Advertisement

Brain Structure and Function

, Volume 213, Issue 6, pp 525–533 | Cite as

Greater than the sum of its parts: a review of studies combining structural connectivity and resting-state functional connectivity

Review

Abstract

It is commonly assumed that functional brain connectivity reflects structural brain connectivity. The exact relationship between structure and function, however, might not be straightforward. In this review we aim to examine how our understanding of the relationship between structure and function in the ‘resting’ brain has advanced over the last several years. We discuss eight articles that directly compare resting-state functional connectivity with structural connectivity and three clinical case studies of patients with limited white matter connections between the cerebral hemispheres. All studies examined show largely convergent results: the strength of resting-state functional connectivity is positively correlated with structural connectivity strength. However, functional connectivity is also observed between regions where there is little or no structural connectivity, which most likely indicates functional correlations mediated by indirect structural connections (i.e. via a third region). As the methodologies for measuring structural and functional connectivity continue to improve and their complementary strengths are applied in parallel, we can expect important advances in our diagnostic and prognostic capacities in diseases like Alzheimer’s, multiple sclerosis, and stroke.

Keywords

Resting-state functional connectivity Structural connectivity DTI fMRI 

Notes

Acknowledgments

We thank Lucina Uddin and Elena Rykhlevskaia for valuable discussion and comments on the paper.

References

  1. Andrews-Hanna J, Snyder A, Vincent J, Lustig C, Head D, Raichle M, Buckner R (2007) Disruption of large-scale brain systems in advanced aging. Neuron 56(5):924–935PubMedCrossRefGoogle Scholar
  2. Beckmann CF, DeLuca M, Devlin JT, Smith SM (2005) Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond B Biol Sci 360(1457):1001–1013PubMedCrossRefGoogle Scholar
  3. Birn R, Murphy K, Bandettini P (2008) The effect of respiration variations on independent component analysis results of resting state functional connectivity. Hum Brain Mapp 29(7):740–750PubMedCrossRefGoogle Scholar
  4. Biswal B (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. MRM 34:537–541Google Scholar
  5. Buckner RL, Snyder AZ, Shannon BJ, LaRossa G, Sachs R, Fotenos AF, Sheline YI, Klunk WE, Mathis CA, Morris JC, Mintun MA (2005) Molecular, structural, and functional characterization of Alzheimer’s disease: evidence for a relationship between default activity, amyloid, and memory. J Neurosci 25(34):7709–7717PubMedCrossRefGoogle Scholar
  6. Damoiseaux JS, Rombouts SA, Barkhof F, Scheltens P, Stam CJ, Smith SM, Beckmann CF (2006) Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci USA 103(37):13848–13853PubMedCrossRefGoogle Scholar
  7. Damoiseaux J, Smith S, Witter M, Arigita E, Barkhof F, Scheltens P, Stam C, Zarei M, Rombouts S (2009) White matter tract integrity in aging and Alzheimer’s disease. Hum Brain Mapp 30(4):1051–1059Google Scholar
  8. Desikan R, Ségonne F, Fischl B, Quinn B, Dickerson B, Blacker D, Buckner R, Dale A, Maguire R, Hyman B, Albert M, Killiany R (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31(3):968–980PubMedCrossRefGoogle Scholar
  9. Filippini N, MacIntosh BJ, Hough MG, Goodwin GM, Frisoni GB, Smith SM, Matthews PM, Beckmann CF, Mackay CE (2009) Distinct patterns of brain activity in young carriers of the APOE-epsilon4 allele. Proc Natl Acad Sci USA 106(17):7209–7214PubMedCrossRefGoogle Scholar
  10. Good CD, Johnsrude IS, Ashburner J, Henson RN, Friston KJ, Frackowiak RS (2001) A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage 14(1 Pt 1):21–36PubMedCrossRefGoogle Scholar
  11. Greicius MD, Krasnow B, Reiss AL, Menon V (2003) Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci USA 100(1):253–258PubMedCrossRefGoogle Scholar
  12. Greicius MD, Srivastava G, Reiss AL, Menon V (2004) Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci USA 101(13):4637–4642PubMedCrossRefGoogle Scholar
  13. Greicius M, Supekar K, Menon V, Dougherty R (2009) Resting-state functional connectivity reflects structural connectivity in the default mode network. Cereb Cortex 19(1):72–78. Epub 2008 Apr 9Google Scholar
  14. Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey C, Wedeen V, Sporns O (2008) Mapping the structural core of human cerebral cortex. PLoS Biol 6(7):e159PubMedCrossRefGoogle Scholar
  15. He Y, Chen ZJ, Evans AC (2007) Small-World anatomical networks in the human brain revealed by cortical thickness from MRI. Cereb Cortex 17(10):2407–2419. Epub 2007 Jan 4Google Scholar
  16. Honey C, Sporns O, Cammoun L, Gigandet X, Thiran J, Meuli R, Hagmann P (2009) Predicting human resting-state functional connectivity from structural connectivity. Proc Natl Acad Sci USA 106(6):2035–2040PubMedCrossRefGoogle Scholar
  17. Johnston J, Vaishnavi S, Smyth M, Zhang D, He B, Zempel J, Shimony J, Snyder A, Raichle M (2008) Loss of resting interhemispheric functional connectivity after complete section of the corpus callosum. J Neurosci 28(25):6453–6458PubMedCrossRefGoogle Scholar
  18. Koch M, Norris D, Hund-Georgiadis M (2002) An investigation of functional and anatomical connectivity using magnetic resonance imaging. Neuroimage 16(1):241–250PubMedCrossRefGoogle Scholar
  19. Le Bihan D (2003) Looking into the functional architecture of the brain with diffusion MRI. Nat Rev Neurosci 4(6):469–480PubMedCrossRefGoogle Scholar
  20. Lowe M, Beall E, Sakaie K, Koenig K, Stone L, Marrie R, Phillips M (2008) Resting state sensorimotor functional connectivity in multiple sclerosis inversely correlates with transcallosal motor pathway transverse diffusivity. Hum Brain Mapp 29(7):818–827PubMedCrossRefGoogle Scholar
  21. Mechelli A, Friston K, Frackowiak R, Price C (2005) Structural covariance in the human cortex. J Neurosci 25(36):8303–8310PubMedCrossRefGoogle Scholar
  22. Morcom A, Fletcher P (2007) Does the brain have a baseline? Why we should be resisting a rest. Neuroimage 37(4):1073–1082CrossRefGoogle Scholar
  23. Moseley M, Cohen Y, Kucharczyk J, Mintorovitch J, Asgari H, Wendland M, Tsuruda J, Norman D (1990) Diffusion-weighted MR imaging of anisotropic water diffusion in cat central nervous system. Radiology 176(2):439–445PubMedGoogle Scholar
  24. Murphy K, Birn R, Handwerker D, Jones T, Bandettini P (2009) The impact of global signal regression on resting state correlations: are anti-correlated networks introduced? Neuroimage 44(3):893–905PubMedCrossRefGoogle Scholar
  25. Quigley M, Cordes D, Turski P, Moritz C, Haughton V, Seth R, Meyerand M (2003) Role of the corpus callosum in functional connectivity. AJNR Am J Neuroradiol 24(2):208–212PubMedGoogle Scholar
  26. Raichle M, Snyder A (2007) A default mode of brain function: a brief history of an evolving idea. Neuroimage 37(4):1083–1090 (discussion 1097–1099)PubMedCrossRefGoogle Scholar
  27. Raichle M, MacLeod A, Snyder A, Powers W, Gusnard D, Shulman G (2001) A default mode of brain function. Proc Natl Acad Sci USA 98(2):676–682PubMedCrossRefGoogle Scholar
  28. Seeley WW, Crawford RK, Zhou J, Miller BL, Greicius MD (2009) Neurodegenerative diseases target large-scale human brain networks. Neuron 62(1):42–52PubMedCrossRefGoogle Scholar
  29. Shehzad Z, Kelly AM, Reiss PT, Gee DG, Gotimer K, Uddin LQ, Lee SH, Margulies DS, Roy AK, Biswal BB, Petkova E, Castellanos FX, Milham MP (2009) The resting brain: unconstrained yet reliable. Cereb Cortex. Feb 16 [Epub ahead of print] Google Scholar
  30. Skudlarski P, Jagannathan K, Calhoun V, Hampson M, Skudlarska B, Pearlson G (2008) Measuring brain connectivity: diffusion tensor imaging validates resting state temporal correlations. Neuroimage 43(3):554–561PubMedCrossRefGoogle Scholar
  31. Teipel S, Pogarell O, Meindl T, Dietrich O, Sydykova D, Hunklinger U, Georgii B, Mulert C, Reiser M, Möller H, Hampel H (2009) Regional networks underlying interhemispheric connectivity: an EEG and DTI study in healthy ageing and amnestic mild cognitive impairment. Hum Brain Mapp 30(7):2098–2119Google Scholar
  32. Uddin L, Mooshagian E, Zaidel E, Scheres A, Margulies D, Kelly A, Shehzad Z, Adelstein J, Castellanos F, Biswal B, Milham M (2008) Residual functional connectivity in the split-brain revealed with resting-state functional MRI. Neuroreport 19(7):703–709PubMedCrossRefGoogle Scholar
  33. van den Heuvel M, Mandl R, Hulshoff Pol H (2008a) Normalized cut group clustering of resting-state FMRI data. PLoS ONE 3(4):e2001PubMedCrossRefGoogle Scholar
  34. van den Heuvel M, Mandl R, Luigjes J, Hulshoff Pol H (2008b) Microstructural organization of the cingulum tract and the level of default mode functional connectivity. J Neurosci 28(43):10844–10851PubMedCrossRefGoogle Scholar
  35. Zhang Y, Schuff N, Jahng G, Bayne W, Mori S, Schad L, Mueller S, Du A, Kramer J, Yaffe K, Chui H, Jagust W, Miller B, Weiner M (2007) Diffusion tensor imaging of cingulum fibers in mild cognitive impairment and Alzheimer disease. Neurology 68(1):13–19PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Stanford University School of MedicineStanfordUSA

Personalised recommendations