Brain Structure and Function

, Volume 215, Issue 3–4, pp 225–235 | Cite as

Sex differences in cognitive control are associated with midcingulate and callosal morphology

  • Rene J. Huster
  • R. Westerhausen
  • C. S. Herrmann
Original Article


Sex differences in the processing of cognitively demanding tasks have attracted much attention in recent years. While there seems to be some agreement on differences between males and females concerning spatial abilities and language skills, a consensus regarding executive functions or cognitive control has not been reached yet. In the present study, male and female subjects participated in a lateralized, tactile Stop-Signal task. Although the behavioral data did not show any differences between sexes, event-related potentials pointed to varieties in neurocognitive processing. As inferred from N200 amplitudes, differences between left- and right-hand stimulation suggested a strong degree of functional lateralization in males in accordance with a left-hemispheric dominance. Females, on the other hand, rather seemed to exhibit a functionally symmetric organization of relevant processes. The P300 did also show evidence of sex-related differences, reflecting disparities in the degree or quality of interhemispheric interaction. In addition, behavioral and electrophysiological parameters were correlated with individual metrics concerning the degree of midcingulate folding asymmetry and the morphology of the corpus callosum. Differential associations of these morphological characteristics with the N200 and P300, respectively, underscore the notion of relevant structure–function associations of the midcingulate cortex and the N200 on the one hand, and the corpus callosum and the P300 on the other hand. Obviously, these variations in neuroanatomy contribute to the observed behavioral and electrophysiological differences between women and men.


Gender Sex N200 Stop-Signal P300 Cingulate cortex Corpus callosum 


  1. Bekker EM, Kenemans JL, Verbaten MN (2005) Source analysis of the N2 in a cued go/nogo task. Brain Res Cogn Brain Res 22(2):221–231CrossRefPubMedGoogle Scholar
  2. Chatrian GE, Lettich E, Nelson PL (1988) Modified nomenclature for the “10%” electrode system. J Clin Neurophysiol 5(2):183–186CrossRefPubMedGoogle Scholar
  3. Conroy MA, Polich J (2007) Normative variation of P3a and P3b from a large sample: sex, topography, and response time. J Psychophysiol 21(1):22–32CrossRefGoogle Scholar
  4. Fornito A, Yücel M, Wood S, Stuart GW, Buchanan J, Proffitt T, Anderson V, Velakoulis D, Pantelis C (2004) Individual differences in anterior cingulate/paracingulate morphology are related to executive functions in healthy males. Cereb Cortex 14(4):424–431CrossRefPubMedGoogle Scholar
  5. Fornito A, Whittle S, Wood SJ, Velakoulis D, Pantelis C, Yücel M (2006) The influence of sulcal variability on morphometry of the human anterior cingulate and paracingulate cortex. Neuroimage 33(3):843–854CrossRefPubMedGoogle Scholar
  6. Fornito A, Wood SJ, Whittle S, Fuller J, Adamson C, Saling MM, Velakoulis D, Pantelis C, Yücel M (2008) Variability of the paracingulate sulcus and morphometry of the medial frontal cortex: associations with cortical thickness, surface area, volume, and sulcal depth. Hum Brain Mapp 29(2):222–236CrossRefPubMedGoogle Scholar
  7. Gratton G, Coles M, Donchin E (1983) A new method for off-line removal of ocular artifacts. Electroencephalogr Clin Neurophysiol 55:468–484Google Scholar
  8. Hines M (2010) Sex-related variation in human behavior and the brain. Trends Cogn Sci (in press)Google Scholar
  9. Hoffman LD, Polich J (1999) P300, handedness, and corpus callosal size: gender, modality, and task. Int J Psychophysiol 31(2):163–174CrossRefPubMedGoogle Scholar
  10. Huster RJ, Westerhausen R, Kreuder F, Schweiger E, Wittling W (2007) Morphologic asymmetry of the human anterior cingulate cortex. Neuroimage 34(3):888–895CrossRefPubMedGoogle Scholar
  11. Huster RJ, Wolters C, Wollbrink A, Schweiger E, Wittling W, Pantev C, Junghofer M (2009) Effects of anterior cingulate fissurization on cognitive control during stroop interference. Hum Brain Mapp 30(4):1279–1289CrossRefPubMedGoogle Scholar
  12. Huster RJ, Westerhausen R, Pantev C, Konrad C (2010) The role of the cingulate cortex as neural generator of the N200 and P300 in a tactile response inhibition task. Hum Brain Mapp 31(8):1260–1271PubMedGoogle Scholar
  13. Hyde JS (2005) The gender similarities hypothesis. Am Psychol 60(6):581–592CrossRefPubMedGoogle Scholar
  14. Jäncke L (2004) Anatomical brain asymmetries and their relevance for functional asymmetries. In: Hugdahl K, Davidson RJ (eds) The asymmetrical brain. MIT press, Cambridge, pp 187–229Google Scholar
  15. Jäncke L, Staiger JF, Schlaug G, Huang Y, Steinmetz H (1997) The relationship between corpus callosum size and forebrain volume. Cereb Cortex 7(1):48–56CrossRefPubMedGoogle Scholar
  16. Jonkman LM, Sniedt FLF, Kemner C (2007) Source localization of the nogo-N2: a developmental study. Clin Neurophysiol 118(5):1069–1077CrossRefPubMedGoogle Scholar
  17. Kimura D (2002) Sex hormones influence human cognitive pattern. NeuroEndocrinol Lett 23(Suppl 4):67–77PubMedGoogle Scholar
  18. Klein M, Ponds RW, Houx PJ, Jolles J (1997) Effect of test duration on age-related differences in Stroop interference. J Clin Exp Neuropsychol 19:77–82Google Scholar
  19. Kok A, Ramautar JR, De Ruiter MB, Band GPH, Ridderinkhof KR (2004) ERP components associated with successful and unsuccessful stopping in a stop-signal task. Psychophysiology 41(1):9–20CrossRefPubMedGoogle Scholar
  20. Lamm C, Zelazo PD, Lewis MD (2006) Neural correlates of cognitive control in childhood and adolescence: disentangling the contributions of age and executive function. Neuropsychologia 44(11):2139–2148CrossRefPubMedGoogle Scholar
  21. Leonard CM, Towler S, Welcome S, Chiarello C (2009) Paracingulate asymmetry in anterior and midcingulate cortex: sex differences and the effect of measurement technique. Brain Struct Funct 213(6):553–569CrossRefPubMedGoogle Scholar
  22. Li C, Huang C, Constable R, Sinha R (2006) Gender differences in the neural correlates of response inhibition during a stop signal task. Neuroimage 32(4):1918–1929CrossRefPubMedGoogle Scholar
  23. Moering R, Schinka J, Mortimer J, Graves A (2004) Normative data for elderly African Americans for the stroop color and word test. Arch Clin Neuropsychol 19(1):61–71PubMedGoogle Scholar
  24. Nakata H, Inui K, Nishihira Y, Hatta A, Sakamoto M, Kida T, Wasaka T, Kakigi R (2004) Effects of a go/nogo task on event-related potentials following somatosensory stimulation. Clin Neurophysiol 115(2):361–368CrossRefPubMedGoogle Scholar
  25. Nieuwenhuis S, Yeung N, van den Wildenberg W, Ridderinkhof KR (2003) Electrophysiological correlates of anterior cingulate function in a go/no-go task: effects of response conflict and trial type frequency. Cogn Affect Behav Neurosci 3(1):17–26CrossRefPubMedGoogle Scholar
  26. Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9(1):97–113CrossRefPubMedGoogle Scholar
  27. Paus T, Tomaiuolo F, Otaky N, MacDonald D, Petrides M, Atlas J, Morris R, Evans AC (1996) Human cingulate and paracingulate sulci: pattern, variability, asymmetry, and probabilistic map. Cereb Cortex 6(2):207–214CrossRefPubMedGoogle Scholar
  28. Polich J (2007) Updating P300: an integrative theory of P3a and P3b. Clin Neurophysiol 118(10):2128–2148CrossRefPubMedGoogle Scholar
  29. Ramautar JR, Kok A, Ridderinkhof KR (2004) Effects of stop-signal probability in the stop-signal paradigm: the N2/P3 complex further validated. Brain Cogn 56(2):234–252PubMedGoogle Scholar
  30. Ramautar JR, Kok A, Ridderinkhof KR (2006) Effects of stop-signal modality on the N2/P3 complex elicited in the stop-signal paradigm. Biol Psychol 72(1):96–109CrossRefPubMedGoogle Scholar
  31. Ringo JL, Doty RW, Demeter S, Simard PY (1994) Time is of the essence: a conjecture that hemispheric specialization arises from interhemispheric conduction delay. Cereb Cortex 4(4):331–343CrossRefPubMedGoogle Scholar
  32. Rorden C, Brett M (2000) Stereotaxic display of brain lesions. Behav Neurol 12(4):191–200PubMedGoogle Scholar
  33. Smith RJ (2005) Relative size versus controlling for size: interpretation of ratios in research on sexual dimorphism in the human corpus callosum. Curr Anthropol 2(46):249–273CrossRefGoogle Scholar
  34. Steffensen SC, Ohran AJ, Shipp DN, Hales K, Stobbs SH, Fleming DE (2008) Gender-selective effects of the P300 and N400 components of the visual evoked potential. Vis Res 48(7):917–925CrossRefPubMedGoogle Scholar
  35. Swerdlow NR, Filion D, Geyer MA, Braff DL (1995) “Normal” personality correlates of sensorimotor, cognitive, and visuospatial gating. Biol Psychiatry 37(5):286–299CrossRefPubMedGoogle Scholar
  36. van Boxtel M, ten Tusscher M, Metsemakers J, Willems B, Jolles J (2001) Visual determinants of reduced performance on the stroop color-word test in normal aging individuals. J Exp Clin Neuropsychol 23(5):620–627CrossRefGoogle Scholar
  37. Van der Elst W, Van Boxtel M, Van Breukelen G, Jolles J (2006) The stroop color-word test—influence of age, sex, and education; and normative data for a large sample across the adult age range. Assessment 13(1):62–79CrossRefPubMedGoogle Scholar
  38. Vogt BA, Nimchinsky EA, Vogt LJ, Hof PR (1995) Human cingulate cortex: surface features, flat maps, and cytoarchitecture. J Comp Neurol 359(3):490–506CrossRefPubMedGoogle Scholar
  39. Westerhausen R, Kreuder F, Woerner W, Huster RJ, Smit CM, Schweiger E, Wittling W (2006) Interhemispheric transfer time and structural properties of the corpus callosum. Neurosci Lett 409(2):140–145CrossRefPubMedGoogle Scholar
  40. Witelson SF (1989) Hand and sex differences in the isthmus and genu of the human corpus callosum. A postmortem morphological study. Brain 112(Pt 3):799–835CrossRefPubMedGoogle Scholar
  41. Yuan J, He Y, Qinglin Z, Chen A, Li H (2008) Gender differences in behavioral inhibitory control: ERP evidence from a two-choice oddball task. Psychophysiology 45(6):986–993CrossRefPubMedGoogle Scholar
  42. Yücel M, Stuart GW, Maruff P, Velakoulis D, Crowe SF, Savage G, Pantelis C (2001) Hemispheric and gender-related differences in the gross morphology of the anterior cingulate/paracingulate cortex in normal volunteers: an MRI morphometric study. Cereb Cortex 11(1):17–25CrossRefPubMedGoogle Scholar
  43. Zilles K, Amunts K (2010) Centenary of Brodmann’s map—conception and fate. Nat Rev Neurosci 11(2):139–145CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Rene J. Huster
    • 1
  • R. Westerhausen
    • 2
  • C. S. Herrmann
    • 1
  1. 1.Experimental Psychology Lab, Institute for PsychologyCarl von Ossietzky Universität OldenburgOldenburgGermany
  2. 2.Bergen fMRI Group, Department of Biological and Medical PsychologyUniversity of BergenBergenNorway

Personalised recommendations