Brain Structure and Function

, Volume 212, Issue 2, pp 133–148

Origin, migration and fate of newly generated neurons in the adult rodent piriform cortex

  • Lee A. Shapiro
  • Kwan L. Ng
  • Richard Kinyamu
  • Patricia Whitaker-Azmitia
  • Eldon E. Geisert
  • Mathew Blurton-Jones
  • Qun-Yong Zhou
  • Charles E. Ribak
Original Article

Abstract

Newly generated neurons are continuously added to the olfactory epithelium and olfactory bulbs of adult mammals. Studies also report newly generated neurons in the piriform cortex, the primary cortical projection site of the olfactory bulbs. The current study used BrdU-injection paradigms, and in vivo and in vitro DiI tracing methods to address three fundamental issues of these cells: their origin, migratory route and fate. The results show that 1 day after a BrdU-injection, BrdU/DCX double-labeled cells appear deep to the ventricular subependyma, within the white matter. Such cells appear further ventral and caudal in the ensuing days, first appearing in the rostral piriform cortex of mice at 2 days after the BrdU-injection, and at 4 days in the rat. In the caudal piriform cortex, BrdU/DCX labeled cells first appear at 4 days after the injection in mice and 7 days in rats. The time it takes for these cells to appear in the piriform cortex and the temporal distribution pattern suggest that they migrate from outside this region. DiI tracing methods confirmed a migratory route to the piriform cortex from the ventricular subependyma. The presence of BrdU/NeuN labeled cells as early as 7 days after a BrdU injection in mice and 10 days in the rat and lasting as long as 41 days indicates that some of these cells have extended survival durations in the adult piriform cortex.

Keywords

Neurogenesis Olfactory system Doublecortin Bromodeoxyuridine DiI tracing 

Supplementary material

429_2007_151_MOESM1_ESM.tif (659 kb)
24 hr. Fluorescent images of in vitro DiI-labeled cells at 24 hrs after DII implantation of p10 rats. Note the bright bolus of DiI and sparse labeled- cells slightly ventral to the bolus. (TIF 659 kb)
429_2007_151_MOESM2_ESM.tif (448 kb)
48 hr. Fluorescent images of in vitro DiI-labeled cells at48 hrs after DII implantation of p10 rats. Note the bolus, more labeled cells and further ventral. (TIF 448 kb)
429_2007_151_MOESM3_ESM.tif (435 kb)
72 hr. Fluorescent images of in vitro DiI-labeled cells at72 hrs after DII implantation of p10 rats. Note the stream of cells emanating along the subcortical white matter. (TIF 434 kb)
429_2007_151_MOESM4_ESM.tif (461 kb)
96 hr. Fluorescent images of in vitro DiI-labeled cells at 96 hrs after DII implantation of p10 rats. Note the dense numbers of cells, ventral location and widespread distribution in the endopiriform nucleus. Refer them to the figure showing the DCX-labeled cells throughout the endopiriform nucleus. (TIF 460 kb)

Time-lapse confocal microscopy of the piriform cortex 7 days after DiI-implantation. The video encompasses a 14 hour time period. Note that several DiI-labeled cells can be seen to come in and out of the plane of focus of the microscope and DiI-labeled cells can be seen to move ventrally into the piriform cortex. (AVI 63012 kb)

429_2007_151_MOESM6_ESM.ppt (327 kb)
ESM6 (PPT 327 kb)
429_2007_151_MOESM7_ESM.ppt (181 kb)
ESM7 (PPT 181 kb)
429_2007_151_MOESM8_ESM.ppt (940 kb)
ESM8 (PPT 939 kb)

References

  1. Altman J (1969) Autoradiographic and histological studies of postnatal neurogenesis. Cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb. J Comp Neurol 137:433–458PubMedCrossRefGoogle Scholar
  2. Altman J, Das GD (1966) Autoradiographic and histological studies of postnatal neurogenesis. I. A longitudinal investigation of the kinetics, migration, and transformation of cells incorporating tritiated thymidine in neonate rats, with special reference to postnatal neurogenesis in such brain regions. J Comp Neurol 126:337–389PubMedCrossRefGoogle Scholar
  3. Alvarez-Buylla A, Garcia-Verdugo JM (2002) Neurogenesis in adult subventricular zone. J Neurosci 22:629–634PubMedGoogle Scholar
  4. Bauer S, Peterson PH (2005) The cell cycle-apoptosis connection revisited in the adult brain. J Cell Biol 171:641–650PubMedCrossRefGoogle Scholar
  5. Bayer SA (1983) 3H-Thymidine-radiographic studies of neurogenesis in the rat olfactory bulb. Exp Brain Res 50:329–340PubMedCrossRefGoogle Scholar
  6. Bedard A, Parent A (2004) Evidence of newly generated neurons in the human olfactory bulb. Dev Brain Res 151:159–168CrossRefGoogle Scholar
  7. Bedard A, Levesque M, Bernier PJ, Parent A (2002) The rostral migratory stream in adult squirrel monkeys: contribution of new neurons to the olfactory tubercle and involvement of the antiapoptotic protein Bcl-2. Eur J Neurosci 16:1917–1924PubMedCrossRefGoogle Scholar
  8. Belvindrah R, Rougon G, Chazal G (2002) Increased neurogenesis in adult mCD24-deficient mice. J Neurosci 22:3594–3607PubMedGoogle Scholar
  9. Beites CL, Kawauchi S, Crocker CE, Calof AL (2005) Identification and molecular regulation of neural stem cells in the olfactory epithelium. Exp Cell Res 306:309–316PubMedCrossRefGoogle Scholar
  10. Bernier PJ, Bedard A, Vinet J, Levesque M, Parent A (2002) Newly generated neurons in the amygdala and adjoining cortex of adult primates. Proc Natl Acad Sci 99:11464–11469PubMedCrossRefGoogle Scholar
  11. Biebl M, Cooper C.M, Winkler J Kuhn HG (2000) Analysis of neurogenesis and programmed cell death reveals a self-renewing capacity in the adult rat brain. Neurosci Lett 291:17–20PubMedCrossRefGoogle Scholar
  12. Brown JP, Couillard-Despres S, Cooper-Kuhn CM, Winkler J, Aigner L, Kuhn HG (2003) Transient expression of doublecortin during adult neurogenesis. J Comp Neurol 467:1–10PubMedCrossRefGoogle Scholar
  13. Cameron HA, McKay RD (2001) Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. J Comp Neurol 435:406–417PubMedCrossRefGoogle Scholar
  14. Carlen M, Cassidy RM, Brismar H, Smith GA, Enquist LW, Frisen J (2002) Functional integration of adult-born neurons. Curr Biol 12:606–608PubMedCrossRefGoogle Scholar
  15. Chen S, Kobayashi M, Honda Y, Kakuta S, Sato F, Kishi K (2007) Preferential neuron loss in the rat piriform cortex following pilocarpine-induced status epilepticus. Epilepsy Res 74:1–18PubMedCrossRefGoogle Scholar
  16. Curtis MA, Kam M, Nannmark U, Anderson MF, Axell MZ, Wikkelso C, Holtas S, van Roon-Mom WM, Bjork-Eriksson T, Nordborg C, Frisen J, Dragunow M, Faull RL, Eriksson PS (2007) Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension. Science 315:1243–1249PubMedCrossRefGoogle Scholar
  17. Datiche F, Roullet F, Cattarelli M (2001) Expression of Fos in the piriform cortex after acquisition of olfactory learning: an immunohistochemical study in the rat. Brain Res Bull 55:95–99PubMedCrossRefGoogle Scholar
  18. Dayer AG, Cleaver KM, Abouantoun T, Cameron HA (2005) New GABAergic interneurons in the adult neocortex and striatum are generated from different precursors. J Cell Biol 168:415–427PubMedCrossRefGoogle Scholar
  19. De Marchis S, Fasolo A, Shipley M, Puche A (2001) Unique neuronal tracers show migration and differentiation of SVZ progenitors in organotypic slices. J Neurobiol 49:326–338PubMedCrossRefGoogle Scholar
  20. De Marchis S, Fasolo A, Puche AC (2004) Subventricular zone-derived neuronal progenitors migrate into the subcortical forebrain of postnatal mice. J Comp Neurol 476:290–300PubMedCrossRefGoogle Scholar
  21. Doetsch F, Garcia-Verdugo JM, Alvarez-Buylla A (1997) Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J Neurosci 17:5046–5061PubMedGoogle Scholar
  22. Doetsch F, Caille I, Lim DA, Garcia-Verdugo JM, Alvarez-Buylla A (1999) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97:703–716PubMedCrossRefGoogle Scholar
  23. Elder GA, De Gasperi R, Gama Sosa MA (2006) Research update: neurogenesis in adult brain and neuropsychiatric disorders. Mt Sinai J Med 73:931–940PubMedGoogle Scholar
  24. Francis F, Koulakoff A, Boucher D, Chafey P, Schaar B, Vinet MC, Friocourt G, McDonnell N, Reiner O, Kahn A, McConnell SK, Berwald-Netter Y, Denoulet P, Chelly J (1999) Doublecortin is a developmentally regulated, microtubule-associated protein expressed in migrating and differentiating neurons. Neuron 23:247–256PubMedCrossRefGoogle Scholar
  25. Gheusi G, Cremer H, McLean H, Chazal G, Vincent JD, Lledo PM (2002) Importance of newly generated neurons in the adult olfactory bulb for odor discrimination. Proc Natl Acad Sci 97:1823–1828CrossRefGoogle Scholar
  26. Haberly LB, Price JL (1977) The axonal projection patterns of the mitral and tufted cells of the olfactory bulb in the rat. Brain Res 129:152–157PubMedCrossRefGoogle Scholar
  27. Kempermann G, Kuhn HG, Gage FH (1997) More hippocampal neurons in adult mice living in an enriched environment. Nature 386:493–495PubMedCrossRefGoogle Scholar
  28. Kempermann G, Gast D, Kronenberg G, Yamaguchi M, Gage FH (2003) Early determination and long-term persistence of adult-generated new neurons in the hippocampus of mice. Development 130:391–399PubMedCrossRefGoogle Scholar
  29. Koketsu D, Mikami A, Miyamoto Y, Hisatsune T (2003) Nonrenewal of neurons in the cerebral neocortex of adult macaque monkeys. J. Neurosci 23: 937–942PubMedGoogle Scholar
  30. Kornack DR, Rakic P (1999) Continuation of neurogenesis in the hippocampus of the adult macaque monkey. Proc Natl Acad Sci 96:5768–5773PubMedCrossRefGoogle Scholar
  31. Lois C, Alvarez-Buylla A (1994) Long-distance neuronal migration in the adult mammalian brain. Science 264:1145–1148PubMedCrossRefGoogle Scholar
  32. Lois C, Garcia-Verdugo JM, Alvarez-Buylla A (1996) Chain migration of neuronal precursors. Science 271:978–981PubMedCrossRefGoogle Scholar
  33. Luskin MB (1993) Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron 11:173–189PubMedCrossRefGoogle Scholar
  34. Luzzati F, Peretto P, Aimar P, Ponti G, Fasolo A, Bonfanti L (2003) Glia-independent chains of neuroblasts through the subcortical parenchyma of the adult rabbit brain. Proc Natl Acad Sci 100:13036–13041PubMedCrossRefGoogle Scholar
  35. Nacher J, Crespo C, McEwen BS (2001) Doublecortin expression in the adult rat telencephalon. Eur J Neurosci 14:629–644PubMedCrossRefGoogle Scholar
  36. Nacher J, Alonso-Llosa G, Rosell D, McEwen B (2002) PSA-NCAM expression in the piriform cortex of the adult rat. Modulation by NMDA receptor antagonist administration. Brain Res 927:111–121PubMedCrossRefGoogle Scholar
  37. Nowakowski RS, Hayes NL (2000) New neurons: extraordinary evidence or extraordinary conclusion? Science 288:771PubMedCrossRefGoogle Scholar
  38. Parent JM, von dem Bussche N, Lowenstein DH (2006) Prolonged seizures recruit caudal subventricular zone glial progenitors into the injured hippocampus. Hippocampus 16:321–328PubMedCrossRefGoogle Scholar
  39. Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates, 4th edn. Academic Press, New YorkGoogle Scholar
  40. Paxinos G, Franklin KBJ (2000) The mouse brain in stereotaxic coordinates, 2nd edn, Academic Press, New YorkGoogle Scholar
  41. Pekcec A, Loscher W, Potschka H (2006) Neurogenesis in the adult rat piriform cortex. NeuroReport 17:571–574PubMedCrossRefGoogle Scholar
  42. Pencea V, Bingaman KD, Freedman LJ, Luskin MB (2001) Neurogenesis in the subventricular zone and rostral migratory stream of the neonatal and adult primate forebrain. Exp Neurol 172: 1–16PubMedCrossRefGoogle Scholar
  43. Price JL (1973) An autoradiographic study of complementary laminar patterns of termination of afferent fibers to the olfactory cortex. J Comp Neurol 150:87–108PubMedCrossRefGoogle Scholar
  44. Rao MS, Shetty AK (2004) Efficacy of doublecortin as a marker to analyse the absolute number and dendritic growth of newly generated neurons in the adult dentate gyrus. Eur J Neurosci 19:234–246PubMedCrossRefGoogle Scholar
  45. Ribak CE, Korn MJ, Shan Z, Obenaus A (2004) Dendritic growth cones and recurrent basal dendrites are typical features of newly-generated dentate granule cells in the adult hippocampus. Brain Res 1000:195–199PubMedCrossRefGoogle Scholar
  46. Rochefort C, Gheusi G, Vincent JD, Lledo PM (2002) Enriched odor exposure increases the number of newborn neurons in the adult olfactory bulb and improves odor memory. J Neurosci 22:2679–2689PubMedGoogle Scholar
  47. Sawamoto K, Wichterle H, Gonzalez-Perez O, Cholfin JA, Yamada M, Spassky N, Murcia NS, Garcia-Verdugo JM, Marin O, Rubenstein JL, Tessier-Lavigne M, Okano H, Alvarez-Buylla A (2006) New neurons follow the flow of cerebrospinal fluid in the adult brain. Science 311:629–632PubMedCrossRefGoogle Scholar
  48. Shapiro LA, Korn MJ, Shan Z, Ribak CE (2005) GFAP-expressing radial glia-like cell bodies are involved in a one-to-one relationship with doublecortin-immunolabeled newborn neurons in the adult dentate gyrus. Brain Res 1040:81–91PubMedCrossRefGoogle Scholar
  49. Shapiro LA, Upadhyaya P, Ribak CE (2007a) Spatio-temporal profile of dendritic outgrowth from newly born granule cells in the adult rat dentate gyrus. Brain Res 1149:30–37PubMedCrossRefGoogle Scholar
  50. Shapiro LA, Ng KL, Zhou Q-Y, Ribak CE (2007b) Olfactory enrichment enhances the survival of newborn neurons in the adult mouse piriform cortex. NeuroReport 18:981–985PubMedCrossRefGoogle Scholar
  51. Sugai T, Miyazawa T, Fukuda M, Yoshimura H, Onoda N (2005) Odor-concentration coding in the guinea-pig piriform cortex. Neuroscience 130:769–781PubMedCrossRefGoogle Scholar
  52. Yang HK, Sundholm-Peters NL, Goings GE, Walker AS, Hyland K, Szele FG (2004) Distribution of doublecortin expressing cells near the lateral ventricles in the adult mouse brain. J Neurosci Res 76:282–295PubMedCrossRefGoogle Scholar
  53. Wichterle H, Garcia-Verdugo JM, Alvarez-Buylla A (1997) Direct evidence for homotypic, glia-independent neuronal migration. Neuron 18:779–791PubMedCrossRefGoogle Scholar
  54. Winner B, Cooper-Kuhn CM, Aigner R, Winkler J, Kuhn HG (2002) Long-term survival and cell death of newly generated neurons in the adult rat olfactory bulb. Eur. J Neurosci 16:1681–1689PubMedCrossRefGoogle Scholar
  55. Zou Z, Li F, Buck LB (2005) Odor maps in the olfactory cortex. Proc Natl Acad Sci USA 102:7724–7729PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Lee A. Shapiro
    • 1
  • Kwan L. Ng
    • 2
  • Richard Kinyamu
    • 1
  • Patricia Whitaker-Azmitia
    • 3
  • Eldon E. Geisert
    • 4
  • Mathew Blurton-Jones
    • 5
  • Qun-Yong Zhou
    • 2
  • Charles E. Ribak
    • 1
  1. 1.Department of Anatomy and Neurobiology, School of MedicineUniversity of California at IrvineIrvineUSA
  2. 2.Department of Pharmacology, School of MedicineUniversity of California at IrvineIrvineUSA
  3. 3.Department of PsychologyStony Brook UniversityStony BrookUSA
  4. 4.Department of OphthalmologyUniversity of Tennessee Health Science Center, Hamilton Eye InstituteMemphisUSA
  5. 5.Department of Neurobiology and Behavior, Gillespie Neuroscience Research FacilityUniversity of California at IrvineIrvineUSA

Personalised recommendations