Brain Structure and Function

, Volume 216, Issue 3, pp 255–262 | Cite as

Structural properties of the corticospinal tract in the human brain: a magnetic resonance imaging study at 7 Tesla

  • Pierre-Yves Hervé
  • Eleanor F. Cox
  • Ashley K. Lotfipour
  • Olivier E. Mougin
  • Richard W. Bowtell
  • Penny A. Gowland
  • Tomas Paus
Original Article

Abstract

Several fibre tracts can be accurately located using conventional Magnetic Resonance Images (MRI) of the human brain, including the corticospinal tract (CST), which appears as a T1-weighted hypointense/T2-weighted hyperintense patch in the posterior part of the posterior-limb of the internal capsule (PLIC). Here we use high-field MRI (7T) to assess the quantitative MRI properties of the CST at the PLIC level in 22 healthy young male participants. We used three different imaging modalities: the T1 and T2 relaxation times (T1 and T2) and the Magnetization Transfer Ratio (MTR). These measurements obtained in the CST were compared with those in the anterior two-thirds of the PLIC. We observed longer T1 and T2 and lower MTR in the CST region compared with the adjacent (control) PLIC region. This effect is consistent with the presence of sparsely distributed, large-diameter fibres described in previous histological studies and, as such, might reflect lower myelin density and/or different morphology of fibres in the CST.

Keywords

Corticospinal tract Axon caliber High-field MRI Quantitative magnetic resonance imaging Magnetization transfer Relaxometry 

Supplementary material

429_2011_306_MOESM1_ESM.doc (1.3 mb)
Supplementary material 1 (DOC 1313 kb)

References

  1. Adachi M, Yamaguchi K, Hosoya T (1996) III-defined focal low attenuation in the posterior internal capsule: a normal CT finding. Neuroradiology 38(2):124–127PubMedGoogle Scholar
  2. Bergers E, Bot J, De Groot C, Polman C, Lycklama a Nijeholt G, Castelijns J, van der Valk P, Barkhof F (2002) Axonal damage in the spinal cord of MS patients occurs largely independent of T2 MRI lesions. Neurology 59(11):1766–1771PubMedGoogle Scholar
  3. Catani M, ffytche DH (2005) The rises and falls of disconnection syndromes. Brain 128(10):2224–2239PubMedCrossRefGoogle Scholar
  4. Chomiak T, Hu B (2009) What is the optimal value of the g-ratio for myelinated fibers in the rat CNS? A theoretical approach. PLoS ONE 4(11):e7754PubMedCrossRefGoogle Scholar
  5. Cox EF, Gowland PA (2010) Simultaneous quantification of T2 and T’2 using a combined gradient echo-spin echo sequence at ultrahigh field. Magn Reson Med 64(5):1440–1445PubMedCrossRefGoogle Scholar
  6. Crovitz HF, Zener K (1962) A group-test for assessing hand- and eye-dominance. Am J Psychol 75:271–276PubMedCrossRefGoogle Scholar
  7. Curnes JT, Burger PC, Djang WT, Boyko OB (1988) MR imaging of compact white matter pathways. Am J Neuroradiol 9 (6):1061–1068Google Scholar
  8. DeBoy CA, Zhang J, Dike S, Shats I, Jones M, Reich DS, Mori S, Nguyen T, Rothstein B, Miller RH, Griffin JT, Kerr DA, Calabresi PA (2007) High resolution diffusion tensor imaging of axonal damage in focal inflammatory and demyelinating lesions in rat spinal cord. Brain 130(8):2199–2210PubMedCrossRefGoogle Scholar
  9. Fisher E, Chang A, Fox RJ, Tkach JA, Svarovsky T, Nakamura K, Rudick RA, Trapp BD (2007) Imaging correlates of axonal swelling in chronic multiple sclerosis brains. Ann Neurol 62(3):219–228PubMedCrossRefGoogle Scholar
  10. Hennig J, Scheffler K (2001) Hyperechoes. Magn Reson Med 46(1):6–12PubMedCrossRefGoogle Scholar
  11. Hervé P-Y, Leonard G, Perron M, Pike B, Pitiot A, Richer L, Veillette S, Pausova Z, Paus T (2009) Handedness, motor skills and maturation of the corticospinal tract in the adolescent brain. Hum Brain Mapp 30(10):3151–3162PubMedCrossRefGoogle Scholar
  12. Johansen-Berg H (2010) Behavioural relevance of variation in white matter microstructure. Curr Opin Neurol 23(4):351–358PubMedGoogle Scholar
  13. Kanaan RA, Shergill SS, Barker GJ, Catani M, Ng VW, Howard R, McGuire PK, Jones DK (2006) Tract-specific anisotropy measurements in diffusion tensor imaging. Psychiatry Res Neuroimaging 146(1):73–82CrossRefGoogle Scholar
  14. Koenigkam-Santos M, de Castro M, Versiani BR, Diniz PRB, Santos AC (2010) Kallmann syndrome and mirror movements: White matter quantitative evaluation with magnetic resonance imaging. J Neurol Sci 292(1–2):40–44PubMedCrossRefGoogle Scholar
  15. Krams M, Quinton R, Ashburner J, Friston KJ, Frackowiak RS, Bouloux PM, Passingham RE (1999) Kallmann’s syndrome: mirror movements associated with bilateral corticospinal tract hypertrophy. Neurology 52(4):816–822PubMedGoogle Scholar
  16. Kubicki M, Park H, Westin C, Nestor P, Mulkern R, Maier S, Niznikiewicz M, Connor E, Levitt J, Frumin M, Kikinis R, Jolesz F, McCarley R, Shenton M (2005) DTI and MTR abnormalities in schizophrenia: Analysis of white matter integrity. NeuroImage 26(4):1109–1118PubMedCrossRefGoogle Scholar
  17. Le Bihan D, Mangin J-F, Poupon C, Clark CA, Pappata S, Molko N, Chabriat H (2001) Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging 13(4):534–546PubMedCrossRefGoogle Scholar
  18. MacKay A, Laule C, Vavasour I, Bjarnason T, Kolind S, Mädler B (2006) Insights into brain microstructure from the T2 distribution. Magn Reson Imaging 24(4):515–525PubMedCrossRefGoogle Scholar
  19. Mirowitz S, Sartor K, Gado M, Torack R (1989) Focal signal-intensity variations in the posterior internal capsule: normal MR findings and distinction from pathologic findings. Radiology 172(2):535–539PubMedGoogle Scholar
  20. Mottershead J, Schmierer K, Clemence M, Thornton J, Scaravilli F, Barker G, Tofts P, Newcombe J, Cuzner M, Ordidge R, McDonald W, Miller D (2003) High field MRI correlates of myelin content and axonal density in multiple sclerosis. J Neurol 250(11):1293–1301PubMedCrossRefGoogle Scholar
  21. Mougin OE, Gowland PA (2008) Combining morphometry and T1 relaxometry in a single imaging protocol: measuring T1 with MPRAGE. Proc Intl Soc Magn Reson Med 16:3083Google Scholar
  22. Mougin OE, Coxon RC, Pitiot A, Gowland PA (2010) Magnetization transfer phenomenon in the human brain at 7 T. NeuroImage 49(1):272–281PubMedCrossRefGoogle Scholar
  23. Paus T, Toro R (2009) Could sex differences in white matter be explained by g ratio? Frontiers Neuroanat 3:14Google Scholar
  24. Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1996) Numerical recipes in C: the art of scientific computing, 2 edn. Cambridge University Press, CambridgeGoogle Scholar
  25. Reich DS, Smith SA, Jones CK, Zackowski KM, van Zijl PC, Calabresi PA, Mori S (2006) Quantitative characterization of the corticospinal tract at 3 Tesla. Am J Neuroradiol 27(10):2168–2178PubMedGoogle Scholar
  26. Reich DS, Smith SA, Zackowski KM, Gordon-Lipkin EM, Jones CK, Farrell JA, Mori S, van Zijl PC, Calabresi PA (2007) Multiparametric magnetic resonance imaging analysis of the corticospinal tract in multiple sclerosis. NeuroImage 38(2):271–279PubMedCrossRefGoogle Scholar
  27. Rueckert D, Sonoda LI, Hayes C, Hill DL, Leach MO, Hawkes DJ (1999) Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans Med Imaging 18(8):712–721PubMedCrossRefGoogle Scholar
  28. Schmierer K, Scaravilli F, Altmann DR, Barker GJ, Miller DH (2004) Magnetization transfer ratio and myelin in postmortem multiple sclerosis brain. Ann Neurol 56(3):407–415PubMedCrossRefGoogle Scholar
  29. Schmierer K, Tozer DJ, Scaravilli F, Altmann DR, Barker GJ, Tofts PS, Miller DH (2007) Quantitative magnetization transfer imaging in postmortem multiple sclerosis brain. J Magn Reson Imaging 26(1):41–51PubMedCrossRefGoogle Scholar
  30. Tanabe JL, Vermathen M, Miller R, Gelinas D, Weiner MW, Rooney WD (1998) Reduced MTR in the corticospinal tract and normal T2 in amyotrophic lateral sclerosis. Magn Reson Imaging 16(10):1163–1169PubMedCrossRefGoogle Scholar
  31. Vavasour IM, Li DKB, Laule C, Traboulsee AL, Moore GRW, MacKay AL (2007) Multi-parametric MR assessment of T1 black holes in multiple sclerosis. J Neurol 254(12):1653–1659PubMedCrossRefGoogle Scholar
  32. Westerhausen R, Huster RJ, Kreuder F, Wittling W, Schweiger E (2007) Corticospinal tract asymmetries at the level of the internal capsule: is there an association with handedness? NeuroImage 37(2):379–386PubMedCrossRefGoogle Scholar
  33. Wright PJ, Mougin OE, Totman JJ, Peters AM, Brookes MJ, Coxon R, Morris PE, Clemence M, Francis ST, Bowtell RW, Gowland PA (2008) Water proton T 1 measurements in brain tissue at 7, 3, and 1.5T using IR-EPI, IR-TSE, and MPRAGE: results and optimization. Magn Reson Mater Phys Biol Med 21(1–2):121–130Google Scholar
  34. Yagishita A, Nakano I, Oda M, Hirano A (1994) Location of the corticospinal tract in the internal capsule at MR imaging. Radiology 191(2):455–460PubMedGoogle Scholar
  35. Yu O, Steibel J, Mauss Y, Guignard B, Eclancher B, Chambron J, Grucker D (2004) Remyelination assessment by MRI texture analysis in a cuprizone mouse model. Magn Reson Imaging 22(8):1139–1144PubMedCrossRefGoogle Scholar
  36. Zaaraoui W, Deloire M, Merle M, Girard C, Raffard G, Biran M, Inglese M, Petry KG, Gonen O, Brochet B, Franconi J, Dousset V (2008) Monitoring demyelination and remyelination by magnetization transfer imaging in the mouse brain at 9.4T. Magma 21(5):357–362Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Pierre-Yves Hervé
    • 1
    • 5
  • Eleanor F. Cox
    • 2
  • Ashley K. Lotfipour
    • 2
  • Olivier E. Mougin
    • 2
  • Richard W. Bowtell
    • 2
  • Penny A. Gowland
    • 2
  • Tomas Paus
    • 1
    • 3
    • 4
  1. 1.School of Psychology, University of NottinghamNottinghamUK
  2. 2.Sir Peter Mansfield Magnetic Resonance Centre, University of NottinghamNottinghamUK
  3. 3.Rotman Research Institute, University of TorontoTorontoCanada
  4. 4.Montreal Neurological Institute, McGill UniversityMontrealCanada
  5. 5.Univ. de Bordeaux, CNRS, CEA, Groupe d’Imagerie NeurofonctionnelleBordeauxFrance

Personalised recommendations