • Sophie Viseur
  • Marine Bouyssi-Kobar
  • Jean-Luc Mari
  • Alan C. Evans
  • Adre J. du Plessis
  • Catherine LimperopoulosEmail author
Original Article


Normal brain development is associated with expansion and folding of the cerebral cortex following a highly orchestrated sequence of gyral–sulcal formation. Although several studies have described the evolution of cerebral cortical development ex vivo or ex utero, to date, very few studies have characterized and quantified the gyrification process for the in vivo fetal brain. Recent advances in fetal magnetic resonance imaging and post-processing computational methods are providing new insights into fetal brain maturation in vivo. In this study, we investigate the in vivo fetal cortical folding pattern in healthy fetuses between 25 and 35 weeks gestational age using 3-D reconstructed fetal cortical surfaces. We describe the in vivo fetal gyrification process using a robust feature extraction algorithm applied directly on the cortical surface, providing an explicit delineation of the sulcal pattern during fetal brain development. We also delineate cortical surface measures, including surface area and gyrification index. Our data support an exuberant third trimester gyrification process and suggest a non-linear evolution of sulcal development. The availability of normative indices of cerebral cortical developing in the living fetus may provide critical insights on the timing and progression of impaired cerebral development in the high-risk fetus.


Brain development Cortical surface Fetal Gyrification MRI 



We thank Yansong Zhao and David Annese for their help with MRI applications. We are indebted to the families for participating in this study. This work was supported by the Canadian Institutes of Health Research (MOP-81116), Sickkids Foundation (XG 06-069), and Canada Research Chairs Program (Dr Limperopoulos).


  1. Armstrong E, Schleicher A, Omran H, Curtis M, Zilles K (1995) The ontogeny of human gyrification. Cereb Cortex 5:56–63PubMedCrossRefGoogle Scholar
  2. Awate SP, Yushkevich P, Song Z, Licht D, Gee JC (2009) Multivariate high-dimensional cortical folding analysis, combining complexity and shape, in neonates with congenital heart disease. Inf Process Med Imaging 21:552–563PubMedCrossRefGoogle Scholar
  3. Barron DH (1950) An experimental analysis of some factors involved in the development of the fissure pattern of the cerebral cortex. J Exp Zool 113:553–581CrossRefGoogle Scholar
  4. Bartley AJ, Jones DW, Weinberger DR (1997) Genetic variability of human brain size and cortical gyral patterns. Brain 120:257–269PubMedCrossRefGoogle Scholar
  5. Batchelor PG, Castellano Smith AD, Hill DL, Hawkes DJ, Cox TC, Dean AF (2002) Measures of folding applied to the development of the human fetal brain. IEEE Trans Med Imaging 21(8):953–965PubMedCrossRefGoogle Scholar
  6. Boucher M, Whiteside S, Evans AC (2009) Depth potential function for folding pattern representation, registration and analysis. Med Image Anal 13(2):203–214PubMedCrossRefGoogle Scholar
  7. Chi JG, Dooling EC, Gilles FH (1977) Gyral development of the human brain. Ann Neurol 1:86–93PubMedCrossRefGoogle Scholar
  8. Clouchoux C, Rivière D, Mangin JF, Operto G, Régis J, Coulon O (2010a) Model-driven parameterization of the cortical surface for localization and inter-subject matching. Neuroimage 50(2):552–566PubMedCrossRefGoogle Scholar
  9. Clouchoux C, Coupé P, Manjon J, Guizard N, Bouyssi-Kobar M, Lefebvre M, Du Plessis AJ, Evans AC, Limperopoulos C (2010b) A novel approach for high-resolution image reconstruction for in vivo fetal brain MRI. In: Proceedings of the Sixteenth Annual Meeting of the Organization for Human Brain MappingGoogle Scholar
  10. Clouchoux C, Kudelski D, Bouyssi-Kobar M, Viseur S, du Plessis A, Evans AC, Mari J-L, Limperopoulos C (2010c) Cortical pattern detection for the developing brain: a 3D vertex labeling and skeletonization approach. J Med Inform Technol 16:161–166Google Scholar
  11. Cohen J (1960) A coefficient for agreement for nominal scales. Educ Psychol Measur 20(1):37–46CrossRefGoogle Scholar
  12. Corbett-Detig JM, Habas PA, Scott JA, Kim K, Rajagopalan V, McQuillen PS, Barkovich AJ, Glenn OA, Studholme C (2011) 3D global and regional patterns of human fetal subplate growth determined in utero. Brain Struct Funct 215(3-4):255–263PubMedCrossRefGoogle Scholar
  13. Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26(3):297–302CrossRefGoogle Scholar
  14. Dubois J, Benders M, Cachia A, Lazeiras F, Ha-Vinh Leutcher R, Sizonenko SV, Borradori-Tolsa C, Mangin J-F, Hüppi PS (2008a) Mapping the early cortical folding process in the preterm new born brain. Cereb Cortex 18:1444–1454PubMedCrossRefGoogle Scholar
  15. Dubois J, Benders M, Borradori-Tolsa C, Cachia A, Lazeyras F, Ha-Vinh Leuchter R, Sizonenko SV, Warfield SK, Mangin JF, Hüppi PS (2008b) Primary cortical folding in the human newborn: an early marker of later functional development. Brain. 131(Pt 8):2028–2041PubMedCrossRefGoogle Scholar
  16. Dubois J, Benders M, Lazeyras F, Borradori-Tolsa C, Leuchter RH, Mangin JF, Hüppi PS (2010) Structural asymmetries of perisylvian regions in the preterm newborn. Neuroimage 52(1):32–42PubMedCrossRefGoogle Scholar
  17. Evans AC, the Brain Development Cooperative Group et al (2006) The NIH MRI study of normal brain development. NeuroImage 30(1):184–202PubMedCrossRefGoogle Scholar
  18. Fischl B, Sereno MI, Tootell R, Dale AM (1999) Cortical surface-based analysis, ii: Inflation, flattening and a surface-based coordinate system. Neuroimage 9:195–207PubMedCrossRefGoogle Scholar
  19. Garel C (2008) Fetal MRI: what is the future? Ultrasound Obstet Gynecol 31:123–128PubMedCrossRefGoogle Scholar
  20. Garel C, Chantrel E, Brisse H, Elmaleh M, Luton D, Oury J-F, Sebag G, Hassan M (2001) Fetal cerebral cortex: normal gestational landmarks identified using prenatal MR imaging. AJRN Am J Neuradiol 22(1):184–189Google Scholar
  21. Gatzke T, Grimm CM (2006) Estimating curvature on triangular meshes. Int J Shape Model 12(1):1–28CrossRefGoogle Scholar
  22. Gholipour A, Estroff JA, Warfield SK (2010a) Robust super-resolution volume reconstruction from slice acquisitions: application to fetal brain MRI. IEEE Trans Med Imaging 29(10):1739–1758PubMedCrossRefGoogle Scholar
  23. Gholipour A, Estroff JA, Barnewolt CE, Connolly SA, Warfield SK (2010b) Fetal brain volumetry through MRI volumetric reconstruction and segmentation. Int J Comput Assist Radiol Surg 6(3):329–339Google Scholar
  24. Goldfeather J, Interrante V (2004) A novel cubic-order algorithm for approximating principal direction vectors. ACM Trans Graph 23(1):45–63CrossRefGoogle Scholar
  25. Grossman R, Hoffman C, Mardor Y, Biegon A (2006) Quantitative MRI measurements of human fetal brain development in utero. Neuroimage 33(2):463–470PubMedCrossRefGoogle Scholar
  26. Guihard-Costa AM, Larroche JC (1990) Differential growth between the fetal brain and its infratentorial part. Early Hum Dev 23:27–40PubMedCrossRefGoogle Scholar
  27. Guizard N, Lepage C, Fonov V, Hakyemez H, Evans A, Limperopoulos C (2008) Development of fetus brain atlas from multi-axial MR acquisitions. In: Proceedings of the Sixteenth Annual Meeting of the International Society for Magnetic Resonance in Medicine 672:132Google Scholar
  28. Habas PA, Kim K, Corbett-Detig JM, Rousseau F, Glenn OA, Barkovich AJ, Studholme C (2010) A spatiotemporal atlas of MR intensity, tissue probability and shape of the fetal brain with application to segmentation. Neuroimage (in press)Google Scholar
  29. Hill J, Dierker D, Neil J, Inder T, Knutsen A, Harwell J, Coalson T, Van Essen D (2010) A surface-based analysis of hemispheric asymmetries and folding of cerebral cortex in term-born human. J Neurosci 30(6):2268–2276PubMedCrossRefGoogle Scholar
  30. Hu H-H, Guo W-Y, Chen H-Y, Wang P-S, Hung C-I, Hsieh J-C, Wu Y-T (2009) Morphological regionalization using fetal magnetic resonance images of normal developing brains. Eur J Neurosci 29:1560–1567PubMedCrossRefGoogle Scholar
  31. Jain AK (1989) Fundamentals of digital image processing. Prentice-Hall, Inc, Upper Saddle RiverGoogle Scholar
  32. Jiang H, Xue H, Counsell SJ, Anjari M, Allsop J, Rutherford MA, Rueckert D, Hajnal JV (2007) In utero three dimension high resolution fetal brain diffusion tensor imaging. Med Image Comput Comput Assist Interv 10(Pt 1):18–26PubMedGoogle Scholar
  33. Kasprian G, Langs G, Brugger PC, Bittner M, Weber M, Arantes M, Prayer D (2011) The prenatal origin of hemispheric asymmetry: an in utero neuroimaging study. Cereb Cortex 21(5):1076–1083PubMedCrossRefGoogle Scholar
  34. Kazan-Tannus JF, Dialani V, Kataoka ML, Chiang G, Feldman HA, Brown JS, Levine D (2007) MR volumetry of brain and CSF in fetuses referred for ventriculomegaly. Am J Roentgenol 189(1):145–151CrossRefGoogle Scholar
  35. Kostović I, Judas M (2002) Correlation between the sequential ingrowth of afferents and transient patterns of cortical lamination in preterm infants. Anat Rec 267(1):1–6PubMedCrossRefGoogle Scholar
  36. Kudelski D, Mari J.-L, Viseur S (2010) 3D Feature Line Detection based on Vertex Labeling and 2D Skeletonization. In: Proceedings of the 2010 Shape Modeling International Conference (SMI ‘10), vol 1. IEEE Computer Society, Washington, pp 246–250Google Scholar
  37. Lee JK, Lee J-M, Kim JS, Kim IY, Evans AC, Kim SI (2006) A novel quantitative cross-validation of different cortical surface reconstruction algorithms using MRI phantom. Neuroimage 31(2):572–584PubMedCrossRefGoogle Scholar
  38. Lefebvre J, Leroy F, Khan S, Dubois J, Hüppi P, Baillet S, Mangin JF (2009) Identification of growth seeds in the neonate brain through surfacic Helmholtz decomposition. Inf Process Med Imaging 21:252–256CrossRefGoogle Scholar
  39. Limperopoulos C, Clouchoux C (2009) Advancing fetal MRI: target for the future. Semin Perinatol 34(4):289–298CrossRefGoogle Scholar
  40. Limperopoulos C, Tworetzky W, McElhinney DB, Newburger JW, Brown DW, Robertson RL Jr, Guizard N, McGrath E, Geva J, Annese D, Dunbar-Masterson C, Trainor B, Laussen PC, du Plessis AJ (2010) Brain volume and metabolism in fetuses with congenital heart disease: evaluation with quantitative magnetic resonance imaging and spectroscopy. Circulation. 121(1):26–33PubMedCrossRefGoogle Scholar
  41. Lohmann G, Von Cramon Y, Colchester A (2007) Deep sulcal landmark provide an organizing framework for human cortical folding. Cereb Cortex 18(6):1415–1420PubMedCrossRefGoogle Scholar
  42. Luders E, Thompson PM, Narr KL, Toga AW, Jancke L, Gaser C (2006) A curvature-based approach to estimate local gyrification on the cortical surface. Neuroimage 29(4):1224–1230PubMedCrossRefGoogle Scholar
  43. Lyttelton O, Boucher M, Robbins S, Evans A (2007) An unbiased iterative group registration template for cortical surface analysis. Neuroimage 34(4):1535–1544PubMedCrossRefGoogle Scholar
  44. McDonald D, Kabani N, Avis D, Evans AC et al (2000) Automated 3-D extraction of inner and outer surfaces of cerebral cortex from MRI. Neuroimage 12(3):340–356CrossRefGoogle Scholar
  45. O’Rahilly R, Muller F (1999) The embryonic human brain: an atlas of developmental stages. John Wiley & Sons Ltd, ChichesterGoogle Scholar
  46. Prayer D (2006) Investigation of normal organ development with fetal MRI. Eur Radiol 17(10):2458–2471CrossRefGoogle Scholar
  47. Rajagopalan V, Scott J, Habas PA, Kim K, Corbett-Detig J, Rousseau F, Barkovich AJ, Glenn OA, Studholme C (2011) Local tissue growth patterns underlying normal fetal human brain gyrification quantified in utero. J Neurosci 31(8):2878–2887PubMedCrossRefGoogle Scholar
  48. Rakic P (1988) Specification of cerebral cortical areas. Science 241:170–176PubMedCrossRefGoogle Scholar
  49. Regis J, Mangin J, Ochiai T, Frouin V, Rivière D, Cachia A, Tamura M, Samson Y (2005) Sulcal roots generic model: a hypothesis to overcome the variability of the human cortex folding patterns. Neurol Med Chir 45:1–17CrossRefGoogle Scholar
  50. Richman DP, Stewart RM, Hutchinson JW, Caviness VS (1975) Mechanical model of brain convolutional development. Science. 189:18–21CrossRefGoogle Scholar
  51. Rivière D, Mangin J-F, Papadopoulos-Orfanos D, Martinez J-M, Frouin V, Regis J (2002) Automatic recognition of cortical sulci of the human brain using a congregation of neural network. Med Image Anal 6(2):77–92PubMedCrossRefGoogle Scholar
  52. Rössl C, Kobbelt L, Seidel HP (2000) Extraction of feature lines on triangulated surfaces using morphological operators. In: Proceedings of the AAAI Symposium on Smart Graphics, vol 4, pp 71–75Google Scholar
  53. Rousseau O, Glenn B, Iordanova et al (2006) Registration-based approach for reconstruction of high-resolution in utero fetal mr brain images. Acad Radiol 13(9):1072–1081PubMedCrossRefGoogle Scholar
  54. Shankle WR, Landing BH, Rafii MS, Schiano A, Chen JM, Hara J (1998) Evidence for a postnatal doubling of neuron number in the developing human cerebral cortex between 15 months and 6 years. J Theor Biol 191(2):115–140PubMedCrossRefGoogle Scholar
  55. Sled JG, Zijdenbos AP, Evans AC (1998) A non-parametric method for automatic correction of intensity non-uniformity in MRI data. IEEE Trans Med Imaging 17(1):87–97PubMedCrossRefGoogle Scholar
  56. Thompson PM, Schwartz C, Lin RT, Khan AA, Toga AW (1996) Three-dimensional statistical analysis of sulcal variability in the human brain. J Neurosci 16(13):4261–4274PubMedGoogle Scholar
  57. Toro R, Burnod Y (2003) Geometric atlas: modeling the cortex as an organized surface. Neuroimage 20(3):1468–1484PubMedCrossRefGoogle Scholar
  58. Van Essen D (1997) A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature. 385(23):313–318PubMedCrossRefGoogle Scholar
  59. Xu G, Knutsen AK, Dikranian K, Kroenke CD, Bayly PV, Taber LA (2010) Axon pull on the brain, but tension does not drive cortical folding. J Biomech Eng 132(7):071013Google Scholar
  60. Yoshizawa S, Belyaev A, Seidel H (2005) Fast and robust detection of crest lines on meshes. In: Proceedings of the 2005 ACM symposium on Solid and physical modeling, pp 227–232Google Scholar
  61. Zhang Y, Brady M, Smith S (2001) Segmentation of brain MR images through a hidden Markov random field model and the expectation maximization algorithm. IEEE Trans Med Imaging 20(1):45–57PubMedCrossRefGoogle Scholar
  62. Zhang Z, Liu S, Lin X, Sun B, Yu T, Geng H (2010) Development of fetal cerebral cortex: assessment of the folding conditions with post-mortem Magnetic Resonance Imaging. Int J Dev Neurosci 28(6):537–543PubMedCrossRefGoogle Scholar
  63. Zilles K, Amstrong E, Schleicher A, Kretschmann H (1988) The human pattern of gyrification in the human brain. Anat Embryol 179(2):173–179PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Cédric Clouchoux
    • 1
    • 2
  • Dimitri Kudelski
    • 3
    • 4
  • Ali Gholipour
    • 5
  • Simon K. Warfield
    • 5
  • Sophie Viseur
    • 4
  • Marine Bouyssi-Kobar
    • 1
  • Jean-Luc Mari
    • 3
  • Alan C. Evans
    • 2
  • Adre J. du Plessis
    • 6
  • Catherine Limperopoulos
    • 1
    • 2
    • 7
    • 6
    Email author
  1. 1.Division of Diagnostic Imaging and RadiologyChildren’s National Medical CenterWashingtonUSA
  2. 2.McConnell Brain Imaging Center, Montreal Neurological InstituteMcGill UniversityMontrealCanada
  3. 3.LSIS, UMC CNRS 6168Université de la MéditerranéeMarseillesFrance
  4. 4.GSRC, EA 4234Université de ProvenceMarseillesFrance
  5. 5.Department of Radiology, Harvard Medical SchoolChildren’s Hospital BostonBostonUSA
  6. 6.Division of Fetal and Transitional MedicineChildren’s National Medical CenterWashingtonUSA
  7. 7.Department of Neurology and NeurosurgeryMcGill UniversityMontrealCanada

Personalised recommendations