Brain Structure and Function

, Volume 216, Issue 3, pp 201–218 | Cite as

Laminar distribution of neurotransmitter receptors in different reeler mouse brain regions

  • Christian M. Cremer
  • Joachim H. R. Lübke
  • Nicola Palomero-Gallagher
  • Karl Zilles
Original Article

Abstract

Mapping of multiple receptors of neurotransmitters provides insight into the spatial distribution of neurotransmission-relevant molecules in the cerebral cortex. During development, lack of reelin leads to impaired migration, disturbed lamination of the hippocampus and inverted neocortical layering. In the adult, reelin may regulate synaptic plasticity by modulating neurotransmitter receptor function. Using quantitative in vitro receptor autoradiography, different receptors, in particular, the binding site densities and laminar distribution of various glutamate, GABA, muscarinic and nicotinic acetylcholine, serotonin, dopamine and adenosine receptors, were analyzed in cortical and subcortical structures of reeler and wild-type brains. Differential changes in the laminar distribution, maximum binding capacity (Bmax) and regional density of neurotransmitter receptors were found in the reeler brain. A decrease of whole brain Bmax was found for adenosine A1 and GABAA receptors. In the forebrain, several binding sites were differentially up- or down-regulated (kainate, A1, benzodiazepine, 5-HT1, M2, α1 and α2). In the hippocampus, a significant decrease of GABAB, 5-HT1 and \( {\text{A}}_1^{\prime} \) receptors were observed. The density of M2 receptors increased, while other receptors remained unchanged. In the neocortex, some receptors demonstrated an obviously inverted laminar distribution (AMPA, kainate, NMDA, GABAB, 5-HT1, M1, M3, nAch), while the distribution of others (A1, GABAA, benzodiazepine, 5-HT2, muscarinic M2, adrenergic α1, α2) seemed to be less affected. Thus, the laminar receptor distribution is modulated by the developmental impairment and suggests and reflects partially the laminar inversion in reeler mice.

Keywords

Reeler mouse Quantitative receptor autoradiography Neurotransmitter receptor mapping Cortical organization Synaptic transmission and plasticity 

Supplementary material

429_2011_303_MOESM1_ESM.eps (24.2 mb)
Supplementary material 1 (EPS 24752 kb)

References

  1. Angevine JB, Sidman RL (1961) Autoradiographic study of cell migration during histogenesis of cerebral cortex in the mouse. Nature 192:766–768PubMedCrossRefGoogle Scholar
  2. Beffert U, Weeber EJ, Morfini G, Ko J, Brady ST, Tsai LH, Sweatt JD, Herz J (2004) Reelin and cyclin-dependent kinase 5-dependent signals cooperate in regulating neuronal migration and synaptic transmission. J Neurosci 24:1897–1906PubMedCrossRefGoogle Scholar
  3. Beffert U, Weeber EJ, Durudas A, Qiu S, Masiulis I, Sweatt JD, Li WP, Adelmann G, Frotscher M, Hammer RE, Herz J (2005) Modulation of synaptic plasticity and memory by Reelin involves differential splicing of the lipoprotein receptor ApoER2. Neuron 47:567–579PubMedCrossRefGoogle Scholar
  4. Behar TN, Scott CA, Greene CL, Wen X, Smith SV, Maric D, Liu QY, Colton CA, Barker JL (1999) Glutamate acting at NMDA receptors stimulates embryonic cortical neuronal migration. J Neurosci 19:4449–4461PubMedGoogle Scholar
  5. Berry M, Rogers AW (1965) The migration of neuroblasts in the developing cerebral cortex. J Anat 99:691–709PubMedGoogle Scholar
  6. Botella-Lopez A, Burgaya F, Gavin R, Garcia-Ayllon MS, Gomez-Tortosa E, Pena-Casanova J, Urena JM, Del Rio JA, Blesa R, Soriano E, Saéz-Valero J (2006) Reelin expression and glycosylation patterns are altered in Alzheimer’s disease. Proc Natl Acad Sci USA 103:5573–5578PubMedCrossRefGoogle Scholar
  7. Caviness VS Jr (1982) Neocortical histogenesis in normal and reeler mice: a developmental study based upon [3H]thymidine autoradiography. Brain Res 256:293–302PubMedGoogle Scholar
  8. Caviness VS, Frost DO (1983) Thalamocortical projections in the reeler mutant mouse. J Comp Neurol 219:182–202PubMedCrossRefGoogle Scholar
  9. Caviness VS, Sidman RL (1973) Time of origin or corresponding cell classes in the cerebral cortex of normal and reeler mutant mice. An autoradiographic analysis. J Comp Neurol 148:141–151PubMedCrossRefGoogle Scholar
  10. Chen Y, Beffert U, Ertunc M, Tang TS, Kavalali ET, Bezprozvanny I, Herz J (2005) Reelin modulates NMDA receptor activity in cortical neurons. J Neurosci 25:8209–8216PubMedCrossRefGoogle Scholar
  11. Chin J, Massaro CM, Palop JJ, Thwin MT, Yu GQ, Bien-Ly N, Bender A, Mucke L (2007) Reelin depletion in the entorhinal cortex of human amyloid precursor protein transgenic mice and humans with Alzheimer’s disease. J Neurosci 27:2727–2733PubMedCrossRefGoogle Scholar
  12. Cremer CM, Palomero-Gallagher N, Bidmon HJ, Schleicher A, Speckmann EJ, Zilles K (2009) Pentylenetetrazole-induced seizures affect binding site densities for GABA, glutamate and adenosine receptors in the rat brain. Neuroscience 163:490–499PubMedCrossRefGoogle Scholar
  13. Cremer CM, Bidmon H-J, Görg B, Palomero-Gallagher N, Lopez Escobar J, Speckmann E-J, Zilles K (2010) Inhibition of glutamate/glutamine cycle in vivo results in decreased benzodiazepine binding and differentially regulated GABAergic subunit expression in the rat brain. Epilepsia 51(8):1446–1455Google Scholar
  14. D’Arcangelo G (2005) The reeler mouse: anatomy of a mutant. Int Rev Neurobiol 71:383–417PubMedCrossRefGoogle Scholar
  15. D’Arcangelo G (2006) Reelin mouse mutants as models of cortical development disorders. Epilepsy Behav 8:81–90PubMedCrossRefGoogle Scholar
  16. D’Arcangelo G, Miao GG, Curran T (1996) Detection of the reelin breakpoint in reeler mice. Brain Res Mol Brain Res 39:234–236PubMedCrossRefGoogle Scholar
  17. de Bergeyck V, Nakajima K, Lambert de Rouvroit C, Naerhuyzen B, Goffinet AM, Miyata T, Ogawa M, Mikoshiba K (1997) A truncated Reelin protein is produced but not secreted in the ‘Orleans’ reeler mutation (Reln[rl-Orl]). Brain Res Mol Brain Res 50:85–90PubMedCrossRefGoogle Scholar
  18. Dekimoto H, Terashima T, Katsuyama Y (2010) Dispersion of the neurons expressing layer specific markers in the reeler brain. Dev Growth Differ 52:181–193PubMedCrossRefGoogle Scholar
  19. Deutsch SI, Rosse RB, Lakshman RM (2006) Dysregulation of tau phosphorylation is a hypothesized point of convergence in the pathogenesis of Alzheimer’s disease, frontotemporal dementia and schizophrenia with therapeutic implications. Prog Neuropsychopharmacol Biol Psychiatry 30:1369–1380PubMedCrossRefGoogle Scholar
  20. Durakoglugil MS, Chen Y, White CL, Kavalali ET, Herz J (2009) Reelin signaling antagonizes beta-amyloid at the synapse. Proc Natl Acad Sci USA 106:15938–15943PubMedCrossRefGoogle Scholar
  21. Fatemi SH (2008) In: Reelin glycoprotein: structure, biology and roles in health and disease. Springer Science and Business Media, New YorkGoogle Scholar
  22. Fredholm BB, Chen JF, Cunha RA, Svenningsson P, Vaugeois JM (2005a) Adenosine and brain function. Int Rev Neurobiol 63:191–270PubMedCrossRefGoogle Scholar
  23. Fredholm BB, Chen JF, Masino SA, Vaugeois JM (2005b) Actions of adenosine at its receptors in the CNS: insights from knockouts and drugs. Annu Rev Pharmacol Toxicol 45:385–412PubMedCrossRefGoogle Scholar
  24. Fukumitsu N, Ishii K, Kimura Y, Oda K, Hashimoto M, Suzuki M, Ishiwata K (2008) Adenosine A(1) receptors using 8-dicyclopropylmethyl-1-[(11)C]methyl-3-propylxanthine PET in Alzheimer’s disease. Ann Nucl Med 22:841–847PubMedCrossRefGoogle Scholar
  25. Groc L, Choquet D, Stephenson FA, Verrier D, Manzoni OJ, Chavis P (2007) NMDA receptor surface trafficking and synaptic subunit composition are developmentally regulated by the extracellular matrix protein Reelin. J Neurosci 27:10165–10175PubMedCrossRefGoogle Scholar
  26. Haas CA, Frotscher M (2010) Reelin deficiency causes granule cell dispersion in epilepsy. Exp Brain Res 200:141–149PubMedCrossRefGoogle Scholar
  27. Hack I, Hellwig S, Junghans D, Brunne B, Bock HH, Zhao S, Frotscher M (2007) Divergent roles of ApoER2 and Vldlr in the migration of cortical neurons. Development 134:3883–3891PubMedCrossRefGoogle Scholar
  28. Hamburgh M (1960) Observations on the neuropathology of “Reeler”, a neurological mutation in mice. Experientia 16:460–461CrossRefGoogle Scholar
  29. Hamburgh M (1963) Analysis of the postnatal developmental effects of “reeler”, a neurological mutation in mice. A study in developmental genetics. Dev Biol 19:165–185PubMedCrossRefGoogle Scholar
  30. Heinrich C, Nitta N, Flubacher A, Müller MC, Fahrner A, Kirsch M, Freiman T, Suzuki F, Depaulis A, Frotscher M, Haas CA (2006) Reelin deficiency and displacement of mature neurons, but not neurogenesis, underlie the formation of granule cell dispersion in the epileptic hippocampus. J Neurosci 26:4701–4713PubMedCrossRefGoogle Scholar
  31. Howell BW, Hawkes R, Soriano P, Cooper JA (1997) Neuronal position in the developing brain is regulated by mouse disabled-1. Nature 389:733–737PubMedCrossRefGoogle Scholar
  32. Ikeda M, Mackay KB, Dewar D, McCulloch J (1993) Differential alterations in adenosine A1 and kappa 1 opioid receptors in the striatum in Alzheimer’s disease. Brain Res 616:211–217PubMedCrossRefGoogle Scholar
  33. Jaarsma D, Sebens JB, Korf J (1991) Reduction of adenosine A1-receptors in the perforant pathway terminal zone in Alzheimer hippocampus. Neurosci Lett 121:111–114PubMedCrossRefGoogle Scholar
  34. Jansen KL, Faull RL, Dragunow M, Synek BL (1990) Alzheimer’s disease: changes in hippocampal N-methyl-D-aspartate, quisqualate, neurotensin, adenosine, benzodiazepine, serotonin and opioid receptors-an autoradiographic study. Neuroscience 39:613–627PubMedCrossRefGoogle Scholar
  35. Kalaria RN, Sromek S, Wilcox BJ, Unnerstall JR (1990) Hippocampal adenosine A1 receptors are decreased in Alzheimer’s disease. Neurosci Lett 118:257–260PubMedCrossRefGoogle Scholar
  36. Lambert de Rouvroit C, Goffinet AM (1998) The reeler mouse as a model of brain development. Adv Anat Embryol Cell Biol 150:1–106PubMedGoogle Scholar
  37. Lopez-Bendito G, Molnar Z (2003) Thalamocortical development: how are we going to get there? Nat Rev Neurosci 4:276–289PubMedCrossRefGoogle Scholar
  38. Lopez-Bendito G, Lujan R, et al (2003) Blockade of GABA(B) receptors alters the tangential migration of cortical neurons. Cereb Cortex 13:932–942Google Scholar
  39. Lujan R, Shigemoto R, Lopez-Bendito G (2005) Glutamate and GABA receptor signalling in the developing brain. Neuroscience 130:567–580PubMedCrossRefGoogle Scholar
  40. Mariani J, Crepel F, Mikoshiba K, Changeux JP, Sotelo C (1977) Anatomical, physiological and biochemical studies of the cerebellum from Reeler mutant mouse. Philos Trans R Soc Lond B Biol Sci 281:1–28PubMedCrossRefGoogle Scholar
  41. Marrone MC, Marinelli S, Biamonte F, Keller F, Sgobio CA, Ammassari-Teule M, Bernardi G, Mercuri NB (2006) Altered cortico-striatal synaptic plasticity and related behavioural impairments in reeler mice. Eur J Neurosci 24:2061–2070PubMedCrossRefGoogle Scholar
  42. Matsuzaki H, Minabe Y, Nakamura K, Suzuki K, Iwata Y, Sekine Y, Tsuchiya KJ, Sugihara G, Suda S, Takei N, Nakahara D, Hashimoto K, Nairn AC, Mori N, Sato K (2007) Disruption of reelin signaling attenuates methamphetamine-induced hyperlocomotion. Eur J Neurosci 25:3376–3384PubMedCrossRefGoogle Scholar
  43. Müller MC, Osswald M, Tinnes S, Haussler U, Jacobi A, Förster E, Frotscher M, Haas CA (2009) Exogenous reelin prevents granule cell dispersion in experimental epilepsy. Exp Neurol 216:390–397PubMedCrossRefGoogle Scholar
  44. Niu S, Yabut O, D’Arcangelo G (2008) The Reelin signaling pathway promotes dendritic spine development in hippocampal neurons. J Neurosci 28:10339–10348PubMedCrossRefGoogle Scholar
  45. Palomero-Gallagher N, Bidmon H-J, Cremer M, Schleicher A, Kircheis G, Reifenberger G, Kostopoulos G, Häussinger D, Zilles K (2009) Neurotransmitter receptor imbalances in motor cortex and basal ganglia in hepatic encephalopathy. Cell Physiol Biochem 24:291–306PubMedCrossRefGoogle Scholar
  46. Paxinos G, Franklin KBJ (2001) The mouse brain in stereotaxic coordinates.Second Edition. Academic Press, San DiegoGoogle Scholar
  47. Prestwich SA, Forda SR, Dolphin AC (1987) Adenosine antagonists increase spontaneous and evoked transmitter release from neuronal cells in culture. Brain Res 405:130–139PubMedCrossRefGoogle Scholar
  48. Qiu S, Zhao LF, Korwek KM, Weeber EJ (2006) Differential reelin-induced enhancement of NMDA and AMPA receptor activity in the adult hippocampus. J Neurosci 26:12943–12955PubMedCrossRefGoogle Scholar
  49. Rakic P, Caviness VS Jr (1995) Cortical development: view from neurological mutants two decades later. Neuron 14:1101–1104PubMedCrossRefGoogle Scholar
  50. Saéz-Valero J, Fodero LR, Sjogren M, Andreasen N, Amici S, Gallai V, Vanderstichele H, Vanmechelen E, Parnetti L, Blennow K, Small DH (2003) Glycosylation of acetylcholinesterase and butyrylcholinesterase changes as a function of the duration of Alzheimer’s disease. J Neurosci Res 72:520–526PubMedCrossRefGoogle Scholar
  51. Sheldon M, Rice DS, D’Arcangelo G, Yoneshima H, Nakajima K, Mikoshiba K, Howell BW, Cooper JA, Goldowitz D, Curran T (1997) Scrambler and yotari disrupt the disabled gene and produce a reeler-like phenotype in mice. Nature 389:730–733PubMedCrossRefGoogle Scholar
  52. Sheppard AM, Pearlman AL (1997) Abnormal reorganization of preplate neurons and their associated extracellular matrix: an early manifestation of altered neocortical development in the reeler mutant mouse. J Comp Neurol 378:173–179PubMedCrossRefGoogle Scholar
  53. Simmons PA, Pearlman AL (1983) Receptive-field properties of transcallosal visual cortical neurons in the normal and reeler mouse. J Neurophysiol 50:838–848PubMedGoogle Scholar
  54. Simmons PA, Lemmon V, Pearlman AL (1982) Afferent and efferent connections of the striate and extrastriate visual cortex of the normal and reeler mouse. J Comp Neurol 211:295–308PubMedCrossRefGoogle Scholar
  55. Sinagra M, Verrier D, Frankova D, Korwek KM, Blahos J, Weeber EJ, Manzoni OJ, Chavis P (2005) Reelin, very-low-density lipoprotein receptor, and apolipoprotein E receptor 2 control somatic NMDA receptor composition during hippocampal maturation in vitro. J Neurosci 25:6127–6136PubMedCrossRefGoogle Scholar
  56. Stanfield BB, Cowan WM (1979) The morphology of the hippocampus and dentate gyrus in normal and reeler mice. J Comp Neurol 185:393–422PubMedCrossRefGoogle Scholar
  57. Stone TW, Ceruti S, Abbracchio MP (2009) Adenosine receptors and neurological disease: neuroprotection and neurodegeneration. Handb Exp Pharmacol 193:535–587PubMedCrossRefGoogle Scholar
  58. Strazielle C, Hayzoun K, Derer M, Mariani J, Lalonde R (2006) Regional brain variations of cytochrome oxidase activity in Relnrl-orl mutant mice. J Neurosci Res 83:821–831PubMedCrossRefGoogle Scholar
  59. Takahashi T, Goto T, Miyama S, Nowakowski RS, Caviness VS Jr (1999) Sequence of neuron origin and neocortical laminar fate: relation to cell cycle of origin in the developing murine cerebral wall. J Neurosci 19:10357–10371PubMedGoogle Scholar
  60. Terashima T, Inoue K, Inoue Y, Mikoshiba K (1987) Thalamic connectivity of the primary motor cortex of normal and reeler mutant mice. J Comp Neurol 257:405–421PubMedCrossRefGoogle Scholar
  61. Trommsdorff M, Gotthardt M, Hiesberger T, Shelton J, Stockinger W, Nimpf J, Hammer RE, Richardson JA, Herz J (1999) Reeler/disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2. Cell 97:689–701PubMedCrossRefGoogle Scholar
  62. Ułas J, Brunner LC, Nguyen L, Cotman CW (1993) Reduced density of adenosine A1 receptors and preserved coupling of adenosine A1 receptors to G proteins in Alzheimer hippocampus: a quantitative autoradiographic study. Neuroscience 52:843–854PubMedCrossRefGoogle Scholar
  63. Wagener RJ, Csaba D, Zhao S, Haas CA, Staiger JF (2010) The somatosensory cortex of reeler mutant mice show absent layering but intact formation and behavioral activation of columnar somatotopic maps. J Neurosci 30:15700–15709PubMedCrossRefGoogle Scholar
  64. Ware ML, Fox JW, Gonzalez JL, Davis NM, Lambert de Rouvroit C, Russo CJ, Chua SC Jr, Goffinet AM, Walsh CA (1997) Aberrant splicing of a mouse disabled homolog, mdab1, in the scrambler mouse. Neuron 19:239–249PubMedCrossRefGoogle Scholar
  65. Weeber EJ, Beffert U, Jones C, Christian JM, Förster E, Sweatt JD, Herz J (2002) Reelin and ApoE receptors cooperate to enhance hippocampal synaptic plasticity and learning. J Biol Chem 277:39944–39952PubMedCrossRefGoogle Scholar
  66. Wirths O, Multhaup G, Czech C, Blanchard V, Tremp G, Pradier L, Beyreuther K, Bayer TA (2001) Reelin in plaques of beta-amyloid precursor protein and presenilin-1 double-transgenic mice. Neurosci Lett 316:145–148PubMedCrossRefGoogle Scholar
  67. Zhao S, Chai X, Förster E, Frotscher M (2004) Reelin is a positional signal for the lamination of dentate granule cells. Development 131:5117–5125PubMedCrossRefGoogle Scholar
  68. Zilles K, Amunts K (2009) Receptor mapping: architecture of the human cerebral cortex. Curr Opin Neurol 22:331–339PubMedCrossRefGoogle Scholar
  69. Zilles K, Qü MS, Kohling R, Speckmann EJ (1999) Ionotropic glutamate and GABA receptors in human epileptic neocortical tissue: quantitative in vitro receptor autoradiography. Neuroscience 94:1051–1061PubMedCrossRefGoogle Scholar
  70. Zilles K, Schleicher A, Palomero-Gallagher N, Amunts K (2002) Quantitative analysis of cyto- and receptor architecture of the human brain. In: Toga AW, Mazziotta JC (eds) Brain mapping. The methods. Elsevier, Amsterdam, pp 573–602CrossRefGoogle Scholar
  71. Zilles K, Palomero-Gallagher N, Schleicher A (2004) Transmitter receptors and functional anatomy of the cerebral cortex. J Anat 205:417–432PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Christian M. Cremer
    • 1
    • 2
  • Joachim H. R. Lübke
    • 1
    • 3
    • 4
  • Nicola Palomero-Gallagher
    • 1
  • Karl Zilles
    • 1
    • 2
    • 3
  1. 1.Institute of Neuroscience and Medicine INM-2Research Centre Jülich GmbHJülichGermany
  2. 2.C. & O. Vogt Institute for Brain ResearchHeinrich-Heine-University DüsseldorfDüsseldorfGermany
  3. 3.JARA Translational Brain MedicineJülich, AachenGermany
  4. 4.Department of Psychiatry and Psychotherapy, Medical FacultyRWTH/University Hospital AachenAachenGermany

Personalised recommendations