Brain Structure and Function

, Volume 214, Issue 5–6, pp 655–667 | Cite as

Saliency, switching, attention and control: a network model of insula function

Review

Abstract

The insula is a brain structure implicated in disparate cognitive, affective, and regulatory functions, including interoceptive awareness, emotional responses, and empathic processes. While classically considered a limbic region, recent evidence from network analysis suggests a critical role for the insula, particularly the anterior division, in high-level cognitive control and attentional processes. The crucial insight and view we present here is of the anterior insula as an integral hub in mediating dynamic interactions between other large-scale brain networks involved in externally oriented attention and internally oriented or self-related cognition. The model we present postulates that the insula is sensitive to salient events, and that its core function is to mark such events for additional processing and initiate appropriate control signals. The anterior insula and the anterior cingulate cortex form a “salience network” that functions to segregate the most relevant among internal and extrapersonal stimuli in order to guide behavior. Within the framework of our network model, the disparate functions ascribed to the insula can be conceptualized by a few basic mechanisms: (1) bottom–up detection of salient events, (2) switching between other large-scale networks to facilitate access to attention and working memory resources when a salient event is detected, (3) interaction of the anterior and posterior insula to modulate autonomic reactivity to salient stimuli, and (4) strong functional coupling with the anterior cingulate cortex that facilitates rapid access to the motor system. In this manner, with the insula as its integral hub, the salience network assists target brain regions in the generation of appropriate behavioral responses to salient stimuli. We suggest that this framework provides a parsimonious account of insula function in neurotypical adults, and may provide novel insights into the neural basis of disorders of affective and social cognition.

Keywords

Functional connectivity Brain networks Resting-state fMRI Granger causality Anterior insula Diffusing tensor imaging 

References

  1. Afif A, Mertens P (2010) Description of sulcal organization of the insular cortex. Surg Radiol Anat (in press)Google Scholar
  2. Allman JM, Watson KK, Tetreault NA, Hakeem AY (2005) Intuition and autism: a possible role for Von Economo neurons. Trends Cogn Sci 9(8):367–373CrossRefPubMedGoogle Scholar
  3. Allman JM, Tetreault NA, Hakeem AY, Manaye KF, Semendeferi K, Erwin JM, Park S, Goubert V, Hof PR (2010) The von Economo neurons in frontoinsular and anterior cingulate cortex in great apes and humans. Brain Struct Funct 214(5–6). doi:10.1007/s00429-010-0254-0
  4. Amodio DM, Frith CD (2006) Meeting of minds: the medial frontal cortex and social cognition. Nat Rev Neurosci 7(4):268–277CrossRefPubMedGoogle Scholar
  5. Augustine JR (1996) Circuitry and functional aspects of the insular lobe in primates including humans. Brain Res Brain Res Rev 22(3):229–244CrossRefPubMedGoogle Scholar
  6. Averbeck BB, Seo M (2008) The statistical neuroanatomy of frontal networks in the macaque. PLoS Comput Biol 4(4):e1000050CrossRefPubMedGoogle Scholar
  7. Baird A, Dewar BK, Critchley H, Gilbert SJ, Dolan RJ, Cipolotti L (2006) Cognitive functioning after medial frontal lobe damage including the anterior cingulate cortex: a preliminary investigation. Brain Cogn 60(2):166–175CrossRefPubMedGoogle Scholar
  8. Barrett LF, Bar M (2009) See it with feeling: affective predictions during object perception. Philos Trans R Soc Lond B Biol Sci 364(1521):1325–1334Google Scholar
  9. Baumgartner T, Fischbacher U, Feierabend A, Lutz K, Fehr E (2009) The neural circuitry of a broken promise. Neuron 64(5):756–770CrossRefPubMedGoogle Scholar
  10. Binder JR, Desai RH, Graves WW, Conant LL (2009) Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cereb Cortex 19(12):2767–2796CrossRefPubMedGoogle Scholar
  11. Bressler SL (1995) Large-scale cortical networks and cognition. Brain Res Brain Res Rev 20(3):288–304CrossRefPubMedGoogle Scholar
  12. Buckner RL, Carroll DC (2007) Self-projection and the brain. Trends Cogn Sci 11(2):49–57CrossRefPubMedGoogle Scholar
  13. Cabeza R, Prince SE, Daselaar SM, Greenberg DL, Budde M, Dolcos F et al (2004) Brain activity during episodic retrieval of autobiographical and laboratory events: an fMRI study using a novel photo paradigm. J Cogn Neurosci 16(9):1583–1594CrossRefPubMedGoogle Scholar
  14. Cole MW, Schneider W (2007) The cognitive control network: Integrated cortical regions with dissociable functions. Neuroimage 37(1):343–360CrossRefPubMedGoogle Scholar
  15. Craig AD (2002) How do you feel? Interoception: the sense of the physiological condition of the body. Nat Rev Neurosci 3(8):655–666PubMedGoogle Scholar
  16. Craig AD (2003) Interoception: the sense of the physiological condition of the body. Curr Opin Neurobiol 13(4):500–505CrossRefPubMedGoogle Scholar
  17. Craig AD (2009) How do you feel—now? The anterior insula and human awareness. Nat Rev Neurosci 10(1):59–70CrossRefPubMedGoogle Scholar
  18. Craig AD (2010) The sentient self. Brain Struct Funct 214(5–6). doi:10.1007/s00429-010-0248-y
  19. Critchley HD, Mathias CJ, Dolan RJ (2001) Neuroanatomical basis for first- and second-order representations of bodily states. Nat Neurosci 4(2):207–212CrossRefPubMedGoogle Scholar
  20. Critchley HD, Wiens S, Rotshtein P, Ohman A, Dolan RJ (2004) Neural systems supporting interoceptive awareness. Nat Neurosci 7(2):189–195CrossRefPubMedGoogle Scholar
  21. Crottaz-Herbette S, Menon V (2006) Where and when the anterior cingulate cortex modulates attentional response: combined fMRI and ERP evidence. J Cogn Neurosci 18(5):766–780CrossRefPubMedGoogle Scholar
  22. Damasio AR (1996) The somatic marker hypothesis and the possible functions of the prefrontal cortex. Philos Trans R Soc Lond B Biol Sci 351(1346):1413–1420CrossRefPubMedGoogle Scholar
  23. Damoiseaux JS, Rombouts SA, Barkhof F, Scheltens P, Stam CJ, Smith SM et al (2006) Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci USA 103(37):13848–13853CrossRefPubMedGoogle Scholar
  24. Di Martino A, Ross K, Uddin LQ, Sklar AB, Castellanos FX, Milham MP (2009) Functional brain correlates of social and nonsocial processes in autism spectrum disorders: an activation likelihood estimation meta-analysis. Biol Psychiatry 65(1):63–74CrossRefPubMedGoogle Scholar
  25. Dosenbach NU, Fair DA, Miezin FM, Cohen AL, Wenger KK, Dosenbach RA et al (2007) Distinct brain networks for adaptive and stable task control in humans. Proc Natl Acad Sci USA 104(26):11073–11078CrossRefPubMedGoogle Scholar
  26. Dosenbach NU, Fair DA, Cohen AL, Schlaggar BL, Petersen SE (2008) A dual-networks architecture of top-down control. Trends Cogn Sci 12(3):99–105CrossRefPubMedGoogle Scholar
  27. Downar J, Crawley AP, Mikulis DJ, Davis KD (2000) A multimodal cortical network for the detection of changes in the sensory environment. Nat Neurosci 3(3):277–283CrossRefPubMedGoogle Scholar
  28. Downar J, Crawley AP, Mikulis DJ, Davis KD (2001) The effect of task relevance on the cortical response to changes in visual and auditory stimuli: an event-related fMRI study. Neuroimage 14(6):1256–1267CrossRefPubMedGoogle Scholar
  29. Downar J, Crawley AP, Mikulis DJ, Davis KD (2002) A cortical network sensitive to stimulus salience in a neutral behavioral context across multiple sensory modalities. J Neurophysiol 87(1):615–620PubMedGoogle Scholar
  30. Eichele T, Debener S, Calhoun VD, Specht K, Engel AK, Hugdahl K et al (2008) Prediction of human errors by maladaptive changes in event-related brain networks. Proc Natl Acad Sci USA 105(16):6173–6178CrossRefPubMedGoogle Scholar
  31. Fecteau JH, Bell AH, Munoz DP (2004) Neural correlates of the automatic and goal-driven biases in orienting spatial attention. J Neurophysiol 92(3):1728–1737CrossRefPubMedGoogle Scholar
  32. Feinstein JS, Stein MB, Paulus MP (2006) Anterior insula reactivity during certain decisions is associated with neuroticism. Soc Cogn Affect Neurosci 1(2):136–142CrossRefPubMedGoogle Scholar
  33. Fellows LK, Farah MJ (2005) Is anterior cingulate cortex necessary for cognitive control? Brain 128(Pt 4):788–796CrossRefPubMedGoogle Scholar
  34. Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8(9):700–711CrossRefPubMedGoogle Scholar
  35. Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA 102(27):9673–9678CrossRefPubMedGoogle Scholar
  36. Fries W (1984) Cortical projections to the superior colliculus in the macaque monkey: a retrograde study using horseradish peroxidase. J Comp Neurol 230(1):55–76CrossRefPubMedGoogle Scholar
  37. Fuster JM (2006) The cognit: a network model of cortical representation. Int J Psychophysiol 60(2):125–132CrossRefPubMedGoogle Scholar
  38. Goebel R, Roebroeck A, Kim DS, Formisano E (2003) Investigating directed cortical interactions in time-resolved fMRI data using vector autoregressive modeling and Granger causality mapping. Magn Reson Imaging 21(10):1251–1261CrossRefPubMedGoogle Scholar
  39. Goldman-Rakic PS (1995) Architecture of the prefrontal cortex and the central executive. Ann N Y Acad Sci 769:71–83CrossRefPubMedGoogle Scholar
  40. Greicius MD, Menon V (2004) Default-mode activity during a passive sensory task: uncoupled from deactivation but impacting activation. J Cogn Neurosci 16(9):1484–1492CrossRefPubMedGoogle Scholar
  41. Greicius MD, Krasnow B, Reiss AL, Menon V (2003) Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci USA 100(1):253–258CrossRefPubMedGoogle Scholar
  42. He BJ, Snyder AZ, Zempel JM, Smyth MD, Raichle ME (2008) Electrophysiological correlates of the brain’s intrinsic large-scale functional architecture. Proc Natl Acad Sci USA 105(41):16039–16044CrossRefPubMedGoogle Scholar
  43. Hodgson T, Chamberlain M, Parris B, James M, Gutowski N, Husain M et al (2007) The role of the ventrolateral frontal cortex in inhibitory oculomotor control. Brain 130(Pt 6):1525–1537CrossRefPubMedGoogle Scholar
  44. Ibañez A, Gleichgerrcht E, Manes F (2010) Clinical effects of insular damage in humans. Brain Struct Funct. doi:10.1007/s00429-010-0256-y
  45. Immordino-Yang MH, McColl A, Damasio H, Damasio A (2009) Neural correlates of admiration and compassion. Proc Natl Acad Sci USA 106(19):8021–8026CrossRefPubMedGoogle Scholar
  46. Johnston K, Levin HM, Koval MJ, Everling S (2007) Top-down control-signal dynamics in anterior cingulate and prefrontal cortex neurons following task switching. Neuron 53(3):453–462CrossRefPubMedGoogle Scholar
  47. Kelly AM, Uddin LQ, Biswal BB, Castellanos FX, Milham MP (2008) Competition between functional brain networks mediates behavioral variability. Neuroimage 39(1):527–537CrossRefPubMedGoogle Scholar
  48. Knudsen EI (2007) Fundamental components of attention. Annu Rev Neurosci 30:57–78CrossRefPubMedGoogle Scholar
  49. Koechlin E, Summerfield C (2007) An information theoretical approach to prefrontal executive function. Trends Cogn Sci 11(6):229–235CrossRefPubMedGoogle Scholar
  50. Kurth F, Eickhoff SB, Schleicher A, Hoemke L, Zilles K, Amunts K (2010) Cytoarchitecture and Probabilistic Maps of the Human Posterior Insular Cortex. Cereb Cortex (in press)Google Scholar
  51. Kurth F, Zilles K, Fox PT, Laird AR, Eickhoff SB (2010) A link between the systems: functional differentiation and integration within the human insula revealed by meta-analysis. Brain Struct Funct. doi:10.1007/s00429-010-0255-z
  52. Lerner A, Bagic A, Hanakawa T, Boudreau EA, Pagan F, Mari Z, Bara-Jimenez W, Aksu M, Sato S, Murphy DL, Hallett M (2009) Involvement of Insula and Cingulate Cortices in Control and Suppression of Natural Urges. Cereb Cortex 19(1):218–223Google Scholar
  53. Levens SM, Phelps EA (2010) Insula and orbital frontal cortex activity underlying emotion interference resolution in working memory. J Cogn Neurosci (in press)Google Scholar
  54. Linden DE, Prvulovic D, Formisano E, Vollinger M, Zanella FE, Goebel R et al (1999) The functional neuroanatomy of target detection: an fMRI study of visual and auditory oddball tasks. Cereb Cortex 9(8):815–823CrossRefPubMedGoogle Scholar
  55. McIntosh AR (2000) Towards a network theory of cognition. Neural Netw 13(8–9):861–870CrossRefPubMedGoogle Scholar
  56. Mesulam MM (1998) From sensation to cognition. Brain 121(Pt 6):1013–1052CrossRefPubMedGoogle Scholar
  57. Mesulam M (2005) Imaging connectivity in the human cerebral cortex: the next frontier? Ann Neurol 57(1):5–7CrossRefPubMedGoogle Scholar
  58. Mesulam MM, Mufson EJ (1982) Insula of the old world monkey III: Efferent cortical output and comments on function. J Comp Neurol 212(1):38–52CrossRefPubMedGoogle Scholar
  59. Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex function. Annu Rev Neurosci 24:167–202CrossRefPubMedGoogle Scholar
  60. Mufson EJ, Mesulam MM (1982) Insula of the old world monkey. II: Afferent cortical input and comments on the claustrum. J Comp Neurol 212(1):23–37CrossRefPubMedGoogle Scholar
  61. Muller NG, Knight RT (2006) The functional neuroanatomy of working memory: contributions of human brain lesion studies. Neuroscience 139(1):51–58CrossRefPubMedGoogle Scholar
  62. Naidich TP, Kang E, Fatterpekar GM, Delman BN, Gultekin SH, Wolfe D et al (2004) The insula: anatomic study and MR imaging display at 1.5 T. Am J Neuroradiol 25(2):222–232PubMedGoogle Scholar
  63. Nanetti L, Cerliani L, Gazzola V, Renken R, Keysers C (2009) Group analyses of connectivity-based cortical parcellation using repeated k-means clustering. Neuroimage 47(4):1666–1677CrossRefPubMedGoogle Scholar
  64. Naqvi NH, Rudrauf D, Damasio H, Bechara A (2007) Damage to the insula disrupts addiction to cigarette smoking. Science 315(5811):531–534CrossRefPubMedGoogle Scholar
  65. Nimchinsky EA, Gilissen E, Allman JM, Perl DP, Erwin JM, Hof PR (1999) A neuronal morphologic type unique to humans and great apes. Proc Natl Acad Sci USA 96(9):5268–5273CrossRefPubMedGoogle Scholar
  66. Nir Y, Mukamel R, Dinstein I, Privman E, Harel M, Fisch L et al (2008) Interhemispheric correlations of slow spontaneous neuronal fluctuations revealed in human sensory cortex. Nat Neurosci 11(9):1100–1108CrossRefPubMedGoogle Scholar
  67. Passingham RE, Stephan KE, Kotter R (2002) The anatomical basis of functional localization in the cortex. Nat Rev Neurosci 3(8):606–616PubMedGoogle Scholar
  68. Paulus MP, Stein MB (2006) An insular view of anxiety. Biol Psychiatry 60(4):383–387CrossRefPubMedGoogle Scholar
  69. Petrides M (2005) Lateral prefrontal cortex: architectonic and functional organization. Philos Trans R Soc Lond B Biol Sci 360(1456):781–795CrossRefPubMedGoogle Scholar
  70. Polli FE, Barton JJ, Cain MS, Thakkar KN, Rauch SL, Manoach DS (2005) Rostral and dorsal anterior cingulate cortex make dissociable contributions during antisaccade error commission. Proc Natl Acad Sci USA 102(43):15700–15705CrossRefPubMedGoogle Scholar
  71. Posner MI, Rothbart MK (2007) Research on attention networks as a model for the integration of psychological science. Annu Rev Psychol 58:1–23CrossRefPubMedGoogle Scholar
  72. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci USA 98(2):676–682CrossRefPubMedGoogle Scholar
  73. Rudebeck PH, Behrens TE, Kennerley SW, Baxter MG, Buckley MJ, Walton ME et al (2008) Frontal cortex subregions play distinct roles in choices between actions and stimuli. J Neurosci 28(51):13775–13785CrossRefPubMedGoogle Scholar
  74. Rushworth MF (2008) Intention, choice, and the medial frontal cortex. Ann N Y Acad Sci 1124:181–207CrossRefPubMedGoogle Scholar
  75. Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H et al (2007) Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 27(9):2349–2356CrossRefPubMedGoogle Scholar
  76. Singer T (2006) The neuronal basis and ontogeny of empathy and mind reading: review of literature and implications for future research. Neurosci Biobehav Rev 30(6):855–863CrossRefPubMedGoogle Scholar
  77. Singer T, Seymour B, O’Doherty J, Kaube H, Dolan RJ, Frith CD (2004) Empathy for pain involves the affective but not sensory components of pain. Science 303(5661):1157–1162CrossRefPubMedGoogle Scholar
  78. Singer T, Critchley HD, Preuschoff K (2009) A common role of insula in feelings, empathy and uncertainty. Trends Cogn Sci 13(8):334–340CrossRefPubMedGoogle Scholar
  79. Soltani M, Knight RT (2000) Neural origins of the P300. Crit Rev Neurobiol 14(3–4):199–224Google Scholar
  80. Sommer IE, Diederen KM, Blom JD, Willems A, Kushan L, Slotema K et al (2008) Auditory verbal hallucinations predominantly activate the right inferior frontal area. Brain 131(Pt 12):3169–3177CrossRefPubMedGoogle Scholar
  81. Spreng RN, Mar RA, Kim AS (2009) The common neural basis of autobiographical memory, prospection, navigation, theory of mind, and the default mode: a quantitative meta-analysis. J Cogn Neurosci 21(3):489–510CrossRefPubMedGoogle Scholar
  82. Sridharan D, Levitin DJ, Menon V (2008) A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proc Natl Acad Sci USA 105(34):12569–12574CrossRefPubMedGoogle Scholar
  83. Stein MB, Simmons AN, Feinstein JS, Paulus MP (2007) Increased amygdala and insula activation during emotion processing in anxiety-prone subjects. Am J Psychiatry 164(2):318–327CrossRefPubMedGoogle Scholar
  84. Taylor KS, Seminowicz DA, Davis KD (2009) Two systems of resting state connectivity between the insula and cingulate cortex. Hum Brain Mapp 30(9):2731–2745CrossRefPubMedGoogle Scholar
  85. Toro R, Fox PT, Paus T (2008) Functional coactivation map of the human brain. Cereb Cortex 18(11):2553–2559CrossRefPubMedGoogle Scholar
  86. Uddin LQ, Menon V (2009) The anterior insula in autism: under-connected and under-examined. Neurosci Biobehav Rev 33(8):1198–1203CrossRefPubMedGoogle Scholar
  87. Uddin LQ, Supekar K, Amin H, Rykhlevskaia E, Nguyen DA, Greicius MD, Menon V (2010) Dissociable connectivity within human angular gyrus and intraparietal sulcus: evidence from functional and structural connectivity. Cereb Cortex (in press)Google Scholar
  88. van den Heuvel MP, Mandl RC, Kahn RS, Hulshoff Pol HE (2009) Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain. Hum Brain Mapp 30(10):3127–3141Google Scholar
  89. Vogt BA (2009) Cingulate neurobiology and disease. Oxford University Press, OxfordGoogle Scholar
  90. Wedeen VJ, Wang RP, Schmahmann JD, Benner T, Tseng WY, Dai G et al (2008) Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers. Neuroimage 41(4):1267–1277CrossRefPubMedGoogle Scholar
  91. Weissman DH, Roberts KC, Visscher KM, Woldorff MG (2006) The neural bases of momentary lapses in attention. Nat Neurosci 9(7):971–978CrossRefPubMedGoogle Scholar
  92. Xue G, Lu Z, Levin IP, Bechara A (2010) The impact of prior risk experiences on subsequent risky decision-making: The role of the insula. Neuroimage 50(2):709–716Google Scholar
  93. Yantis S (2008) The neural basis of selective attention: cortical sources and targets of attentional modulation. Curr Dir Psychol Sci 17(2):86–90CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of Psychiatry and Behavioral SciencesStanford University School of MedicineStanfordUSA
  2. 2.Department of Neurology and Neurological SciencesStanford University School of MedicineStanfordUSA
  3. 3.Program in NeuroscienceStanford University School of MedicineStanfordUSA

Personalised recommendations