Brain Structure and Function

, Volume 215, Issue 2, pp 73–96 | Cite as

Cortico-basal ganglia circuitry: a review of key research and implications for functional connectivity studies of mood and anxiety disorders

Review

Abstract

There is considerable evidence that dysfunction of the cortico-basal ganglia circuits may be associated with several mood and anxiety disorders. However, it is unclear whether circuit abnormalities contribute directly either to the neurobiology of these conditions or to the manifestation of symptoms. Understanding the role of these pathways in psychiatric illness has been limited by an incomplete characterization of normal function. In recent years, studies using animal models and human functional imaging have greatly expanded the literature describing normal cortico-basal ganglia circuit function. In this paper, recent key studies of circuit function using human and animal models are reviewed and integrated with findings from other studies conducted over the previous decades. The literature suggests several hypotheses of cortico-basal ganglia circuitry function in mood and anxiety disorders that warrant further exploration. Hypotheses are proposed herein based upon the cortico-basal ganglia mechanisms of: (1) feedforward and feedback control, (2) circuit integration and (3) emotional control. These are presented as models of circuit function, which may be particularly relevant to future investigations using neuroimaging and functional connectivity analyses.

Keywords

Cortico-basal ganglia circuits Psychiatric disorders Striatum Mood disorders Anxiety disorders Amygdala 

References

  1. Abler B, Roebroeck A et al (2006) Investigating directed influences between activated brain areas in a motor-response task using fMRI. Magn Reson Imaging 24(2):181–185PubMedGoogle Scholar
  2. Adler CM, Holland SK et al (2004) Changes in neuronal activation in patients with bipolar disorder during performance of a working memory task. Bipolar Disord 6(6):540–549PubMedGoogle Scholar
  3. Adolphs R, Tranel D et al (1994) Impaired recognition of emotion in facial expressions following bilateral damage to the human amygdala. Nature 372(6507):669–672PubMedGoogle Scholar
  4. Aggleton JP, Burton MJ et al (1980) Cortical and subcortical afferents to the amygdala of the rhesus monkey (Macaca mulatta). Brain Res 190(2):347–368PubMedGoogle Scholar
  5. Aizenstein HJ, Butters MA et al (2005) Prefrontal and striatal activation during sequence learning in geriatric depression. Biol Psychiatry 58(4):290–296PubMedGoogle Scholar
  6. Aizenstein HJ, Butters MA et al (2009) Altered functioning of the executive control circuit in late-life depression: episodic and persistent phenomena. Am J Geriatr Psychiatry 17(1):30–42PubMedGoogle Scholar
  7. Albin RL, Young AB et al (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12(10):366–375PubMedGoogle Scholar
  8. Alexander GE, Crutcher MD (1990) Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 13(7):266–271PubMedGoogle Scholar
  9. Alexander GE, DeLong MR (1985) Microstimulation of the primate neostriatum. II. Somatotopic organization of striatal microexcitable zones and their relation to neuronal response properties. J Neurophysiol 53(6):1417–1430PubMedGoogle Scholar
  10. Alexander GE, DeLong MR et al (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9:357–381PubMedGoogle Scholar
  11. Alexander GE, Crutcher MD et al (1990) Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, “prefrontal” and “limbic” functions. Prog Brain Res 85:119–146PubMedGoogle Scholar
  12. Altshuler LL, Bookheimer SY et al (2005) Blunted activation in orbitofrontal cortex during mania: a functional magnetic resonance imaging study. Biol Psychiatry 58(10):763–769PubMedGoogle Scholar
  13. Amaral DG, Insausti R (1992) Retrograde transport of D-[3H]-aspartate injected into the monkey amygdaloid complex. Exp Brain Res 88(2):375–388PubMedGoogle Scholar
  14. Amaral DG, Price JL (1984) Amygdalo-cortical projections in the monkey (Macaca fascicularis). J Comp Neurol 230(4):465–496PubMedGoogle Scholar
  15. Anand A, Li Y et al (2009) Resting state corticolimbic connectivity abnormalities in unmedicated bipolar disorder and unipolar depression. Psychiatry Res 171(3):189–198PubMedGoogle Scholar
  16. Anseloni VC, Coimbra NC et al (1999) A comparative study of the effects of morphine in the dorsal periaqueductal gray and nucleus accumbens of rats submitted to the elevated plus-maze test. Exp Brain Res 129(2):260–268PubMedGoogle Scholar
  17. Aosaki T, Tsubokawa H et al (1994) Responses of tonically active neurons in the primate’s striatum undergo systematic changes during behavioral sensorimotor conditioning. J Neurosci 14(6):3969–3984PubMedGoogle Scholar
  18. Apicella P, Deffains M et al (2009) Tonically active neurons in the striatum differentiate between delivery and omission of expected reward in a probabilistic task context. Eur J Neurosci 30(3):515–526PubMedGoogle Scholar
  19. Arkadir D, Morris G et al (2004) Independent coding of movement direction and reward prediction by single pallidal neurons. J Neurosci 24(45):10047–10056PubMedGoogle Scholar
  20. Arnone D, Cavanagh J et al (2009) Magnetic resonance imaging studies in bipolar disorder and schizophrenia: meta-analysis. Br J Psychiatry 195(3):194–201PubMedGoogle Scholar
  21. Aubert I, Ghorayeb I et al (2000) Phenotypical characterization of the neurons expressing the D1 and D2 dopamine receptors in the monkey striatum. J Comp Neurol 418(1):22–32PubMedGoogle Scholar
  22. Bacon SJ, Headlam AJ et al (1996) Amygdala input to medial prefrontal cortex (mPFC) in the rat: a light and electron microscope study. Brain Res 720(1–2):211–219PubMedGoogle Scholar
  23. Bamford NS, Zhang H et al (2004) Heterosynaptic dopamine neurotransmission selects sets of corticostriatal terminals. Neuron 42(4):653–663PubMedGoogle Scholar
  24. Bamford NS, Zhang H et al (2008) Repeated exposure to methamphetamine causes long-lasting presynaptic corticostriatal depression that is renormalized with drug readministration. Neuron 58(1):89–103PubMedGoogle Scholar
  25. Barbas H, De Olmos J (1990) Projections from the amygdala to basoventral and mediodorsal prefrontal regions in the rhesus monkey. J Comp Neurol 300(4):549–571PubMedGoogle Scholar
  26. Bar-Gad I, Morris G et al (2003) Information processing, dimensionality reduction and reinforcement learning in the basal ganglia. Prog Neurobiol 71(6):439–473PubMedGoogle Scholar
  27. Baufreton J, Kirkham E et al (2009) Sparse but selective and potent synaptic transmission from the globus pallidus to the subthalamic nucleus. J Neurophysiol 102:532–545Google Scholar
  28. Baxter LR Jr, Phelps ME et al (1985) Cerebral metabolic rates for glucose in mood disorders. Studies with positron emission tomography and fluorodeoxyglucose F 18. Arch Gen Psychiatry 42(5):441–447PubMedGoogle Scholar
  29. Bayer HM, Lau B et al (2007) Statistics of midbrain dopamine neuron spike trains in the awake primate. J Neurophysiol 98(3):1428–1439PubMedGoogle Scholar
  30. Bechara A, Tranel D et al (1995) Double dissociation of conditioning and declarative knowledge relative to the amygdala and hippocampus in humans. Science 269(5227):1115–1118PubMedGoogle Scholar
  31. Beiser DG, Houk JC (1998) Model of cortical-basal ganglionic processing: encoding the serial order of sensory events. J Neurophysiol 79(6):3168–3188PubMedGoogle Scholar
  32. Bergman H, Kimura M et al (2006) Modulation of striatal circuits by dopamine and acetylcholine. In: Grillner S, Graybiel AM (eds) Microcircuits the interface between d neurons and global brain function. The MIT Press, Cambridge, Massachusetts, pp 149–162Google Scholar
  33. Bernard JF, Alden M et al (1993) The organization of the efferent projections from the pontine parabrachial area to the amygdaloid complex: a Phaseolus vulgaris leucoagglutinin (PHA-L) study in the rat. J Comp Neurol 329(2):201–229PubMedGoogle Scholar
  34. Berthier ML, Kulisevsky J et al (1996) Poststroke bipolar affective disorder: clinical subtypes, concurrent movement disorders, and anatomical correlates. J Neuropsychiatry Clin Neurosci 8(2):160–167PubMedGoogle Scholar
  35. Bhatia KP, Daniel SE et al (1993) Familial Parkinsonism with depression: a clinicopathological study. Ann Neurol 34(6):842–847PubMedGoogle Scholar
  36. Bilder RM, Volavka J et al (2004) The catechol-O-methyltransferase polymorphism: relations to the tonic-phasic dopamine hypothesis and neuropsychiatric phenotypes. Neuropsychopharmacology 29(11):1943–1961PubMedGoogle Scholar
  37. Bjursten LM, Norrsell K et al (1976) Behavioural repertory of cats without cerebral cortex from infancy. Exp Brain Res 25(2):115–130PubMedGoogle Scholar
  38. Blackford JU, Buckholtz JW et al (2010) A unique role for the human amygdala in novelty detection. Neuroimage 50:1188–1193Google Scholar
  39. Blood AJ, Zatorre RJ (2001) Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proc Natl Acad Sci USA 98(20):11818–11823PubMedGoogle Scholar
  40. Blumberg HP, Leung HC et al (2003) A functional magnetic resonance imaging study of bipolar disorder: state- and trait-related dysfunction in ventral prefrontal cortices. Arch Gen Psychiatry 60(6):601–609PubMedGoogle Scholar
  41. Bolam JP, Smith Y et al (1993) Convergence of synaptic terminals from the striatum and the globus pallidus onto single neurones in the substantia nigra and the entopeduncular nucleus. Prog Brain Res 99:73–88PubMedGoogle Scholar
  42. Bolam JP, Hanley JJ et al (2000) Synaptic organisation of the basal ganglia. J Anat 196(Pt 4):527–542PubMedGoogle Scholar
  43. Brainard MS, Doupe AJ (2000) Interruption of a basal ganglia-forebrain circuit prevents plasticity of learned vocalizations. Nature 404(6779):762–766PubMedGoogle Scholar
  44. Breiter HC, Gollub RL et al (1997) Acute effects of cocaine on human brain activity and emotion. Neuron 19(3):591–611PubMedGoogle Scholar
  45. Bronstein YL, Cummings J (2001) Neurochemistry of frontal-subcortical circuits. In: Lichter DG, Cummings J (eds) Frontal-subcortical circuits in psychiatric and neurological disorders. Guilford Press, New York, pp 59–91Google Scholar
  46. Brudzynski SM, Wu M et al (1993) Decreases in rat locomotor activity as a result of changes in synaptic transmission to neurons within the mesencephalic locomotor region. Can J Physiol Pharmacol 71(5–6):394–406PubMedGoogle Scholar
  47. Butler T, Pan H et al (2007) Human fear-related motor neurocircuitry. Neuroscience 150(1):1–7PubMedGoogle Scholar
  48. Cador M, Robbins TW et al (1989) Involvement of the amygdala in stimulus-reward associations: interaction with the ventral striatum. Neuroscience 30(1):77–86PubMedGoogle Scholar
  49. Caine ED, Shoulson I (1983) Psychiatric syndromes in Huntington’s disease. Am J Psychiatry 140(6):728–733PubMedGoogle Scholar
  50. Calabresi P, Maj R et al (1992) Long-term synaptic depression in the striatum: physiological and pharmacological characterization. J Neurosci 12(11):4224–4233PubMedGoogle Scholar
  51. Calabresi P, Picconi B et al (2007) Dopamine-mediated regulation of corticostriatal synaptic plasticity. Trends Neurosci 30(5):211–219PubMedGoogle Scholar
  52. Caligiuri MP, Brown GG et al (2003) An fMRI study of affective state and medication on cortical and subcortical brain regions during motor performance in bipolar disorder. Psychiatry Res 123(3):171–182PubMedGoogle Scholar
  53. Caligiuri MP, Brown GG et al (2006) Striatopallidal regulation of affect in bipolar disorder. J Affect Disord 91(2–3):235–242PubMedGoogle Scholar
  54. Callaway CW, Hakan RL et al (1991) Distribution of amygdala input to the nucleus accumbens septi: an electrophysiological investigation. J Neural Transm Gen Sect 83(3):215–225PubMedGoogle Scholar
  55. Calzavara R, Mailly P et al (2007) Relationship between the corticostriatal terminals from areas 9 and 46, and those from area 8A, dorsal and rostral premotor cortex and area 24c: an anatomical substrate for cognition to action. Eur J Neurosci 26(7):2005–2024PubMedGoogle Scholar
  56. Canales JJ, Capper-Loup C et al (2002) Shifts in striatal responsivity evoked by chronic stimulation of dopamine and glutamate systems. Brain 125(Pt 10):2353–2363PubMedGoogle Scholar
  57. Cardinal RN, Parkinson JA et al (2002) Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex. Neurosci Biobehav Rev 26(3):321–352PubMedGoogle Scholar
  58. Carpenter MB, Strominger NL (1967) Efferent fibers of the subthalamic nucleus in the monkey. A comparison of the efferent projections of the subthalamic nucleus, substantia nigra and globus pallidus. Am J Anat 121(1):41–72PubMedGoogle Scholar
  59. Casey BJ, Tottenham N et al (2002) Clinical, imaging, lesion, and genetic approaches toward a model of cognitive control. Dev Psychobiol 40(3):237–254PubMedGoogle Scholar
  60. Cepeda C, Buchwald NA et al (1993) Neuromodulatory actions of dopamine in the neostriatum are dependent upon the excitatory amino acid receptor subtypes activated. Proc Natl Acad Sci USA 90(20):9576–9580PubMedGoogle Scholar
  61. Chaddock CA, Barker GJ et al (2009) White matter microstructural impairments and genetic liability to familial bipolar I disorder. Br J Psychiatry 194(6):527–534PubMedGoogle Scholar
  62. Chang C, Crottaz-Herbette S et al (2007) Temporal dynamics of basal ganglia response and connectivity during verbal working memory. Neuroimage 34(3):1253–1269PubMedGoogle Scholar
  63. Chatha BT, Bernard V et al (2000) Synaptic localization of ionotropic glutamate receptors in the rat substantia nigra. Neuroscience 101(4):1037–1051PubMedGoogle Scholar
  64. Chen CH, Lennox B et al (2006) Explicit and implicit facial affect recognition in manic and depressed states of bipolar disorder: a functional magnetic resonance imaging study. Biol Psychiatry 59(1):31–39PubMedGoogle Scholar
  65. Chepenik LG, Raffo M et al (2010) Functional connectivity between ventral prefrontal cortex and amygdala at low frequency in the resting state in bipolar disorder. Psychiatry Res 182(3):207–210PubMedGoogle Scholar
  66. Chikama M, McFarland NR et al (1997) Insular cortical projections to functional regions of the striatum correlate with cortical cytoarchitectonic organization in the primate. J Neurosci 17(24):9686–9705PubMedGoogle Scholar
  67. Cho YT, Fudge JL (2010) Heterogeneous dopamine populations project to specific subregions of the primate amygdala. Neuroscience 165(4):1501–1518PubMedGoogle Scholar
  68. Christova PS, Lewis SM et al (2008) A voxel-by-voxel parametric fMRI study of motor mental rotation: hemispheric specialization and gender differences in neural processing efficiency. Exp Brain Res 189(1):79–90PubMedGoogle Scholar
  69. Chudler EH, Sugiyama K et al (1995) Multisensory convergence and integration in the neostriatum and globus pallidus of the rat. Brain Res 674(1):33–45PubMedGoogle Scholar
  70. Coizet V, Overton PG et al (2007) Collateralization of the tectonigral projection with other major output pathways of superior colliculus in the rat. J Comp Neurol 500(6):1034–1049PubMedGoogle Scholar
  71. Coizet V, Graham JH et al (2009) Short-latency visual input to the subthalamic nucleus is provided by the midbrain superior colliculus. J Neurosci 29(17):5701–5709PubMedGoogle Scholar
  72. Cromwell HC, Berridge KC (1993) Where does damage lead to enhanced food aversion: the ventral pallidum/substantia innominata or lateral hypothalamus? Brain Res 624(1–2):1–10PubMedGoogle Scholar
  73. Crutcher MD, DeLong MR (1984) Single cell studies of the primate putamen. I. Functional organization. Exp Brain Res 53(2):233–243PubMedGoogle Scholar
  74. Cummings JL (1993) Frontal-subcortical circuits and human behavior. Arch Neurol 50(8):873–880PubMedGoogle Scholar
  75. Davis M (1992) The role of the amygdala in fear and anxiety. Annu Rev Neurosci 15:353–375PubMedGoogle Scholar
  76. De Martino B, Camerer CF et al (2010) Amygdala damage eliminates monetary loss aversion. Proc Natl Acad Sci USAGoogle Scholar
  77. de Olmos JS, Heimer L (1999) The concepts of the ventral striatopallidal system and extended amygdala. Ann N Y Acad Sci 877:1–32PubMedGoogle Scholar
  78. Delgado MR, Nystrom LE et al (2000) Tracking the hemodynamic responses to reward and punishment in the striatum. J Neurophysiol 84(6):3072–3077PubMedGoogle Scholar
  79. Delgado MR, Locke HM et al (2003) Dorsal striatum responses to reward and punishment: effects of valence and magnitude manipulations. Cogn Affect Behav Neurosci 3(1):27–38PubMedGoogle Scholar
  80. Delgado MR, Stenger VA et al (2004) Motivation-dependent responses in the human caudate nucleus. Cereb Cortex 14(9):1022–1030PubMedGoogle Scholar
  81. Delgado MR, Frank RH et al (2005) Perceptions of moral character modulate the neural systems of reward during the trust game. Nat Neurosci 8(11):1611–1618PubMedGoogle Scholar
  82. Delgado MR, Schotter A et al (2008) Understanding overbidding: using the neural circuitry of reward to design economic auctions. Science 321(5897):1849–1852PubMedGoogle Scholar
  83. DeLong MR (1971) Activity of pallidal neurons during movement. J Neurophysiol 34(3):414–427PubMedGoogle Scholar
  84. DeLong MR, Crutcher MD et al (1985) Primate globus pallidus and subthalamic nucleus: functional organization. J Neurophysiol 53(2):530–543PubMedGoogle Scholar
  85. Deniau JM, Chevalier G (1985) Disinhibition as a basic process in the expression of striatal functions. II. The striato-nigral influence on thalamocortical cells of the ventromedial thalamic nucleus. Brain Res 334(2):227–233PubMedGoogle Scholar
  86. Desmurget M, Grafton S (2000) Forward modeling allows feedback control for fast reaching movements. Trends Cogn Sci 4(11):423–431PubMedGoogle Scholar
  87. Desseilles M, Schwartz S et al (2010) Depression alters “top-down” visual attention: a dynamic causal modeling comparison between depressed and healthy subjects. Neuroimage. doi:10.1016/j.neuroimage.2010.08.061 [Epub ahead of print]
  88. Dichter GS, Felder JN et al (2009) The effects of psychotherapy on neural responses to rewards in major depression. Biol Psychiatry 66(9):886–897PubMedGoogle Scholar
  89. Dowd EC, Barch DM (2009) Anhedonia and emotional experience in schizophrenia: neural and behavioral indicators. Biol Psychiatry 67:902–911Google Scholar
  90. Doyon J, Benali H (2005) Reorganization and plasticity in the adult brain during learning of motor skills. Curr Opin Neurobiol 15(2):161–167PubMedGoogle Scholar
  91. Drevets WC, Gautier C et al (2001) Amphetamine-induced dopamine release in human ventral striatum correlates with euphoria. Biol Psychiatry 49(2):81–96PubMedGoogle Scholar
  92. Elliott R, Ogilvie A et al (2004) Abnormal ventral frontal response during performance of an affective go/no go task in patients with mania. Biol Psychiatry 55(12):1163–1170PubMedGoogle Scholar
  93. Eugene F, Levesque J et al (2003) The impact of individual differences on the neural circuitry underlying sadness. Neuroimage 19(2 Pt 1):354–364PubMedGoogle Scholar
  94. Fesenmeier JT, Kuzniecky R et al (1990) Akinetic mutism caused by bilateral anterior cerebral tuberculous obliterative arteritis. Neurology 40(6):1005–1006PubMedGoogle Scholar
  95. Filatova EV, Orlov AA et al (2005) Neuron activity in the monkey striatum of identifies integration sequential actions into functional blocks. Neurosci Behav Physiol 35(9):943–949PubMedGoogle Scholar
  96. Flaherty AW, Graybiel AM (1993) Output architecture of the primate putamen. J Neurosci 13(8):3222–3237PubMedGoogle Scholar
  97. Flaherty AW, Graybiel AM (1994) Input-output organization of the sensorimotor striatum in the squirrel monkey. J Neurosci 14(2):599–610PubMedGoogle Scholar
  98. Flint AJ, Black SE et al (1993) Abnormal speech articulation, psychomotor retardation, and subcortical dysfunction in major depression. J Psychiatr Res 27(3):309–319PubMedGoogle Scholar
  99. Folstein SE, Folstein MF (1983) Psychiatric features of Huntington’s disease: recent approaches and findings. Psychiatr Dev 1(2):193–205PubMedGoogle Scholar
  100. Folstein S, Abbott MH et al (1983) The association of affective disorder with Huntington’s disease in a case series and in families. Psychol Med 13(3):537–542PubMedGoogle Scholar
  101. Francois C, Yelnik J et al (1987) Golgi study of the primate substantia nigra. II. Spatial organization of dendritic arborizations in relation to the cytoarchitectonic boundaries and to the striatonigral bundle. J Comp Neurol 265(4):473–493PubMedGoogle Scholar
  102. Frangou S (2005) The Maudsley bipolar disorder project. Epilepsia 46(Suppl 4):19–25PubMedGoogle Scholar
  103. Frangou S, Kington J et al (2008) Examining ventral and dorsal prefrontal function in bipolar disorder: a functional magnetic resonance imaging study. Eur Psychiatry 23(4):300–308PubMedGoogle Scholar
  104. Freund TF, Powell JF et al (1984) Tyrosine hydroxylase-immunoreactive boutons in synaptic contact with identified striatonigral neurons, with particular reference to dendritic spines. Neuroscience 13(4):1189–1215PubMedGoogle Scholar
  105. Freyer T, Kloppel S et al (2010) Frontostriatal activation in patients with obsessive–compulsive disorder before and after cognitive behavioral therapy. Psychol Med 1–10. doi:10.1017/S0033291710000309 [Epub ahead of print]
  106. Fudge JL, Kunishio K et al (2002) Amygdaloid projections to ventromedial striatal subterritories in the primate. Neuroscience 110(2):257–275PubMedGoogle Scholar
  107. Fudge JL, Breitbart MA et al (2005) Insular and gustatory inputs to the caudal ventral striatum in primates. J Comp Neurol 490(2):101–118PubMedGoogle Scholar
  108. Fuller TA, Russchen FT et al (1987) Sources of presumptive glutamergic/aspartergic afferents to the rat ventral striatopallidal region. J Comp Neurol 258(3):317–338PubMedGoogle Scholar
  109. Gabbott PL, Warner TA et al (2006) Amygdala input monosynaptically innervates parvalbumin immunoreactive local circuit neurons in rat medial prefrontal cortex. Neuroscience 139(3):1039–1048PubMedGoogle Scholar
  110. Gerfen CR (1984) The neostriatal mosaic: compartmentalization of corticostriatal input and striatonigral output systems. Nature 311(5985):461–464PubMedGoogle Scholar
  111. Gerfen CR, Engber TM et al (1990) D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250(4986):1429–1432PubMedGoogle Scholar
  112. Ghashghaei HT, Barbas H (2001) Neural interaction between the basal forebrain and functionally distinct prefrontal cortices in the rhesus monkey. Neuroscience 103(3):593–614PubMedGoogle Scholar
  113. Gluck-Vanlaer N, Fallet A et al (1996) Depression and calcinosis of the basal ganglia: apropos of a case. Encephale 22(2):127–131PubMedGoogle Scholar
  114. Gottfried JA, O’Doherty J et al (2003) Encoding predictive reward value in human amygdala and orbitofrontal cortex. Science 301(5636):1104–1107PubMedGoogle Scholar
  115. Grace AA (1991) Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience 41(1):1–24PubMedGoogle Scholar
  116. Graybiel AM (2005) The basal ganglia: learning new tricks and loving it. Curr Opin Neurobiol 15(6):638–644PubMedGoogle Scholar
  117. Grillner S (1985) Neurobiological bases of rhythmic motor acts in vertebrates. Science 228(4696):143–149PubMedGoogle Scholar
  118. Grillner S, Cangiano L et al (2000) The intrinsic function of a motor system—from ion channels to networks and behavior. Brain Res 886(1–2):224–236PubMedGoogle Scholar
  119. Grimm S, Ernst J et al (2008) Increased self-focus in major depressive disorder is related to neural abnormalities in subcortical-cortical midline structures. Hum Brain Mapp 30:2617–2627Google Scholar
  120. Groenewegen HJ, Vermeulen-Van der Zee E et al (1987) Organization of the projections from the subiculum to the ventral striatum in the rat. A study using anterograde transport of Phaseolus vulgaris leucoagglutinin. Neuroscience 23(1):103–120PubMedGoogle Scholar
  121. Gurney K, Prescott TJ et al (2001) A computational model of action selection in the basal ganglia. I. A new functional anatomy. Biol Cybern 84(6):401–410PubMedGoogle Scholar
  122. Gustafson N, Gireesh-Dharmaraj E et al (2006) A comparative voltage and current-clamp analysis of feedback and feedforward synaptic transmission in the striatal microcircuit in vitro. J Neurophysiol 95(2):737–752PubMedGoogle Scholar
  123. Habel U, Windischberger C et al (2007) Amygdala activation and facial expressions: explicit emotion discrimination versus implicit emotion processing. Neuropsychologia 45(10):2369–2377PubMedGoogle Scholar
  124. Haber SN (2003) The primate basal ganglia: parallel and integrative networks. J Chem Neuroanat 26(4):317–330PubMedGoogle Scholar
  125. Haber SN, Calzavara R (2008) “The cortico-basal ganglia integrative network: The role of the thalamus.” Brain Res BullGoogle Scholar
  126. Haber SN, Fudge JL (1997) The primate substantia nigra and VTA: integrative circuitry and function. Crit Rev Neurobiol 11(4):323–342PubMedGoogle Scholar
  127. Haber SN, Groenewegen HJ et al (1985) Efferent connections of the ventral pallidum: evidence of a dual striato pallidofugal pathway. J Comp Neurol 235(3):322–335PubMedGoogle Scholar
  128. Haber SN, Fudge JL et al (2000) Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J Neurosci 20(6):2369–2382PubMedGoogle Scholar
  129. Haber SN, Kim KS et al (2006) Reward-related cortical inputs define a large striatal region in primates that interface with associative cortical connections, providing a substrate for incentive-based learning. J Neurosci 26(32):8368–8376PubMedGoogle Scholar
  130. Hadj-Bouziane F, Meunier M et al (2003) Conditional visuo-motor learning in primates: a key role for the basal ganglia. J Physiol Paris 97(4–6):567–579PubMedGoogle Scholar
  131. Hamann SB, Ely TD et al (2002) Ecstasy and agony: activation of the human amygdala in positive and negative emotion. Psychol Sci 13(2):135–141PubMedGoogle Scholar
  132. Hanley JJ, Bolam JP (1997) Synaptology of the nigrostriatal projection in relation to the compartmental organization of the neostriatum in the rat. Neuroscience 81(2):353–370PubMedGoogle Scholar
  133. Harrison BJ, Soriano-Mas C et al (2009) Altered corticostriatal functional connectivity in obsessive–compulsive disorder. Arch Gen Psychiatry 66(11):1189–1200PubMedGoogle Scholar
  134. Harvey PO, Armony J et al (2010) Functional neural substrates of self-reported physical anhedonia in non-clinical individuals and in patients with schizophrenia. J Psychiatr Res 44:707–716Google Scholar
  135. Hatfield T, Han JS et al (1996) Neurotoxic lesions of basolateral, but not central, amygdala interfere with Pavlovian second-order conditioning and reinforcer devaluation effects. J Neurosci 16(16):5256–5265PubMedGoogle Scholar
  136. Hazrati LN, Parent A (1992a) Convergence of subthalamic and striatal efferents at pallidal level in primates: an anterograde double-labeling study with biocytin and PHA-L. Brain Res 569(2):336–340PubMedGoogle Scholar
  137. Hazrati LN, Parent A (1992b) The striatopallidal projection displays a high degree of anatomical specificity in the primate. Brain Res 592(1–2):213–227PubMedGoogle Scholar
  138. Hernandez-Lopez S, Bargas J et al (1997) D1 receptor activation enhances evoked discharge in neostriatal medium spiny neurons by modulating an L-type Ca2+ conductance. J Neurosci 17(9):3334–3342PubMedGoogle Scholar
  139. Hikosaka O, Sakamoto M et al (1989) Functional properties of monkey caudate neurons. I. Activities related to saccadic eye movements. J Neurophysiol 61(4):780–798PubMedGoogle Scholar
  140. Hikosaka O, Takikawa Y et al (2000) Role of the basal ganglia in the control of purposive saccadic eye movements. Physiol Rev 80(3):953–978PubMedGoogle Scholar
  141. Hoebel BG, Avena NM et al (2007) Accumbens dopamine-acetylcholine balance in approach and avoidance. Curr Opin Pharmacol 7(6):617–627PubMedGoogle Scholar
  142. Hoover JE, Strick PL (1993) Multiple output channels in the basal ganglia. Science 259(5096):819–821PubMedGoogle Scholar
  143. Horn DI, Yu C et al (2010) Glutamatergic and resting-state functional connectivity correlates of severity in major depression—the role of pregenual anterior cingulate cortex and anterior insula. Front Syst Neurosci 4:33PubMedGoogle Scholar
  144. Horvitz JC (2000) Mesolimbocortical and nigrostriatal dopamine responses to salient non-reward events. Neuroscience 96(4):651–656PubMedGoogle Scholar
  145. Houk JC (1997) On the role of the cerebellum and basal ganglia in cognitive signal processing. Prog Brain Res 114:543–552PubMedGoogle Scholar
  146. Houk J (2001) Neurophysiology of frontal-subcortical loops. In: Lichter DG, Cummings J (eds) Frontal-subcortical circuits in psychiatric and neurological disorders. Guilford Press, New York, pp 92–113Google Scholar
  147. Houk JC (2005) Agents of the mind. Biol Cybern 92(6):427–437PubMedGoogle Scholar
  148. Houk JC, Wise SP (1995) Distributed modular architectures linking basal ganglia, cerebellum, and cerebral cortex: their role in planning and controlling action. Cereb Cortex 5(2):95–110PubMedGoogle Scholar
  149. Houk JC, Bastianen C et al (2007) Action selection and refinement in subcortical loops through basal ganglia and cerebellum. Philos Trans R Soc Lond B Biol Sci 362(1485):1573–1583PubMedGoogle Scholar
  150. Inase M, Tokuno H et al (1999) Corticostriatal and corticosubthalamic input zones from the presupplementary motor area in the macaque monkey: comparison with the input zones from the supplementary motor area. Brain Res 833(2):191–201PubMedGoogle Scholar
  151. Jackson ME, Moghaddam B (2001) Amygdala regulation of nucleus accumbens dopamine output is governed by the prefrontal cortex. J Neurosci 21(2):676–681PubMedGoogle Scholar
  152. Jackson MC, Wolf C et al (2008) Neural correlates of enhanced visual short-term memory for angry faces: an FMRI study. PLoS ONE 3(10):e3536PubMedGoogle Scholar
  153. Jenkins IH, Brooks DJ et al (1994) Motor sequence learning: a study with positron emission tomography. J Neurosci 14(6):3775–3790PubMedGoogle Scholar
  154. Jog MS, Kubota Y et al (1999) Building neural representations of habits. Science 286(5445):1745–1749PubMedGoogle Scholar
  155. Johnson LR, Aylward RL et al (1994) Input from the amygdala to the rat nucleus accumbens: its relationship with tyrosine hydroxylase immunoreactivity and identified neurons. Neuroscience 61(4):851–865PubMedGoogle Scholar
  156. Jones-Gotman M, Milner B (1977) Design fluency: the invention of nonsense drawings after focal cortical lesions. Neuropsychologia 15(4–5):653–674PubMedGoogle Scholar
  157. Joshua M, Adler A et al (2008) Midbrain dopaminergic neurons and striatal cholinergic interneurons encode the difference between reward and aversive events at different epochs of probabilistic classical conditioning trials. J Neurosci 28(45):11673–11684PubMedGoogle Scholar
  158. Jueptner M, Frith CD et al (1997) Anatomy of motor learning. II. Subcortical structures and learning by trial and error. J Neurophysiol 77(3):1325–1337PubMedGoogle Scholar
  159. Juruena MF, Giampietro VP et al (2010) Amygdala activation to masked happy facial expressions. J Int Neuropsychol Soc 16(2):383–387PubMedGoogle Scholar
  160. Kalmar JH, Wang F et al (2009) Relation between amygdala structure and function in adolescents with bipolar disorder. J Am Acad Child Adolesc Psychiatry 48(6):636–642PubMedGoogle Scholar
  161. Kamishina H, Yurcisin GH et al (2008) Striatal projections from the rat lateral posterior thalamic nucleus. Brain Res 1204:24–39PubMedGoogle Scholar
  162. Kasanetz F, Riquelme LA et al (2008) Functional integration across a gradient of corticostriatal channels controls UP state transitions in the dorsal striatum. Proc Natl Acad Sci USA 105(23):8124–8129PubMedGoogle Scholar
  163. Keedwell PA, Andrew C et al (2005) The neural correlates of anhedonia in major depressive disorder. Biol Psychiatry 58(11):843–853PubMedGoogle Scholar
  164. Keedy SK, Rosen C et al (2009) An fMRI study of visual attention and sensorimotor function before and after antipsychotic treatment in first-episode schizophrenia. Psychiatry Res 172(1):16–23PubMedGoogle Scholar
  165. Kelley AE, Domesick VB et al (1982) The amygdalostriatal projection in the rat–an anatomical study by anterograde and retrograde tracing methods. Neuroscience 7(3):615–630PubMedGoogle Scholar
  166. Kim R, Nakano K et al (1976) Projections of the globus pallidus and adjacent structures: an autoradiographic study in the monkey. J Comp Neurol 169(3):263–290PubMedGoogle Scholar
  167. Kimura M, Rajkowski J et al (1984) Tonically discharging putamen neurons exhibit set-dependent responses. Proc Natl Acad Sci USA 81(15):4998–5001PubMedGoogle Scholar
  168. Kincaid AE, Zheng T et al (1998) Connectivity and convergence of single corticostriatal axons. J Neurosci 18(12):4722–4731PubMedGoogle Scholar
  169. Kita H (1992) Responses of globus pallidus neurons to cortical stimulation: intracellular study in the rat. Brain Res 589(1):84–90PubMedGoogle Scholar
  170. Klitenick MA, Deutch AY et al (1992) Topography and functional role of dopaminergic projections from the ventral mesencephalic tegmentum to the ventral pallidum. Neuroscience 50(2):371–386PubMedGoogle Scholar
  171. Knutson B, Westdorp A et al (2000) FMRI visualization of brain activity during a monetary incentive delay task. Neuroimage 12(1):20–27PubMedGoogle Scholar
  172. Knutson B, Fong GW et al (2001) Dissociation of reward anticipation and outcome with event-related fMRI. Neuroreport 12(17):3683–3687PubMedGoogle Scholar
  173. Knutson B, Fong GW et al (2003) A region of mesial prefrontal cortex tracks monetarily rewarding outcomes: characterization with rapid event-related fMRI. Neuroimage 18(2):263–272PubMedGoogle Scholar
  174. Koch K, Pauly K et al (2007) Gender differences in the cognitive control of emotion: an fMRI study. Neuropsychologia 45(12):2744–2754PubMedGoogle Scholar
  175. Kolomiets BP, Deniau JM et al (2001) Segregation and convergence of information flow through the cortico-subthalamic pathways. J Neurosci 21(15):5764–5772PubMedGoogle Scholar
  176. Kolomiets BP, Deniau JM et al (2003) Basal ganglia and processing of cortical information: functional interactions between trans-striatal and trans-subthalamic circuits in the substantia nigra pars reticulata. Neuroscience 117(4):931–938PubMedGoogle Scholar
  177. Koos T, Tepper JM (2002) Dual cholinergic control of fast-spiking interneurons in the neostriatum. J Neurosci 22(2):529–535PubMedGoogle Scholar
  178. Kraft E, Loichinger W et al (2009) Levodopa-induced striatal activation in Parkinson’s disease: a functional MRI study. Parkinsonism Relat Disord 15(8):558–563PubMedGoogle Scholar
  179. Krettek JE, Price JL (1974) A direct input from the amygdala to the thalamus and the cerebral cortex. Brain Res 67(1):169–174PubMedGoogle Scholar
  180. Kubasik-Juraniec J (1981) Hypothalamic afferents to the amygdala of the cat. Folia Morphol (Warsz) 40(3):229–244Google Scholar
  181. Kumar P, Waiter G et al (2008) Abnormal temporal difference reward-learning signals in major depression. Brain 131(Pt 8):2084–2093PubMedGoogle Scholar
  182. Kumari V, Mitterschiffthaler MT et al (2003) Neural abnormalities during cognitive generation of affect in treatment-resistant depression. Biol Psychiatry 54(8):777–791PubMedGoogle Scholar
  183. Kunishio K, Haber SN (1994) Primate cingulostriatal projection: limbic striatal versus sensorimotor striatal input. J Comp Neurol 350(3):337–356PubMedGoogle Scholar
  184. Kunzle H (1975) Bilateral projections from precentral motor cortex to the putamen and other parts of the basal ganglia. An autoradiographic study in Macaca fascicularis. Brain Res 88(2):195–209PubMedGoogle Scholar
  185. Kuo JS, Carpenter MB (1973) Organization of pallidothalamic projections in the rhesus monkey. J Comp Neurol 151(3):201–236PubMedGoogle Scholar
  186. Lagopoulos J, Malhi GS (2007) A functional magnetic resonance imaging study of emotional Stroop in euthymic bipolar disorder. Neuroreport 18(15):1583–1587PubMedGoogle Scholar
  187. Lagopoulos J, Ivanovski B et al (2007) An event-related functional MRI study of working memory in euthymic bipolar disorder. J Psychiatry Neurosci 32(3):174–184PubMedGoogle Scholar
  188. Lapper SR, Bolam JP (1992) Input from the frontal cortex and the parafascicular nucleus to cholinergic interneurons in the dorsal striatum of the rat. Neuroscience 51(3):533–545PubMedGoogle Scholar
  189. Lauterbach EC, Spears TE et al (1994) Neuropsychiatric disorders, myoclonus, and dystonia in calcification of basal ganglia pathways. Biol Psychiatry 35(5):345–351PubMedGoogle Scholar
  190. Lauterbach EC, Jackson JG et al (1997a) Clinical, motor, and biological correlates of depressive disorders after focal subcortical lesions. J Neuropsychiatry Clin Neurosci 9(2):259–266PubMedGoogle Scholar
  191. Lauterbach EC, Jackson JG et al (1997b) Major depression after left posterior globus pallidus lesions. Neuropsychiatry Neuropsychol Behav Neurol 10(1):9–16PubMedGoogle Scholar
  192. Lawrence AD (2000) Error correction and the basal ganglia: similar computations for action, cognition and emotion? Trends Cogn Sci 4(10):365–367PubMedGoogle Scholar
  193. Lazaro L, Caldu X et al (2008) Cerebral activation in children and adolescents with obsessive–compulsive disorder before and after treatment: a functional MRI study. J Psychiatr Res 42(13):1051–1059PubMedGoogle Scholar
  194. Le Jeune F, Peron J et al (2008) Subthalamic nucleus stimulation affects orbitofrontal cortex in facial emotion recognition: a PET study. Brain 131(Pt 6):1599–1608PubMedGoogle Scholar
  195. Leblois A, Bodor AL et al (2009) Millisecond timescale disinhibition mediates fast information transmission through an avian basal ganglia loop. J Neurosci 29(49):15420–15433PubMedGoogle Scholar
  196. Lecrubier Y (2006) Physical components of depression and psychomotor retardation. J Clin Psychiatry 67(Suppl 6):23–26PubMedGoogle Scholar
  197. LeDoux JE (1992) Brain mechanisms of emotion and emotional learning. Curr Opin Neurobiol 2(2):191–197PubMedGoogle Scholar
  198. LeDoux JE, Ruggiero DA et al (1985) Projections to the subcortical forebrain from anatomically defined regions of the medial geniculate body in the rat. J Comp Neurol 242(2):182–213PubMedGoogle Scholar
  199. Lee IH, Seitz AR et al (2006) Activity of tonically active neurons in the monkey putamen during initiation and withholding of movement. J Neurophysiol 95(4):2391–2403PubMedGoogle Scholar
  200. Lee JN, Hsu EW et al (2010) Reliability of fMRI motor tasks in structures of the corticostriatal circuitry: implications for future studies and circuit function. Neuroimage 49(2):1282–1288PubMedGoogle Scholar
  201. Lehericy S, Benali H et al (2005) Distinct basal ganglia territories are engaged in early and advanced motor sequence learning. Proc Natl Acad Sci USA 102(35):12566–12571PubMedGoogle Scholar
  202. Lennox BR, Jacob R et al (2004) Behavioural and neurocognitive responses to sad facial affect are attenuated in patients with mania. Psychol Med 34(5):795–802PubMedGoogle Scholar
  203. Leyton M, Boileau I et al (2002) Amphetamine-induced increases in extracellular dopamine, drug wanting, and novelty seeking: a PET/[11C]raclopride study in healthy men. Neuropsychopharmacology 27(6):1027–1035PubMedGoogle Scholar
  204. Logue V, Durward M et al (1968) The quality of survival after rupture of an anterior cerebral aneurysm. Br J Psychiatry 114(507):137–160PubMedGoogle Scholar
  205. Loo CK, Sachdev P et al (2008) A study using transcranial magnetic stimulation to investigate motor mechanisms in psychomotor retardation in depression. Int J Neuropsychopharmacol 11(7):935–946PubMedGoogle Scholar
  206. Lorberbaum JP, Kose S et al (2004) Neural correlates of speech anticipatory anxiety in generalized social phobia. Neuroreport 15(18):2701–2705PubMedGoogle Scholar
  207. Magill PJ, Pogosyan A et al (2006) Changes in functional connectivity within the rat striatopallidal axis during global brain activation in vivo. J Neurosci 26(23):6318–6329PubMedGoogle Scholar
  208. Malhi GS, Lagopoulos J et al (2004a) Cognitive generation of affect in hypomania: an fMRI study. Bipolar Disord 6(4):271–285PubMedGoogle Scholar
  209. Malhi GS, Lagopoulos J et al (2004b) Cognitive generation of affect in bipolar depression: an fMRI study. Eur J Neurosci 19(3):741–754PubMedGoogle Scholar
  210. Malhi GS, Lagopoulos J et al (2005) An emotional Stroop functional MRI study of euthymic bipolar disorder. Bipolar Disord 7(Suppl 5):58–69PubMedGoogle Scholar
  211. Malhi GS, Lagopoulos J et al (2007a) Reduced activation to implicit affect induction in euthymic bipolar patients: an fMRI study. J Affect Disord 97(1–3):109–122PubMedGoogle Scholar
  212. Malhi GS, Lagopoulos J et al (2007b) Is a lack of disgust something to fear? A functional magnetic resonance imaging facial emotion recognition study in euthymic bipolar disorder patients. Bipolar Disord 9(4):345–357PubMedGoogle Scholar
  213. Maltby N, Tolin DF et al (2005) Dysfunctional action monitoring hyperactivates frontal-striatal circuits in obsessive–compulsive disorder: an event-related fMRI study. Neuroimage 24(2):495–503PubMedGoogle Scholar
  214. Marchand W, Lee J et al (2007a) An fMRI study of frontal-subcortical skeletomotor circuit and dorsolateral prefrontal cortex function using a paced motor activation paradigm. Brain Imaging Behav 1:58–67Google Scholar
  215. Marchand WR, Lee JN et al (2007b) A functional MRI study of a paced motor activation task to evaluate frontal-subcortical circuit function in bipolar depression. Psychiatry Res 155(3):221–230PubMedGoogle Scholar
  216. Marchand WR, Lee JN et al (2007c) A preliminary longitudinal fMRI study of frontal-subcortical circuits in bipolar disorder using a paced motor activation paradigm. J Affect Disord 103(1–3):237–241PubMedGoogle Scholar
  217. Marchand WR, Lee JN et al (2007d) Motor deactivation in the human cortex and basal ganglia. Neuroimage 38(3):538–548PubMedGoogle Scholar
  218. Marchand WR, Lee JN et al (2009) An fMRI motor activation paradigm demonstrates abnormalities of putamen activation in females with panic disorder. J Affect Disord 116(1–2):121–125PubMedGoogle Scholar
  219. Martinelli P, Giuliani S et al (1993) Familial idiopathic strio-pallido-dentate calcifications with late onset extrapyramidal syndrome. Mov Disord 8(2):220–222PubMedGoogle Scholar
  220. Matsumoto N, Minamimoto T et al (2001) Neurons in the thalamic CM-Pf complex supply striatal neurons with information about behaviorally significant sensory events. J Neurophysiol 85(2):960–976PubMedGoogle Scholar
  221. McCabe C, Cowen PJ et al (2009) Neural representation of reward in recovered depressed patients. Psychopharmacology (Berl) 205(4):667–677Google Scholar
  222. McClure SM, Berns GS et al (2003) Temporal prediction errors in a passive learning task activate human striatum. Neuron 38(2):339–346PubMedGoogle Scholar
  223. McDonald AJ (1998) Cortical pathways to the mammalian amygdala. Prog Neurobiol 55(3):257–332PubMedGoogle Scholar
  224. McDonald AJ (2003) Is there an amygdala and how far does it extend? An anatomical perspective. Ann N Y Acad Sci 985:1–21PubMedGoogle Scholar
  225. McFarland NR, Haber SN (2000) Convergent inputs from thalamic motor nuclei and frontal cortical areas to the dorsal striatum in the primate. J Neurosci 20(10):3798–3813PubMedGoogle Scholar
  226. McFarland NR, Haber SN (2002) Thalamic relay nuclei of the basal ganglia form both reciprocal and nonreciprocal cortical connections, linking multiple frontal cortical areas. J Neurosci 22(18):8117–8132PubMedGoogle Scholar
  227. McIntosh AM, Whalley HC et al (2008) Prefrontal function and activation in bipolar disorder and schizophrenia. Am J Psychiatry 165(3):378–384PubMedGoogle Scholar
  228. Melia KR, Sananes CB et al (1992) Lesions of the central nucleus of the amygdala block the excitatory effects of septal ablation on the acoustic startle reflex. Physiol Behav 51(1):175–180PubMedGoogle Scholar
  229. Mendez MF, Adams NL et al (1989) Neurobehavioral changes associated with caudate lesions. Neurology 39(3):349–354PubMedGoogle Scholar
  230. Middleton FA, Strick PL (2000) Basal ganglia output and cognition: evidence from anatomical, behavioral, and clinical studies. Brain Cogn 42(2):183–200PubMedGoogle Scholar
  231. Middleton FA, Strick PL (2002) Basal-ganglia ‘projections’ to the prefrontal cortex of the primate. Cereb Cortex 12(9):926–935PubMedGoogle Scholar
  232. Mink JW (1996) The basal ganglia: focused selection and inhibition of competing motor programs. Prog Neurobiol 50(4):381–425PubMedGoogle Scholar
  233. Mink JW, Thach WT (1987) Preferential relation of pallidal neurons to ballistic movements. Brain Res 417(2):393–398PubMedGoogle Scholar
  234. Mitchell SJ, Richardson RT et al (1987) The primate globus pallidus: neuronal activity related to direction of movement. Exp Brain Res 68(3):491–505PubMedGoogle Scholar
  235. Mogenson GJ, Yang CR (1991) The contribution of basal forebrain to limbic-motor integration and the mediation of motivation to action. Adv Exp Med Biol 295:267–290PubMedGoogle Scholar
  236. Mogenson GJ, Jones DL et al (1980) From motivation to action: functional interface between the limbic system and the motor system. Prog Neurobiol 14(2–3):69–97PubMedGoogle Scholar
  237. Monakow KH, Akert K et al (1978) Projections of the precentral motor cortex and other cortical areas of the frontal lobe to the subthalamic nucleus in the monkey. Exp Brain Res 33(3–4):395–403PubMedGoogle Scholar
  238. Monk CS, Telzer EH et al (2008) Amygdala and ventrolateral prefrontal cortex activation to masked angry faces in children and adolescents with generalized anxiety disorder. Arch Gen Psychiatry 65(5):568–576PubMedGoogle Scholar
  239. Monks PJ, Thompson JM et al (2004) A functional MRI study of working memory task in euthymic bipolar disorder: evidence for task-specific dysfunction. Bipolar Disord 6(6):550–564PubMedGoogle Scholar
  240. Morris G, Arkadir D et al (2004) Coincident but distinct messages of midbrain dopamine and striatal tonically active neurons. Neuron 43(1):133–143PubMedGoogle Scholar
  241. Moses-Kolko EL, Perlman SB et al (2010) Abnormally reduced dorsomedial prefrontal cortical activity and effective connectivity with amygdala in response to negative emotional faces in postpartum depression. Am J Psychiatry. doi:10.1176/appi.ajp.2010.09081235 [Epub ahead of print]
  242. Naismith SL, Hickie IB et al (2006) Impaired implicit sequence learning in depression: a probe for frontostriatal dysfunction? Psychol Med 36(3):313–323PubMedGoogle Scholar
  243. Nakao T, Nakagawa A et al (2005) A functional MRI comparison of patients with obsessive–compulsive disorder and normal controls during a Chinese character Stroop task. Psychiatry Res 139(2):101–114PubMedGoogle Scholar
  244. Nambu A (2008) Seven problems on the basal ganglia. Curr Opin Neurobiol 18(6):595–604PubMedGoogle Scholar
  245. Nambu A, Tokuno H et al (2000) Excitatory cortical inputs to pallidal neurons via the subthalamic nucleus in the monkey. J Neurophysiol 84(1):289–300PubMedGoogle Scholar
  246. Narita H, Odawara T et al (2004) Psychomotor retardation correlates with frontal hypoperfusion and the modified Stroop test in patients under 60-years-old with major depression. Psychiatry Clin Neurosci 58(4):389–395PubMedGoogle Scholar
  247. Narumoto J, Matsushima N et al (2005) Neurobehavioral changes associated with bilateral caudate nucleus infarctions. Psychiatry Clin Neurosci 59(1):109–110PubMedGoogle Scholar
  248. Nauta WJ, Smith GP et al (1978) Efferent connections and nigral afferents of the nucleus accumbens septi in the rat. Neuroscience 3(4–5):385–401PubMedGoogle Scholar
  249. Navari S, Dazzan P (2009) Do antipsychotic drugs affect brain structure? A systematic and critical review of MRI findings. Psychol Med 11:1763–1777Google Scholar
  250. Neugebauer V, Li W (2002) Processing of nociceptive mechanical and thermal information in central amygdala neurons with knee-joint input. J Neurophysiol 87(1):103–112PubMedGoogle Scholar
  251. Nieuwenhuis S, Slagter HA et al (2005) Knowing good from bad: differential activation of human cortical areas by positive and negative outcomes. Eur J Neurosci 21(11):3161–3168PubMedGoogle Scholar
  252. O’Donnell P, Grace AA (1995) “Synaptic interactions among excitatory afferents to nucleus accumbens neurons: hippocampal gating of prefrontal cortical input.”. J Neurosci 15(5 Pt 1):3622–3639PubMedGoogle Scholar
  253. Oertel WH, Mugnaini E (1984) Immunocytochemical studies of GABAergic neurons in rat basal ganglia and their relations to other neuronal systems. Neurosci Lett 47(3):233–238PubMedGoogle Scholar
  254. Ohrmann P, Pedersen A et al (2010) Effect of gender on processing threat-related stimuli in patients with panic disorder: sex does matter. Depress Anxiety. doi:10.1002/da.20721 [Epub ahead of print]
  255. Olver JS, O’Keefe G et al (2009) Dopamine D1 receptor binding in the striatum of patients with obsessive–compulsive disorder. J Affect Disord 114(1–3):321–326PubMedGoogle Scholar
  256. Oorschot DE (1996) Total number of neurons in the neostriatal, pallidal, subthalamic, and substantia nigral nuclei of the rat basal ganglia: a stereological study using the cavalieri and optical disector methods. J Comp Neurol 366(4):580–599PubMedGoogle Scholar
  257. Orieux G, Francois C et al (2000) Metabolic activity of excitatory parafascicular and pedunculopontine inputs to the subthalamic nucleus in a rat model of Parkinson’s disease. Neuroscience 97(1):79–88PubMedGoogle Scholar
  258. Orieux G, Francois C et al (2002) Consequences of dopaminergic denervation on the metabolic activity of the cortical neurons projecting to the subthalamic nucleus in the rat. J Neurosci 22(19):8762–8770PubMedGoogle Scholar
  259. Oviedo A, Delgado A et al (2008) Differential inhibition of globus pallidus neurons by electrical or chemical stimulation of the striatum. Neurosci Res 62(4):240–245PubMedGoogle Scholar
  260. Pagnoni G, Zink CF et al (2002) Activity in human ventral striatum locked to errors of reward prediction. Nat Neurosci 5(2):97–98PubMedGoogle Scholar
  261. Panagis G, Miliaressis E et al (1995) Ventral pallidum self-stimulation: a moveable electrode mapping study. Behav Brain Res 68(2):165–172PubMedGoogle Scholar
  262. Parashos IA, Oxley SL et al (1993) In vivo quantitation of basal ganglia and thalamic degenerative changes in two temporal lobectomy patients with affective disorder. J Neuropsychiatry Clin Neurosci 5(3):337–341PubMedGoogle Scholar
  263. Parent A, Hazrati LN (1993) Anatomical aspects of information processing in primate basal ganglia. Trends Neurosci 16(3):111–116PubMedGoogle Scholar
  264. Parent A, Hazrati LN (1995) Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res Brain Res Rev 20(1):91–127PubMedGoogle Scholar
  265. Parent M, Levesque M et al (2001) Two types of projection neurons in the internal pallidum of primates: single-axon tracing and three-dimensional reconstruction. J Comp Neurol 439(2):162–175PubMedGoogle Scholar
  266. Parr-Brownlie LC, Poloskey SL et al (2009) Parafascicular thalamic nucleus activity in a rat model of Parkinson’s disease. Exp Neurol 217(2):269–281PubMedGoogle Scholar
  267. Parush N, Arkadir D et al (2008) Encoding by response duration in the basal ganglia. J Neurophysiol 100(6):3244–3252PubMedGoogle Scholar
  268. Paulsen JS, Ready RE et al (2001) Neuropsychiatric aspects of Huntington’s disease. J Neurol Neurosurg Psychiatry 71(3):310–314PubMedGoogle Scholar
  269. Paulus MP, Feinstein JS et al (2005) Dose-dependent decrease of activation in bilateral amygdala and insula by lorazepam during emotion processing. Arch Gen Psychiatry 62(3):282–288PubMedGoogle Scholar
  270. Percheron G, Yelnik J et al (1984) A Golgi analysis of the primate globus pallidus. III. Spatial organization of the striato-pallidal complex. J Comp Neurol 227(2):214–227PubMedGoogle Scholar
  271. Person AL, Perkel DJ (2005) Unitary IPSPs drive precise thalamic spiking in a circuit required for learning. Neuron 46(1):129–140PubMedGoogle Scholar
  272. Peterson BS, Potenza MN et al (2009) An fMRI study of the effects of psychostimulants on default-mode processing during Stroop task performance in youths with ADHD. Am J Psychiatry 166(11):1286–1294PubMedGoogle Scholar
  273. Phelps EA (2006) Emotion and cognition: insights from studies of the human amygdala. Annu Rev Psychol 57:27–53PubMedGoogle Scholar
  274. Phelps EA, O’Connor KJ et al (2001) Activation of the left amygdala to a cognitive representation of fear. Nat Neurosci 4(4):437–441PubMedGoogle Scholar
  275. Plenz D, Kitai ST (1998) Up and down states in striatal medium spiny neurons simultaneously recorded with spontaneous activity in fast-spiking interneurons studied in cortex-striatum-substantia nigra organotypic cultures. J Neurosci 18(1):266–283PubMedGoogle Scholar
  276. Polgar P, Farkas M et al (2007) Learning cognitive skills in depression: the effect of context-change. Psychiatr Hung 22(4):271–275PubMedGoogle Scholar
  277. Porrino LJ, Crane AM et al (1981) Direct and indirect pathways from the amygdala to the frontal lobe in rhesus monkeys. J Comp Neurol 198(1):121–136PubMedGoogle Scholar
  278. Price JL, Amaral DG (1981) An autoradiographic study of the projections of the central nucleus of the monkey amygdala. J Neurosci 1(11):1242–1259PubMedGoogle Scholar
  279. Prodoehl J, Yu H et al (2008) Effects of visual and auditory feedback on sensorimotor circuits in the basal ganglia. J Neurophysiol 99(6):3042–3051PubMedGoogle Scholar
  280. Pujol J, Lopez-Sola M et al (2009) Mapping brain response to pain in fibromyalgia patients using temporal analysis of FMRI. PLoS ONE 4(4):e5224PubMedGoogle Scholar
  281. Qiu MH, Vetrivelan R et al (2010) Basal ganglia control of sleep-wake behavior and cortical activation. Eur J Neurosci 31(3):499–507PubMedGoogle Scholar
  282. Ramanathan S, Hanley JJ et al (2002) Synaptic convergence of motor and somatosensory cortical afferents onto GABAergic interneurons in the rat striatum. J Neurosci 22(18):8158–8169PubMedGoogle Scholar
  283. Ravel S, Sardo P et al (2001) Reward unpredictability inside and outside of a task context as a determinant of the responses of tonically active neurons in the monkey striatum. J Neurosci 21(15):5730–5739PubMedGoogle Scholar
  284. Ravel S, Legallet E et al (2003) Responses of tonically active neurons in the monkey striatum discriminate between motivationally opposing stimuli. J Neurosci 23(24):8489–8497PubMedGoogle Scholar
  285. Redgrave P, Prescott TJ et al (1999) The basal ganglia: a vertebrate solution to the selection problem? Neuroscience 89(4):1009–1023PubMedGoogle Scholar
  286. Reep RL, Cheatwood JL et al (2003) The associative striatum: organization of cortical projections to the dorsocentral striatum in rats. J Comp Neurol 467(3):271–292PubMedGoogle Scholar
  287. Renaud LP, Hopkins DA (1977) Amygdala afferents from the mediobasal hypothalamus: an electrophysiological and neuroanatomical study in the rat. Brain Res 121(2):201–213PubMedGoogle Scholar
  288. Reynolds JN, Wickens JR (2004) The corticostriatal input to giant aspiny interneurons in the rat: a candidate pathway for synchronising the response to reward-related cues. Brain Res 1011(1):115–128PubMedGoogle Scholar
  289. Rilling JK, Sanfey AG et al (2004) Opposing BOLD responses to reciprocated and unreciprocated altruism in putative reward pathways. Neuroreport 15(16):2539–2543PubMedGoogle Scholar
  290. Rolls ET, Thorpe SJ et al (1984) Responses of striatal neurons in the behaving monkey. 3. Effects of iontophoretically applied dopamine on normal responsiveness. Neuroscience 12(4):1201–1212PubMedGoogle Scholar
  291. Rosene DL, Van Hoesen GW (1977) Hippocampal efferents reach widespread areas of cerebral cortex and amygdala in the rhesus monkey. Science 198(4314):315–317PubMedGoogle Scholar
  292. Rotge JY, Langbour N et al (2009) Gray matter alterations in obsessive–compulsive disorder: an anatomic likelihood estimation meta-analysis. Neuropsychopharmacology 35:686–691Google Scholar
  293. Rubia K, Halari R et al (2009) Methylphenidate normalises activation and functional connectivity deficits in attention and motivation networks in medication-naive children with ADHD during a rewarded continuous performance task. Neuropharmacology 57:640–652Google Scholar
  294. Ryan LJ, Clark KB (1991) The role of the subthalamic nucleus in the response of globus pallidus neurons to stimulation of the prelimbic and agranular frontal cortices in rats. Exp Brain Res 86(3):641–651PubMedGoogle Scholar
  295. Ryan LJ, Sanders DJ (1994) Neostriatal modulation of motor cortex excitability. Brain Res 651(1–2):241–251PubMedGoogle Scholar
  296. Sananes CB, Davis M (1992) N-methyl-d-aspartate lesions of the lateral and basolateral nuclei of the amygdala block fear-potentiated startle and shock sensitization of startle. Behav Neurosci 106(1):72–80PubMedGoogle Scholar
  297. Sareen J, Campbell DW et al (2007) Striatal function in generalized social phobia: a functional magnetic resonance imaging study. Biol Psychiatry 61(3):396–404PubMedGoogle Scholar
  298. Sato F, Lavallee P et al (2000) Single-axon tracing study of neurons of the external segment of the globus pallidus in primate. J Comp Neurol 417(1):17–31PubMedGoogle Scholar
  299. Scherk H, Kemmer C et al (2008) No change to grey and white matter volumes in bipolar I disorder patients. Eur Arch Psychiatry Clin Neurosci 258(6):345–349PubMedGoogle Scholar
  300. Schienle A, Schafer A et al (2005) Gender differences in the processing of disgust- and fear-inducing pictures: an fMRI study. Neuroreport 16(3):277–280PubMedGoogle Scholar
  301. Schlagenhauf F, Wustenberg T et al (2008) Switching schizophrenia patients from typical neuroleptics to olanzapine: effects on BOLD response during attention and working memory. Eur Neuropsychopharmacol 18(8):589–599PubMedGoogle Scholar
  302. Schneider F, Grodd W et al (1997) Functional MRI reveals left amygdala activation during emotion. Psychiatry Res 76(2–3):75–82PubMedGoogle Scholar
  303. Schultz W (1998) Predictive reward signal of dopamine neurons. J Neurophysiol 80(1):1–27PubMedGoogle Scholar
  304. Schulz JM, Redgrave P et al (2009) Short-latency activation of striatal spiny neurons via subcortical visual pathways. J Neurosci 29(19):6336–6347PubMedGoogle Scholar
  305. Schutze I, Knuepfer MM et al (1987) Sensory input to single neurons in the amygdala of the cat. Exp Neurol 97(3):499–515PubMedGoogle Scholar
  306. Schwyn RC, Fox CA (1974) The primate substantia nigra: a Golgi and electron microscopic study. J Hirnforsch 15(1):95–126PubMedGoogle Scholar
  307. Seidler RD, Noll DC et al (2006) Bilateral basal ganglia activation associated with sensorimotor adaptation. Exp Brain Res 175(3):544–555PubMedGoogle Scholar
  308. Selemon LD, Goldman-Rakic PS (1985) Longitudinal topography and interdigitation of corticostriatal projections in the rhesus monkey. J Neurosci 5(3):776–794PubMedGoogle Scholar
  309. Senior C (2003) Beauty in the brain of the beholder. Neuron 38(4):525–528PubMedGoogle Scholar
  310. Shen W, Flajolet M et al (2008) Dichotomous dopaminergic control of striatal synaptic plasticity. Science 321(5890):848–851PubMedGoogle Scholar
  311. Shimo Y, Wichmann T (2009) Neuronal activity in the subthalamic nucleus modulates the release of dopamine in the monkey striatum. Eur J Neurosci 29(1):104–113PubMedGoogle Scholar
  312. Shimura T, Imaoka H et al (2006) Neurochemical modulation of ingestive behavior in the ventral pallidum. Eur J Neurosci 23(6):1596–1604PubMedGoogle Scholar
  313. Shirao N, Okamoto Y et al (2005) Gender differences in brain activity generated by unpleasant word stimuli concerning body image: an fMRI study. Br J Psychiatry 186:48–53PubMedGoogle Scholar
  314. Sidibe M, Bevan MD et al (1997) Efferent connections of the internal globus pallidus in the squirrel monkey: I. Topography and synaptic organization of the pallidothalamic projection. J Comp Neurol 382(3):323–347PubMedGoogle Scholar
  315. Siegle GJ, Thompson W et al (2007) Increased amygdala and decreased dorsolateral prefrontal BOLD responses in unipolar depression: related and independent features. Biol Psychiatry 61(2):198–209PubMedGoogle Scholar
  316. Silverman ME, Loudon H et al (2007) Neural dysfunction in postpartum depression: an fMRI pilot study. CNS Spectr 12(11):853–862PubMedGoogle Scholar
  317. Slaughter JR, Martens MP et al (2001) Depression and Huntington’s disease: prevalence, clinical manifestations, etiology, and treatment. CNS Spectr 6(4):306–326PubMedGoogle Scholar
  318. Small DM, Zatorre RJ et al (2001) Changes in brain activity related to eating chocolate: from pleasure to aversion. Brain 124(Pt 9):1720–1733PubMedGoogle Scholar
  319. Small DM, Jones-Gotman M et al (2003) Feeding-induced dopamine release in dorsal striatum correlates with meal pleasantness ratings in healthy human volunteers. Neuroimage 19(4):1709–1715PubMedGoogle Scholar
  320. Smith KS, Berridge KC (2005) The ventral pallidum and hedonic reward: neurochemical maps of sucrose “liking” and food intake. J Neurosci 25(38):8637–8649PubMedGoogle Scholar
  321. Smith KS, Berridge KC (2007) Opioid limbic circuit for reward: interaction between hedonic hotspots of nucleus accumbens and ventral pallidum. J Neurosci 27(7):1594–1605PubMedGoogle Scholar
  322. Smith Y, Bennett BD et al (1994) Synaptic relationships between dopaminergic afferents and cortical or thalamic input in the sensorimotor territory of the striatum in monkey. J Comp Neurol 344(1):1–19PubMedGoogle Scholar
  323. Smith MA, Brandt J et al (2000) Motor disorder in Huntington’s disease begins as a dysfunction in error feedback control. Nature 403(6769):544–549PubMedGoogle Scholar
  324. Smith KS, Tindell AJ et al (2009) Ventral pallidum roles in reward and motivation. Behav Brain Res 196(2):155–167PubMedGoogle Scholar
  325. Stanfield AC, Moorhead TW et al (2009) Structural abnormalities of ventrolateral and orbitofrontal cortex in patients with familial bipolar disorder. Bipolar Disord 11(2):135–144PubMedGoogle Scholar
  326. Starkstein SE, Mayberg HS et al (1990) Mania after brain injury: neuroradiological and metabolic findings. Ann Neurol 27(6):652–659PubMedGoogle Scholar
  327. Stefani A, De Murtas M et al (1995) Electrophysiology of dopamine D-1 receptors in the basal ganglia: old facts and new perspectives. Prog Neuropsychopharmacol Biol Psychiatry 19(5):779–793PubMedGoogle Scholar
  328. Stein MB, Simmons AN et al (2007) Increased amygdala and insula activation during emotion processing in anxiety-prone subjects. Am J Psychiatry 164(2):318–327PubMedGoogle Scholar
  329. Stice E, Spoor S et al (2008a) Relation between obesity and blunted striatal response to food is moderated by TaqIA A1 allele. Science 322(5900):449–452PubMedGoogle Scholar
  330. Stice E, Spoor S et al (2008b) Relation of reward from food intake and anticipated food intake to obesity: a functional magnetic resonance imaging study. J Abnorm Psychol 117(4):924–935PubMedGoogle Scholar
  331. Strakowski SM, Adler CM et al (2004) A preliminary FMRI study of sustained attention in euthymic, unmedicated bipolar disorder. Neuropsychopharmacology 29(9):1734–1740PubMedGoogle Scholar
  332. Strakowski SM, Adler CM et al (2005) Abnormal FMRI brain activation in euthymic bipolar disorder patients during a counting Stroop interference task. Am J Psychiatry 162(9):1697–1705PubMedGoogle Scholar
  333. Surmeier DJ (2006) Microcircuitsin the striatum: cell types, intrinsic membrane properties, and neuromodulation. In: Gillner S, Graybiel AM (eds) Microcircuits: the interface between neurons and global brain function. The MIT Press, Cambridge, Massachusetts, pp 105–126Google Scholar
  334. Takada M, Tokuno H et al (1998) Corticostriatal projections from the somatic motor areas of the frontal cortex in the macaque monkey: segregation versus overlap of input zones from the primary motor cortex, the supplementary motor area, and the premotor cortex. Exp Brain Res 120(1):114–128PubMedGoogle Scholar
  335. Takada M, Tokuno H et al (2001) Organization of inputs from cingulate motor areas to basal ganglia in macaque monkey. Eur J Neurosci 14(10):1633–1650PubMedGoogle Scholar
  336. Takahashi H, Kato M et al (2009) When your gain is my pain and your pain is my gain: neural correlates of envy and schadenfreude. Science 323(5916):937–939PubMedGoogle Scholar
  337. Takakusaki K, Habaguchi T et al (2003) Basal ganglia efferents to the brainstem centers controlling postural muscle tone and locomotion: a new concept for understanding motor disorders in basal ganglia dysfunction. Neuroscience 119(1):293–308PubMedGoogle Scholar
  338. Tan CO, Bullock D (2008) A dopamine-acetylcholine cascade: simulating learned and lesion-induced behavior of striatal cholinergic interneurons. J Neurophysiol 100(4):2409–2421PubMedGoogle Scholar
  339. Tekin S, Cummings JL (2002) Frontal-subcortical neuronal circuits and clinical neuropsychiatry: an update. J Psychosom Res 53(2):647–654PubMedGoogle Scholar
  340. Tepper JM, Plenz D (2006) Microcircuits in the striatum: striatal cell types and their interaction. In: Gillner S, Graybiel AM (eds) Microcircuits: the interface between neurons and global brain function. The MIT Press, Massachusetts, Cambridge, pp 127–148Google Scholar
  341. Tindell AJ, Smith KS et al (2006) Ventral pallidum firing codes hedonic reward: when a bad taste turns good. J Neurophysiol 96(5):2399–2409PubMedGoogle Scholar
  342. Toan DL, Schultz W (1985) Responses of rat pallidum cells to cortex stimulation and effects of altered dopaminergic activity. Neuroscience 15(3):683–694PubMedGoogle Scholar
  343. Tokuno H, Inase M et al (1999) Corticostriatal projections from distal and proximal forelimb representations of the monkey primary motor cortex. Neurosci Lett 269(1):33–36PubMedGoogle Scholar
  344. Tricomi E, Delgado MR et al (2006) Performance feedback drives caudate activation in a phonological learning task. J Cogn Neurosci 18(6):1029–1043PubMedGoogle Scholar
  345. Tsai HC, Zhang F et al (2009) Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. Science 324(5930):1080–1084PubMedGoogle Scholar
  346. Turecki G, de Mari J et al (1993) Bipolar disorder following a left basal-ganglia stroke. Br J Psychiatry 163:690PubMedGoogle Scholar
  347. Turner MS, Lavin A et al (2001) Regulation of limbic information outflow by the subthalamic nucleus: excitatory amino acid projections to the ventral pallidum. J Neurosci 21(8):2820–2832PubMedGoogle Scholar
  348. Ubeda-Banon I, Novejarque A et al (2007) Projections from the posterolateral olfactory amygdala to the ventral striatum: neural basis for reinforcing properties of chemical stimuli. BMC Neurosci 8:103PubMedGoogle Scholar
  349. van der Wee NJ, van Veen JF et al (2008) Increased serotonin and dopamine transporter binding in psychotropic medication-naive patients with generalized social anxiety disorder shown by 123I-beta-(4-iodophenyl)-tropane SPECT. J Nucl Med 49(5):757–763PubMedGoogle Scholar
  350. Volkow ND, Wang GJ et al (2002) “Nonhedonic” food motivation in humans involves dopamine in the dorsal striatum and methylphenidate amplifies this effect. Synapse 44(3):175–180PubMedGoogle Scholar
  351. Voon V, Saint-Cyr J et al (2005) Psychiatric symptoms in patients with Parkinson disease presenting for deep brain stimulation surgery. J Neurosurg 103(2):246–251PubMedGoogle Scholar
  352. Wang L, Krishnan KR et al (2008) Depressive state- and disease-related alterations in neural responses to affective and executive challenges in geriatric depression. Am J Psychiatry 165(7):863–871PubMedGoogle Scholar
  353. Weintraub D, Stern MB (2005) Psychiatric complications in Parkinson disease. Am J Geriatr Psychiatry 13(10):844–851PubMedGoogle Scholar
  354. West AG, Grace AA (2001) The role of frontal-subcortical circuits in the pathophysiology of schizophrenia. In: Lichter DG, Cummings JL (eds) Frontal-subcortical circuits in psychiatric and neurological disorders. The Guilford Press, New York, pp 372–400Google Scholar
  355. Wilson CJ, Kawaguchi Y (1996) The origins of two-state spontaneous membrane potential fluctuations of neostriatal spiny neurons. J Neurosci 16(7):2397–2410PubMedGoogle Scholar
  356. Wilson CJ, Chang HT et al (1990) Firing patterns and synaptic potentials of identified giant aspiny interneurons in the rat neostriatum. J Neurosci 10(2):508–519PubMedGoogle Scholar
  357. Woolley J, Heyman I et al (2008) Brain activation in paediatric obsessive compulsive disorder during tasks of inhibitory control. Br J Psychiatry 192(1):25–31PubMedGoogle Scholar
  358. Yang TT, Simmons AN et al (2007) Increased amygdala activation is related to heart rate during emotion processing in adolescent subjects. Neurosci Lett 428(2–3):109–114PubMedGoogle Scholar
  359. Yeterian EH, Van Hoesen GW (1978) Cortico-striate projections in the rhesus monkey: the organization of certain cortico-caudate connections. Brain Res 139(1):43–63PubMedGoogle Scholar
  360. Yoshida A, Tanaka M (2009a) Enhanced modulation of neuronal activity during antisaccades in the primate globus pallidus. Cereb Cortex 19(1):206–217PubMedGoogle Scholar
  361. Yoshida A, Tanaka M (2009b) Neuronal activity in the primate globus pallidus during smooth pursuit eye movements. Neuroreport 20(2):121–125PubMedGoogle Scholar
  362. Yoshimura S, Okamoto Y et al (2010) Rostral anterior cingulate cortex activity mediates the relationship between the depressive symptoms and the medial prefrontal cortex activity. J Affect Disord 122(1–2):76–85PubMedGoogle Scholar
  363. Zaborszky L, Gaykema RP et al (1997) Cortical input to the basal forebrain. Neuroscience 79(4):1051–1078PubMedGoogle Scholar
  364. Zheng T, Wilson CJ (2002) Corticostriatal combinatorics: the implications of corticostriatal axonal arborizations. J Neurophysiol 87(2):1007–1017PubMedGoogle Scholar
  365. Zhou Y, Yu C et al (2010) Increased neural resources recruitment in the intrinsic organization in major depression. J Affect Disord 121(3):220–230PubMedGoogle Scholar

Copyright information

© Springer-Verlag (outside the USA) 2010

Authors and Affiliations

  1. 1.George E. Wahlen Department of Veterans Affairs Medical CenterSalt Lake CityUSA
  2. 2.University of Utah Department of PsychiatrySalt Lake CityUSA
  3. 3.The Brain Institute at the University of UtahSalt Lake CityUSA

Personalised recommendations