Brain Structure and Function

, Volume 212, Issue 6, pp 481–495 | Cite as

The human inferior parietal lobule in stereotaxic space

  • Svenja CaspersEmail author
  • Simon B. Eickhoff
  • Stefan Geyer
  • Filip Scheperjans
  • Hartmut Mohlberg
  • Karl Zilles
  • Katrin Amunts
Original Article


Recently, a new cytoarchitectonic map of the human inferior parietal lobule (IPL) has been proposed, with the IPL consisting of seven cytoarchitectonically distinct areas (Caspers et al. in Neuroimage 33(2):430–448, 2006). The aim of the present study was to investigate the different aspects of variability of these IPL areas. As one aspect of variability, we analysed the topographical relationship between the localisation of the borders of the areas and macroanatomical landmarks. Although five areas occupy the surface supramarginal gyrus and two the angular gyrus, their borders cannot be reliably detected by means of macroanatomy. To account for variability in size and extent of the areas in stereotaxic space, cytoarchitectonic probabilistic maps have been calculated for each IPL area. Hemisphere- and gender-related differences have been investigated on basis of volumes of cytoarchitectonic areas. For one of them, area PFcm, a significant gender difference in volume was found with males having larger volumes than females; this difference exceeds that of gender differences in total brain volume. The different aspects of variability and volumetric asymmetry may underlie some of the well-known functional asymmetries in the IPL, observed, for example during fMRI experiments analysing spatial attention or motor attention, and planning. The cytoarchitectonic probabilistic maps of the seven IPL areas provide a robust anatomical reference and open new perspectives for further structure–function investigations of the human IPL.


Cytoarchitecture Human brain mapping Parietal cortex Volumetry Lateralization Gender Intersubject variability 



This work was supported by a grant (to K. Z.) funded by the DFG (grant KFO 112), a Human Brain Project/Neuroinformatics Research grant funded by the National Institute of Biomedical Imaging and Bioengeneering, the National Institute of Neurological Disorders and Stroke, and the National Institute of Mental Health (K. A. and K. Z.), and by a grant (to K. Z.) of the European Commission (Grant QLG3-CT-2002-00746). Further support by the BMBF (BMBF 01GO0104), Brain Imaging Center West (BMBF 01GO0204) is gratefully acknowledged.


  1. Abo M, Senoo A, Watanabe S, Miyano S, Doseki K, Sasaki N et al (2004) Language-related brain function during word repetition in post-stroke aphasics. Neuroreport 15(12):1891–1894. doi: 10.1097/00001756-200408260-00011 PubMedCrossRefGoogle Scholar
  2. Amici S, Gorno-Tempini ML, Ogar JM, Dronkers NF, Miller BL (2006) An overview on primary progressive aphasia and its variants. Behav Neurol 17(2):77–87PubMedGoogle Scholar
  3. Amunts K, Schleicher A, Bürgel U, Mohlberg H, Uylings HBM, Zilles K (1999) Broca’s region revisited: cytoarchitecture and intersubject variability. J Comp Neurol 412:319–341. doi:10.1002/(SICI)1096-9861(19990920)412:2<319::AID-CNE10>3.0.CO;2-7PubMedCrossRefGoogle Scholar
  4. Amunts K, Malikovic A, Mohlberg H, Schormann T, Zilles K (2000) Brodmann’s areas 17 and 18 brought into stereotaxic space—where and how variable? Neuroimage 11:66–84. doi: 10.1006/nimg.1999.0516 PubMedCrossRefGoogle Scholar
  5. Amunts K, Kedo O, Kindler M, Pieperhoff P, Mohlberg H, Shah NJ et al (2005) Cytoarchitectonic mapping of the human amygdala, hippocampal region and the entorhinal cortex: intersubject variability and probability maps. Anat Embryol (Berl) 210:343–352. doi: 10.1007/s00429-005-0025-5 CrossRefGoogle Scholar
  6. Amunts K, Armstrong E, Malikovic A, Hömke L, Mohlberg H, Schleicher A et al (2007a) Gender-specific left-right asymmetries in human visual cortex. J Neurosci 27(6):1356–1364. doi: 10.1523/JNEUROSCI.4753-06.2007 PubMedCrossRefGoogle Scholar
  7. Amunts K, Schleicher A, Zilles K (2007b) Cytoarchitecture of the cerebral cortex—more than localization. Neuroimage 37(4):1061–1065. doi: 10.1016/j.neuroimage.2007.02.037 PubMedCrossRefGoogle Scholar
  8. Astafiev SV, Shulman GL, Stanley CM, Snyder AZ, Van Essen DC, Corbetta M (2003) Functional organization of human intraparietal and frontal cortex for attending, looking and pointing. J Neurosci 23(11):4689–4699PubMedGoogle Scholar
  9. Batsch EG (1956) Die myeloarchitektonische Untergliederung des Isocortex parietalis beim Menschen. J Hirnforsch 2:225–258Google Scholar
  10. Behrens TE, Johansen-Berg H (2005) Relating connectional architecture to grey matter function using diffusion imaging. Philos Trans R Soc Lond B Biol Sci 360:903–911. doi: 10.1098/rstb.2005.1640 PubMedCrossRefGoogle Scholar
  11. Bell EC, Wilson MC, Wilman AH, Dave S, Silverstone PH (2006) Males and females differ in brain activation during cognitive tasks. Neuroimage 30(2):529–538. doi: 10.1016/j.neuroimage.2005.09.049 PubMedCrossRefGoogle Scholar
  12. Blank SC, Scott SK, Murphy K, Warburton E, Wise RJ (2002) Speech production: Wernicke, Broca and beyond. Brain 125:1829–1838. doi: 10.1093/brain/awf191 PubMedCrossRefGoogle Scholar
  13. Boghi A, Rasetti R, Avidano F, Manzone C, Orsi L, D’Agata F et al (2006) The effect of gender on planning: an fMRI study using the Tower of London task. Neuroimage 33(3):999–1010. doi: 10.1016/j.neuroimage.2006.07.022 PubMedCrossRefGoogle Scholar
  14. Brodmann K (1909) Vergleichende Lokalisationslehre der Großhirnrinde. Barth, LeipzigGoogle Scholar
  15. Caspers S, Geyer S, Schleicher A, Mohlberg H, Amunts K, Zilles K (2006) The human inferior parietal lobule: cytoarchitectonic parcellation and interindividual variability. Neuroimage 33(2):430–448. doi: 10.1016/j.neuroimage.2006.06.054 PubMedCrossRefGoogle Scholar
  16. Choi HJ, Zilles K, Mohlberg H, Schleicher A, Fink GR, Armstrong E et al (2006) Cytoarchitectonic identification and probabilistic mapping of two distinct areas within the anterior ventral bank of the human intraparietal sulcus. J Comp Neurol 495(1):53–69. doi: 10.1002/cne.20849 PubMedCrossRefGoogle Scholar
  17. Chung SC, Sohn JH, Lee B, Tack GR, Yi JH, You JH et al (2007) A comparison of the mean signal change method and the voxel count method to evaluate the sensitivity of individual variability in visuospatial performance. Neurosci Lett 418(2):138–142. doi: 10.1016/j.neulet.2007.03.014 PubMedCrossRefGoogle Scholar
  18. Collins DL, Neelin P, Peters TM, Evans AC (1994) Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. J Comput Assist Tomogr 18:192–205. doi: 10.1097/00004728-199403000-00005 PubMedCrossRefGoogle Scholar
  19. Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Neurosci Rev 3:201–215. doi: 10.1038/nrn755 CrossRefGoogle Scholar
  20. Di Carlo A, Lamassa M, Baldereschi M, Pracucci G, Basile AM, Wolfe CD, et al., European BIOMED Study of Stroke Care Group (2003) Sex differences in the clinical presentation, resource use, and 3-month outcome of acute stroke in Europe: data from a multicenter multinational hospital-based registry. Stroke 34(5):1114–1119. doi: 10.1161/01.STR.0000068410.07397.D7 Google Scholar
  21. Eickhoff S, Stephan KE, Mohlberg H, Grefkes C, Fink GR, Amunts K et al (2005) A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage 25:1325–1335. doi: 10.1016/j.neuroimage.2004.12.034 PubMedCrossRefGoogle Scholar
  22. Eickhoff S, Amunts K, Mohlberg H, Zilles K (2006a) The human parietal operculum. II. Stereotaxic maps and correlation with functional imaging results. Cereb Cortex 16:268–279. doi: 10.1093/cercor/bhi106 PubMedCrossRefGoogle Scholar
  23. Eickhoff SB, Heim S, Zilles K, Amunts K (2006b) Testing anatomically specified hypotheses in functional imaging using cytoarchitectonic maps. Neuroimage 32:570–582. doi: 10.1016/j.neuroimage.2006.04.204 PubMedCrossRefGoogle Scholar
  24. Eickhoff S, Schleicher A, Zilles K, Amunts K (2006c) The human parietal operculum. I. Cytoarchitectonic mapping of subdivisions. Cereb Cortex 16:254–267. doi: 10.1093/cercor/bhi105 PubMedCrossRefGoogle Scholar
  25. Eidelberg D, Galaburda AM (1984) Inferior parietal lobule—divergent architectonic asymmetries in the human brain. Arch Neurol 41(8):843–852PubMedGoogle Scholar
  26. Evans AC, Marrett S, Neelin P, Collins L, Worsley K, Dai W et al (1992) Anatomical mapping of functional activation in stereotaxic coordinate space. Neuroimage 1:43–53PubMedGoogle Scholar
  27. Fink GR, Heide W (2004) Spatial neglect. Nervenarzt 75(4):389–408. doi: 10.1007/s00115-004-1698-3 PubMedCrossRefGoogle Scholar
  28. Fischl B, Rajendran N, Busa E, Augustinack J, Hinds O, Yeo BT et al. (2007) Cortical folding patterns and predicting cytoarchitecture. Cereb Cortex (in press). doi:10.1093/cercor/bhm225Google Scholar
  29. Friston KJ, Harrison L, Penny W (2003) Dynamic causal modelling. Neuroimage 19(4):1273–1304. doi: 10.1016/S1053-8119(03)00202-7 PubMedCrossRefGoogle Scholar
  30. Galaburda AM, Geschwind N (1980) The human language areas and cerebral asymmetries. Rev Med Suisse Romande 100(2):119–128PubMedGoogle Scholar
  31. Gerhardt E (1940) Die Cytoarchitektonik des Isocortex parietalis beim Menschen. J Psychol Neurol 49:367–419Google Scholar
  32. Geyer S (2004) The microstructural border between the motor and the cognitive domain in the human cerebral cortex. Advances in anatomy embryology and cell biology, vol 174. Springer, BerlinGoogle Scholar
  33. Geyer S, Ledberg A, Schleicher A, Kinomura S, Schormann T, Bürgel U et al (1996) Two different areas within the primary motor cortex of man. Nature 382:805–807. doi: 10.1038/382805a0 PubMedCrossRefGoogle Scholar
  34. Geyer S, Schormann T, Mohlberg H, Zilles K (2000) Areas 3a, 3b, and 1 of human primary somatosensory cortex. Part 2: spatial normalization to standard anatomical space. Neuroimage 11:684–696. doi: 10.1006/nimg.2000.0548 PubMedCrossRefGoogle Scholar
  35. Godefroy O, Dubois C, Debachy B, Leclerc M, Kreisler A, Lille Stroke Program (2002) Vascular aphasias: main characteristics of patients hospitalized in acute stroke units. Stroke 33(3):702–705. doi: 10.1161/hs0302.103653 PubMedCrossRefGoogle Scholar
  36. Gorno-Tempini ML, Dronkers NF, Rankin KP, Ogar JM, Phengrasamy L, Rosen HJ et al (2004) Cognition and anatomy in three variants of primary progressive aphasia. Ann Neurol 55(3):335–346. doi: 10.1002/ana.10825 PubMedCrossRefGoogle Scholar
  37. Grefkes C, Geyer S, Schormann T, Roland P, Zilles K (2001) Human somatosensory area 2: oberserver-independent cytoarchitectonic mapping, interindividual variability, and population map. Neuroimage 14:617–631. doi: 10.1006/nimg.2001.0858 PubMedCrossRefGoogle Scholar
  38. Halligan PW, Fink GR, Marshall JC, Vallar G (2003) Spatial cognition: evidence from visual neglect. Trends Cogn Sci 7(3):125–133. doi: 10.1016/S1364-6613(03)00032-9 PubMedCrossRefGoogle Scholar
  39. Hesse MD, Thiel CM, Stephan KE, Fink GR (2006) The left parietal cortex and motor intention: an event-related functional magnetic resonance imaging study. Neurosci 140:1209–1221. doi: 10.1016/j.neuroscience.2006.03.030 CrossRefGoogle Scholar
  40. Hömke L (2006) A multirigid method for anisotropic PDE’s in elastic image registration. Numer Linear Algebra Appl 13(2–3):215–229. doi: 10.1002/nla.477 CrossRefGoogle Scholar
  41. Holmes CJ, Hoge R, Collins L, Woods R, Toga AW, Evans AC (1998) Enhancement of MR images using registration for signal averaging. J Comput Assist Tomogr 22:324–333. doi: 10.1097/00004728-199803000-00032 PubMedCrossRefGoogle Scholar
  42. Jodzio K, Gasecki D, Drumm DA, Lass P, Nyka W (2003) Neuroanatomical correlates of the post-stroke aphasias studied with cerebral blood flow SPECT scanning. Med Sci Monit 9(3):32–41Google Scholar
  43. Kerkhoff G (2001) Spatial hemineglect in humans. Prog Neurobiol 63(1):1–27. doi: 10.1016/S0301-0082(00)00028-9 PubMedCrossRefGoogle Scholar
  44. Kertesz A, Benke T (1989) Sex equality in intrahemispheric language organization. Brain Lang 37(3):401–408. doi: 10.1016/0093-934X(89)90027-8 PubMedCrossRefGoogle Scholar
  45. Kimura D (1983) Sex differences in cerebral organization for speech and praxic function. Can J Psychol 37(1):19–35. doi: 10.1037/h0080696 PubMedGoogle Scholar
  46. Lang CJ, Moser F (2003) Localization of cerebral lesions in aphasia—a computer aided comparison between men and women. Arch Women Ment Health 6(2):139–145. doi: 10.1007/s00737-003-0166-6 CrossRefGoogle Scholar
  47. Lendrem W, Lincoln NB (1985) Spontaneous recovery of language in patients with aphasia between 4 and 34 weeks after stroke. J Neurol Neurosurg Psychiatry 48(8):743–748PubMedGoogle Scholar
  48. Malikovic A, Amunts K, Schleicher A, Mohlberg H, Eickhoff SB, Wilms M et al (2007) Cytoarchitectonic analysis of the human extrastriate cortex in the region V5/MT+: a probabilistic, stereotaxic map of area hOc5. Cereb Cortex 17(3):562–574. doi: 10.1093/cercor/bhj181 PubMedCrossRefGoogle Scholar
  49. Marshall JC, Fink GR (2001) Spatial cognition: where we were and where we are. Neuroimage 14:2–7. doi: 10.1006/nimg.2001.0834 CrossRefGoogle Scholar
  50. Mesulam MM (2001) Primary progressive aphasia. Ann Neurol 49(4):425–432. doi: 10.1002/ana.91 PubMedCrossRefGoogle Scholar
  51. Miceli G, Caltagirone C, Gainotti G, Masullo C, Silveri MC, Villa G (1981) Influence of age, sex, literacy and pathologic lesion on incidence, severity and type of aphasia. Acta Neurol Scand 64(5):370–382PubMedCrossRefGoogle Scholar
  52. Morosan P, Rademacher J, Schleicher A, Amunts K, Schormann T, Zilles K (2001) Human primary auditory cortex: cytoarchitectonic subdivisions and mapping into a spatial reference system. Neuroimage 13:684–701. doi: 10.1006/nimg.2000.0715 PubMedCrossRefGoogle Scholar
  53. Ojemann GA (1979) Individual variability in cortical localization of language. J Neurosurg 50(2):164–169PubMedCrossRefGoogle Scholar
  54. Ono M, Kubik S, Abernathey CD (1990) Atlas of the cerebral sulci. Thieme, StuttgartGoogle Scholar
  55. Pedersen PM, Vinter K, Olsen TS (2004) Aphasia after stroke: type, severity and prognosis. The Copenhagen aphasia study. Cerebrovasc Dis 17(1):35–43. doi: 10.1159/000073896 PubMedCrossRefGoogle Scholar
  56. Rogalski E, Rademacher A, Weintraub S (2007) Primary progressive aphasia: relationship between gender and severity of language impairment. Cogn Behav Neurol 20(1):38–43. doi: 10.1097/WNN.0b013e31802e3bae PubMedCrossRefGoogle Scholar
  57. Rottschy C, Eickhoff SB, Schleicher A, Mohlberg H, Kújovic M, Zilles K et al (2007) The ventral visual cortex in humans: cytoarchitectonic mapping of two extrastriate areas. Hum Brain Mapp 28(10):1045–1059. doi: 10.1002/hbm.20348 PubMedCrossRefGoogle Scholar
  58. Rushworth M, Ellison A, Walsh V (2001a) Complementary localization and lateralization of orienting and motor attention. Nat Neurosci 4(6):656–661. doi: 10.1038/88492 PubMedCrossRefGoogle Scholar
  59. Rushworth M, Krams M, Passingham RE (2001b) The attentional role of the left parietal cortex: the distinct lateralization and localization of motor attention in the human brain. J Cogn Neurosci 13(5):698–710. doi: 10.1162/089892901750363244 PubMedCrossRefGoogle Scholar
  60. Sarkissov SA, Filimonoff IN, Kononowa EP, Preobraschenskaja IS, Kukuew LA (1955) Atlas of the cytoarchitectonics of the human cerebral cortex (Russian). Medgiz, MoscowGoogle Scholar
  61. Scheperjans F, Eickhoff SB, Hömke L, Mohlberg H, Hermann K, Amunts K, et al. (2008) Probabilistic maps, morphometry, and variability of cytoarchitectonic areas in the human superior parietal cortex. Cereb Cortex (in press). doi:10.1093/cercor/bhm241Google Scholar
  62. Schleicher A, Palomero-Gallagher N, Morosan P, Eickhoff SB, Kowalski T, de Vos K et al (2005) Quantitative architectural analysis: a new approach to cortical mapping. Anat Embryol (Berl) 210(5):373–386. doi: 10.1007/s00429-005-0028-2 CrossRefGoogle Scholar
  63. Smith BD, Meyers M, Kline R, Bozman A (1987) Hemispheric asymmetry and emotion: lateralized parietal processing of affect and cognition. Biol Psychol 25(3):247–260. doi: 10.1016/0301-0511(87)90050-0 PubMedCrossRefGoogle Scholar
  64. Sugiura M, Friston KJ, Wilmes K, Shah NJ, Zilles K, Fink GR (2007) Analysis of intersubject variability in activation: an application to the incidental episodic retrieval during recognition test. Hum Brain Mapp 28(1):49–58. doi: 10.1002/hbm.20256 PubMedCrossRefGoogle Scholar
  65. Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. Thieme, StuttgartGoogle Scholar
  66. Toga AW, Thompson PM, Mori S, Amunts K, Zilles K (2006) Towards multimodal atlases of the human brain. Nat Rev Neurosci 7:952–966. doi: 10.1038/nrn2012 PubMedCrossRefGoogle Scholar
  67. Tzourio-Mazoyer N, Josse G, Crivello F, Mazoyer B (2004) Interindividual variability in the hemispheric organization for speech. Neuroimage 21(1):422–435. doi: 10.1016/j.neuroimage.2003.08.032 PubMedCrossRefGoogle Scholar
  68. Vallar G (2001) Extrapersonal visual unilateral spatial neglect and its neuroanatomy. Neuroimage 14:52–58. doi: 10.1006/nimg.2001.0822 CrossRefGoogle Scholar
  69. Vesia M, Monteon JA, Sergio LE, Crawford JD (2004) Hemispheric asymmetry in memory-guided pointing during single-pulse transcranial magnetic stimulation of human parietal cortex. J Neurophysiol 96(6):3016–3027. doi: 10.1152/jn.00411.2006 CrossRefGoogle Scholar
  70. Vogt C, Vogt O (1919) Allgemeinere Ergebnisse unserer Hirnforschung. J Psychol Neurol 25:279–461Google Scholar
  71. von Economo K, Koskinas G (1925) Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen. Springer, WienGoogle Scholar
  72. Witelson SF, Kigar DL (1992) Sylvian fissure morphology and asymmetry in men and women: bilateral differences in relation to handedness in men. J Comp Neurol 323(3):326–340. doi: 10.1002/cne.903230303 PubMedCrossRefGoogle Scholar
  73. Zilles K, Armstrong E, Schleicher A, Kretschmann HJ (1988) The human pattern of gyrification in the cerebral cortex. Anat Embryol (Berl) 179(2):173–179. doi: 10.1007/BF00304699 CrossRefGoogle Scholar
  74. Zilles K, Schleicher A, Palomero-Gallagher N, Amunts K (2002) Quantitative analysis of cyto- and receptorarchitecture of the human brain. In: Toga AW, Mazziotta JC (eds) Brain mapping: the methods, 2nd edn. Academic Press, New York, pp 573–602Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Svenja Caspers
    • 1
    Email author
  • Simon B. Eickhoff
    • 1
  • Stefan Geyer
    • 2
  • Filip Scheperjans
    • 1
  • Hartmut Mohlberg
    • 1
  • Karl Zilles
    • 1
    • 2
    • 3
  • Katrin Amunts
    • 1
    • 3
    • 4
  1. 1.Research Centre JülichInstitute of Neurosciences and Biophysics—MedicineJülichGermany
  2. 2.C. and O. Vogt Institute for Brain ResearchHeinrich-Heine-University DüsseldorfDüsseldorfGermany
  3. 3.JARAResearch Centre Jülich, Institute of MedicineJülichGermany
  4. 4.Department of Psychiatry and PsychotherapyRWTH Aachen UniversityAachenGermany

Personalised recommendations