Brain Structure and Function

, Volume 214, Issue 2–3, pp 219–234 | Cite as

Inducible nitric oxide synthase is present in motor neuron mitochondria and Schwann cells and contributes to disease mechanisms in ALS mice

  • Kevin Chen
  • Frances J. Northington
  • Lee J. Martin
Original Article


Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease of motor neurons (MNs). The molecular pathogenesis of ALS is not understood, thus effective therapies for this disease are lacking. Some forms of ALS are inherited by mutations in the superoxide dismutase-1 (SOD1) gene. Transgenic mice expressing human Gly93 → Ala (G93A) mutant SOD1 (mSOD1) develop severe MN disease, oxidative and nitrative damage, and mitochondrial pathology that appears to involve nitric oxide-mediated mechanisms. We used G93A-mSOD1 mice to test the hypothesis that the degeneration of MNs is associated with an aberrant up-regulation of the inducible form of nitric oxide synthase (iNOS or NOS2) activity within MNs. Western blotting and immunoprecipitation showed that iNOS protein levels in mitochondrial-enriched membrane fractions of spinal cord are increased significantly in mSOD1 mice at pre-symptomatic stages of disease. The catalytic activity of iNOS was also increased significantly in mitochondrial-enriched membrane fractions of mSOD1 mouse spinal cord at pre-symptomatic stages of disease. Reverse transcription-PCR showed that iNOS mRNA was present in the spinal cord and brainstem MN regions in mice and was increased in pre-symptomatic and early symptomatic mice. Immunohistochemistry showed that iNOS immunoreactivty was up-regulated first in spinal cord and brainstem MNs in pre-symptomatic and early symptomatic mice and then later in the course of disease in numerous microglia and few astrocytes. iNOS accumulated in the mitochondria in mSOD1 mouse MNs. iNOS immunoreactivity was also up-regulated in Schwann cells of peripheral nerves and was enriched particularly at the paranodal regions of the nodes of Ranvier. Drug inhibitors of iNOS delayed disease onset and significantly extended the lifespan of G93A-mSOD1 mice. This work identifies two new potential early mechanisms for MN degeneration in mouse ALS involving iNOS at MN mitochondria and Schwann cells and suggests that therapies targeting iNOS might be beneficial in treating human ALS.


Apoptosis-necrosis cell death continuum Mitochondrial permeability transition pore Mutant SOD1 Nitration Node of Ranvier Schwann cell 


  1. Abe K, Pan L-H, Watanabe M, Kato T, Itoyama Y (1995) Induction of nitrotyrosine-like immunoreactivity in the lower motor neuron of amyotrophic lateral sclerosis. Neurosci Lett 199:152–154CrossRefPubMedGoogle Scholar
  2. Akiyama H, McGeer PL (1990) Brain microglia constitutively express β-2 integrins. J Neuroimmunol 30:81–93CrossRefPubMedGoogle Scholar
  3. Almer G, Vukosavic S, Romero N, Przedborski S (1999) Inducible nitric oxide synthase up-regulation in a transgenic mouse model of familial amyotrophic lateral sclerosis. J Neurochem 72:2415–2425CrossRefPubMedGoogle Scholar
  4. Autilio-Gambetti L, Sipple J, Sudilovsky O, Gambetti P (1982) Intermediate filaments of Schwann cells. J Neurochem 38:774–780CrossRefPubMedGoogle Scholar
  5. Beal MF, Ferrante RJ, Browne SE, Matthews RT, Kowall NW, Brown RH Jr (1997) Increased 3-nitrotyrosine in both sporadic and familial amyotrophic lateral sclerosis. Ann Neurol 42:644–654CrossRefPubMedGoogle Scholar
  6. Beckman JS, Carson M, Smith CD, Koppenol WH (1993) ALS, SOD and peroxynitrite. Nature 364:548CrossRefGoogle Scholar
  7. Beckman JS, Estévez AG, Crow JP, Barbeito L (2001) Superoxide dismutase and the death of motoneurons in ALS. Trends Neurosci 24:S15–S20CrossRefPubMedGoogle Scholar
  8. Bendotti C, Carrì MT (2004) Lessons from models of SOD1-linked familial ALS. Trends Mol Med 10:393–400CrossRefPubMedGoogle Scholar
  9. Bendotti C, Calvaresi N, Chiveri L, Prelle A, Moggio M, Braga M, Silani V, De Biasi S (2001) Early vacuolization and mitochondrial damage in motor neurons of FALS mice are not associated with apoptosis or with changes in cytochrome oxidase histochemical reactivity. J Neurol Sci 191:25–33CrossRefPubMedGoogle Scholar
  10. Bhardwaj A, Northington FJ, Martin LJ, Hanley DF, Traystman RJ, Koehler RC (1997) Characterization of metabotropic glutamate receptor-mediated nitric oxide production in vivo. J Cereb Blood Flow Metab 17:153–160CrossRefPubMedGoogle Scholar
  11. Borchelt DR, Lee MK, Slunt HH, Guarnieri M, Xu Z-S, Wong PC, Brown RH Jr, Price DL, Sisodia SS, Cleveland DW (1994) Superoxide dismutase 1 with mutations linked to familial amyotrophic lateral sclerosis possesses significant activity. Proc Natl Acad Sci USA 91:8292–8296CrossRefPubMedGoogle Scholar
  12. Casoni F, Basso M, Massignam T, Gianazza E, Cheroni C, Salmona M, Bendotti C, Bonetto V (2005) Protein nitration in a mouse model of familial amyotrophic lateral sclerosis. J Biol Chem 280:16295–16304CrossRefPubMedGoogle Scholar
  13. Copray JCVM, Jaarsma D, Kunst BM, Bruggeman RWG, Mantingh I, Brouwer N, Boddeke HWGM (2003) Expression of the low affinity neurotrophin receptor p75 in spinal motoneurons in a transgenic mouse model for amyotrophic lateral sclerosis. Neuroscience 116:685–694CrossRefPubMedGoogle Scholar
  14. Cozzolino M, Ferri A, Carri MT (2008) Amyotrophic lateral sclerosis: from current developments in the laboratory to clinical implications. Antioxid Redox Signal 10:405–443CrossRefPubMedGoogle Scholar
  15. Dal Canto MC, Gurney ME (1994) Development of central nervous system pathology in a murine transgenic model of human amyotrophic lateral sclerosis. Am J Pathol 145:1271–1279PubMedGoogle Scholar
  16. Dedkova EN, Ji X, Lipsius SL, Blatter LA (2004) Mitochondrial calcium uptake stimulates nitric oxide production in mitochondria of bovine vascular endothelial cells. Am J Physiol Cell Physiol 286:C406–C415CrossRefPubMedGoogle Scholar
  17. Deng H-X, Hentati A, Tainer JA, Iqbal Z, Cayabyab A, Hung W-Y, Getzoff ED, Hu P, Herzfeldt B, Roos RP, Warner C, Deng G, Soriano E, Smyth C, Parge HE, Ahmed A, Roses AD, Hallewell RA, Pericak-Vance MA, Siddique T (1993) Amyotrophic lateral sclerosis and structural defects in Cu, Zn superoxide dismutase. Science 261:1047–1051CrossRefPubMedGoogle Scholar
  18. Estévez AG, Crow JP, Sampson JB, Reiter C, Zhuang Y, Richardson GJ, Tarpey MM, Barbeito L, Beckman JS (1999) Induction of nitric oxide-dependent apoptosis in motor neurons by zinc-deficient superoxide dismutase. Science 286:2498–2500CrossRefPubMedGoogle Scholar
  19. Facchinetti F, Sasaki M, Cutting FB, Zhai P, MacDonald JE, Reif D, Beal MF, Huang PL, Dawson TM, Gurney ME, Dawson VL (1999) Lack of involvement of neuronal nitric oxide synthase in the pathogenesis of a transgenic mouse model of familial amyotrophic lateral sclerosis. Neuroscience 90:1483–1492CrossRefPubMedGoogle Scholar
  20. Fischer LR, Culver DG, Tennant P, Davis AA, Wang M, Castellano-Sanchez A, Khan J, Polak MA, Glass JD (2004) Amyotrophic lateral sclerosis is a distal axonopathy: evidence in mice and man. Exp Neurol 18:232–240CrossRefGoogle Scholar
  21. Garvey EP, Oplinger JA, Furfine ES, Kiff RJ, Laszlo F, Whittle BJR, Knowles RG (1997) 1400 W is a slow, tight binding, and highly selective inhibitor of inducible nitric-oxide synthase in vitro and in vivo. J Biol Chem 272:4959–4963CrossRefPubMedGoogle Scholar
  22. Giulivi C (2003) Characterization and function of mitochondrial nitric oxide synthase. Free Radic Biol Med 34:397–408CrossRefPubMedGoogle Scholar
  23. Golden WC, Brambrink AM, Traystman RJ, Shaffner DH, Martin LJ (2003) Nitration of the striatal NA, K-ATPase α3 isoform occurs in normal brain development but is not increased during hypoxia–ischemia in newborn piglets. Neurochem Res 28:1883–1889CrossRefPubMedGoogle Scholar
  24. Gurney ME, Pu H, Chiu AY, Dal Canto MC, Polchow CY, Alexander DD, Caliendo J, Hentati A, Kwon YW, Deng HX, Chen W, Zhai P, Sufit RL, Siddique T (1994) Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. Science 264:1772–1775CrossRefPubMedGoogle Scholar
  25. Heneka MT, Feinstein DL (2001) Expression and function of inducible nitric oxide synthase in neurons. J Neuroimmunol 114:8–18CrossRefPubMedGoogle Scholar
  26. Higgins CM, Jung C, Ding H, Xu Z (2002) Mutant Cu, Zn superoxide dismutase that causes motoneuron degeneration is present in mitochondria in the CNS. J Neurosci 22(6):RC215Google Scholar
  27. Johnson EM Jr, Taniuchi M, DiStefano PS (1988) Expression and possible function of nerve growth factor receptors on Schwann cells. Trends Neurosci 11:299–304CrossRefPubMedGoogle Scholar
  28. Kabashi E, Valdmains PN, Dion P, Spiegelman D, McConkey BJ, Vande Velde C, Bouchard J-P, Lacomblez L, Pochigaeva K, Salachas F, Pradat P-F, Camu W, Meininger V, Dupre N, Rouleau GA (2008) TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nat Genet 40:572–574CrossRefPubMedGoogle Scholar
  29. Kerkhoff H, Jennekens FG, Troost D, Veldman H (1991) Nerve growth factor receptor immunostaining in the spinal cord and peripheral nerves in amyotrophic lateral sclerosis. Acta Neuropathol 81:649–656CrossRefPubMedGoogle Scholar
  30. Kiaei M, Kipiani K, Chen J, Calingasan NY, Beal MF (2005) Peroxisome proliferator-activated receptor-gamma agonist extends survival in transgenic mouse model of amyotrophic lateral sclerosis. Exp Neurol 191:331–336CrossRefPubMedGoogle Scholar
  31. Kong J, Xu Z (1998) Massive mitochondrial degeneration in motor neurons triggers the onset of amyotrophic lateral sclerosis in mice expressing a mutant SOD1. J Neurosci 18:3241–3250PubMedGoogle Scholar
  32. Kust BM, Brouwer N, Mantingh IJ, Boddeke HWGM, Copray JCVM (2003) Reduced p75NTR expression delays disease onset only in female mice of a transgenic model of familial amyotrophic lateral sclerosis. ALS 4:100–105Google Scholar
  33. Lacza Z, Snipes JA, Zhang J, Horváth EM, Figueroa JP, Szabó C, Busija DW (2003) Mitochondrial nitric oxide synthase is not eNOS, nNOS or iNOS. Free Radic Biol Med 35:1217–1228CrossRefPubMedGoogle Scholar
  34. Liochev SI, Fridovich I (2003) Mutant Cu, Zn superoxide dismutases and familial amyotrophic lateral sclerosis: evaluation of oxidative hypotheses. Free Radic Biol Med 34:1383–1389CrossRefPubMedGoogle Scholar
  35. Lowenstein CJ, Padalko E (2004) iNOS (NOS2) at a glance. J Cell Sci 117:2865–2867CrossRefPubMedGoogle Scholar
  36. Lyons CR, Orloff GJ, Cunningham JM (1992) Molecular cloning and functional expression of an inducible nitric oxide synthase from a murine macrophage cell line. J Biol Chem 267:6370–6374PubMedGoogle Scholar
  37. MacMicking J, Xie Q-w, Nathan C (1997) Nitric oxide and macrophage function. Annu Rev Immunol 15:323–350CrossRefPubMedGoogle Scholar
  38. Martin LJ (2006) Mitochondriopathy in Parkinson disease and amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 65:1103–1110CrossRefPubMedGoogle Scholar
  39. Martin LJ (2009) The mitochondrial permeability transition pore: a molecular target for ALS therapy. Biochim Biophys Acta (in press)Google Scholar
  40. Martin LJ, Liu Z (2002) Injury-induced spinal motor neuron apoptosis is preceded by DNA single-strand breaks and is p53- and bax-dependent. J Neurobiol 5:181–197CrossRefGoogle Scholar
  41. Martin LJ, Liu Z (2004) Opportunities for neuroprotection in ALS using cell death mechanism rationales. Drug Discov Today Dis Models 1:135–143CrossRefGoogle Scholar
  42. Martin LJ, Kaiser A, Price AC (1999) Motor neuron degeneration after sciatic nerve avulsion in adult rat evolves with oxidative stress and is apoptosis. J Neurobiol 40:185–201CrossRefPubMedGoogle Scholar
  43. Martin LJ, Price AC, McClendon KB, Al-Abdulla NA, Subramaniam JR, Wong PC, Liu Z (2003) Early events of target deprivation/axotomy-induced neuronal apoptosis in vivo: oxidative stress, DNA damage, p53 phosphorylation and subcellular redistribution of death proteins. J Neurochem 85:234–247PubMedCrossRefGoogle Scholar
  44. Martin LJ, Chen K, Liu Z (2005) Adult motor neuron apoptosis is mediated by nitric oxide and Fas death receptor linked by DNA damage and p53 activation. J Neurosci 25:6449–6459CrossRefPubMedGoogle Scholar
  45. Martin LJ, Liu Z, Chen K, Price AC, Pan Y, Swaby JA, Golden WC (2007) Motor neuron degeneration in amyotrophic lateral sclerosis mutant superoxide dismutase-1 transgenic mice: mechanisms of mitochondriopathy and cell death. J Comp Neurol 500:20–46CrossRefPubMedGoogle Scholar
  46. Martin LJ, Gertz B, Pan Y, Price AC, Molkentin JD, Chang Q (2009) The mitochondrial permeability transition pore in motor neurons: involvement in the pathobiology of ALS mice. Exp Neurol 218(2):333–346CrossRefPubMedGoogle Scholar
  47. Massa R, Marlier LN, Martorana A, Cicconi S, Pierucci D, Giacomini P, De Pinto V, Castellani L (2000) Intracellular localization and isoform expression of the voltage-dependent anion channel (VDAC) in normal and dystrophic skeletal muscle. J Muscle Res Cell Motil 21:433–442CrossRefPubMedGoogle Scholar
  48. McCord JM, Fridovich I (1969) Superoxide dismutase, an enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244:6049–6055PubMedGoogle Scholar
  49. Mungrue IN, Bredt DS, Stewart DJ, Husain M (2003) From molecules to mammals: what’s NOS got to do with it? Acta Physiol Scand 179:123–135CrossRefPubMedGoogle Scholar
  50. Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87:315–424CrossRefPubMedGoogle Scholar
  51. Pautz A, Linker K, Altenhofer S, Heil S, Schmidt N, Art J, Knauer S, Stauber R, Sadri N, Pont A, Schneider RJ, Kleinert H (2009) Similar regulation of human inducible nitric-oxide synthase expression by different isoforms of the RNA-binding protein AUF. J Biol Chem 284:2755–2766CrossRefPubMedGoogle Scholar
  52. Perkins GA, Sosinsky GE, Ghassemzadeh S, Perez A, Jones Y, Ellisman MH (2008) Electron tomographic analysis of cytoskeletal cross-bridges in the paranodal region of the node of Ranvier in peripheral nerves. J Struct Biol 161:469–480CrossRefPubMedGoogle Scholar
  53. Phul R, Shaw PJ, Ince PG, Smith ME (2000) Expression of nitric oxide synthase isoforms in spinal cord in amyotrophic lateral sclerosis. ALS Other Motor Neuron Disord 1:259–267CrossRefGoogle Scholar
  54. Pun S, Santos AF, Saxena S, Xu L, Caroni P (2006) Selective vulnerability and pruning of phasic motoneuron axons in motoneuron disease alleviated by CNTF. Nat Neurosci 3:408–419CrossRefGoogle Scholar
  55. Rakhit R, Crow JP, Lepock JR, Kondejewski LH, Cashman NR, Chakrabartty A (2004) Monomeric Cu, Zn-superoxide dismutase is a common misfolding intermediate in the oxidation models of sporadic and familial amyotrophic sclerosis. J Biol Chem 279:15499–15504CrossRefPubMedGoogle Scholar
  56. Raoul C, Estévez AG, Nishimune H, Cleveland DW, de Lapeyrière O, Henderson CE, Haase G, Pettmann B (2002) Motoneuron death triggered by a specific pathway downstream of Fas: Potentiation by ALS-linked SOD1 mutations. Neuron 35:1067–1083CrossRefPubMedGoogle Scholar
  57. Ratovitski E, Alam MR, Quick RA, McMillan A, Bao C, Kozlovsky C, Hand TA, Johnson RC, Mains RE, Eipper BA, Lowenstein CJ (1999) Kalirin inhibition of inducible nitric-oxide synthase. J Biol Chem 274:993–999CrossRefPubMedGoogle Scholar
  58. Rosen DR, Siddique T, Patterson D, Figiewicz DA, Sapp P, Hentati A, Donalsson D, Goto J, O’Regan JP, Deng H-X, Rahmani Z, Krizus A, McKenna-Yasek D, Cayabyab A, Gaston AM, Berger R, Tanzi RE, Halperin JJ, Harzfeldt B, Van den Bergh R, Hung W-Y, Bird T, Deng G, Mulder DW, Smyth C, Laing NG, Soriano E, Pericak-Vance MA, Haines J, Rouleau GA, Gusella JS, Horvitz HR, Brown RH Jr (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362:59–62CrossRefPubMedGoogle Scholar
  59. Rowland LP, Shneider NA (2001) Amyotrophic lateral sclerosis. N Engl J Med 344:1688–1700CrossRefPubMedGoogle Scholar
  60. Sasaki S, Shibata N, Komori T, Iwata M (2000) iNOS and nitrotyrosine immunoreactivity in amyotrophic lateral sclerosis. Neurosci Lett 291:44–48CrossRefPubMedGoogle Scholar
  61. Sasaki S, Shibata N, Iwata M (2001a) Neuronal nitric oxide synthase immunoreactivity in the spinal cord in amyotrophic lateral sclerosis. Acta Neuropathol 101:351–357PubMedGoogle Scholar
  62. Sasaki S, Warita H, Abe K, Iwata M (2001b) Inducible nitric oxide synthase (iNOS) and nitrotyrosine immunoreactivity in the spinal cords of transgenic mice with G93A mutant SOD1 gene. J Neuropath Exp Neurol 60:839–846PubMedGoogle Scholar
  63. Sasaki S, Warita H, Abe K, Iwata M (2002) Neuronal nitric oxide synthase (nNOS) immunoreactivity in the spinal cord of transgenic mice with G93A mutant SOD1 gene. Acta Neuropathol 103:421–427CrossRefPubMedGoogle Scholar
  64. Sasaki S, Warita H, Murakami T, Abe K, Iwata M (2004) Ultrastructural study of mitochondria in the spinal cord of transgenic mice with a G93A mutant SOD1 gene. Acta Neuropathol 107:461–474CrossRefPubMedGoogle Scholar
  65. Schaefer AM, Sanes JR, Lichtman JW (2005) A compensatory subpopulation of motor neurons in a mouse model of amyotrophic lateral sclerosis. J Comp Neurol 490:209–219CrossRefPubMedGoogle Scholar
  66. Schymick JC, Talbot K, Traynor GJ (2007) Genetics of amyotrophic lateral sclerosis. Hum Mol Genet 16:R233–R242CrossRefPubMedGoogle Scholar
  67. Siklos L, Engelhardt JI, Alexianu ME, Gurney ME, Siddique T, Appel SH (1998) Intracellular calcium parallels motoneuron degeneration in SOD-1 mutant mice. J Neuropathol Exp Neurol 57:571–587CrossRefPubMedGoogle Scholar
  68. Son M, Fathallah-Shaykh HM, Elliott JL (2001) Survival in a transgenic model of FALS is independent of iNOS expression. Ann Neurol 50:273CrossRefPubMedGoogle Scholar
  69. Southan GJ, Szabo C, Thiemermann C (1995) Isothioureas: potent inhibitors of nitric oxide synthases with variable isoform selectivity. Br J Pharmacol 114:510–516PubMedGoogle Scholar
  70. Turner BJ, Talbot K (2008) Transgenics, toxicity and therapeutics in rodent models of mutant SOD1-mediated familial ALS. Prog Neurobiol 85:94–134CrossRefPubMedGoogle Scholar
  71. Upton-Rice MN, Cudkowicz ME, Mathew RK, Reif D, Brown RH Jr (1999) Administration of nitric oxide synthase inhibitors does not alter disease course of amyotrophic lateral sclerosis SOD1 mutant transgenic mice. Ann Neurol 45:413–414CrossRefPubMedGoogle Scholar
  72. Wong PC, Pardo CA, Borchelt DR, Lee MK, Copeland NG, Jenkins NA, Sisodia SS, Cleveland DW, Price DL (1995) An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria. Neuron 14:1105–1116CrossRefPubMedGoogle Scholar
  73. Wu F, Wilson JX, Tyml K (2003) Ascorbate inhibits iNOS expression and preserves vasoconstrictor responsiveness in skeletal muscle of septic mice. Am J Physiol Regul Integr Comp Physiol 285:R50–R56PubMedGoogle Scholar
  74. Yim MB, Kang J-H, Yim H-S, Kwak H-S, Chock PB, Stadtman ER (1996) A gain-of-function of an amyotrophic lateral sclerosis-associated Cu, Zn-superoxide dismutase mutant: an enhancement of free radical formation due to a decrease in Km for hydrogen peroxide. Proc Natl Acad Sci USA 93:5709–5714CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Kevin Chen
    • 1
  • Frances J. Northington
    • 4
  • Lee J. Martin
    • 1
    • 2
    • 3
  1. 1.Division of Neuropathology, Department of PathologyJohns Hopkins University School of MedicineBaltimoreUSA
  2. 2.Pathobiology Graduate ProgramJohns Hopkins University School of MedicineBaltimoreUSA
  3. 3.Department of NeuroscienceJohns Hopkins University School of MedicineBaltimoreUSA
  4. 4.Department of PediatricsJohns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations