Advertisement

Brain Structure and Function

, Volume 212, Issue 2, pp 223–230 | Cite as

A detailed 3D model of the guinea pig cochlea

  • Bo Liu
  • Xiu L. GaoEmail author
  • Hong X. Yin
  • Shu Q. Luo
  • Jing Lu
Original Article

Abstract

Several partial models of cochlear subparts are available. However, a complete 3D model of an intact cochlea based on actual histological sections has not been reported. Hence, the aim of this study was to develop a novel 3D model of the guinea pig cochlea and conduct post-processes on this reconstructed model. We used a combination of histochemical processing and the method of acquiring section data from the visible human project (VHP) to obtain a set of ideal raw images of cochlear sections. After semi-automatic registration and accurate manual segmentation with professional image processing software, one set of aligned data and six sets of segmented data were generated. Finally, the segmented structures were reconstructed by 3D Slicer (a professional imaging process and analysis tool). Further, post-processes including 3D visualization and a virtual endoscope were completed to improve visualization and simulate the course of the cochlear implant through the scala tympani. The 3D cochlea model contains the main six structures: (1) the inner wall, (2) modiolus and spiral lamina, (3) cochlea nerve and spiral ganglion, (4) spiral ligament and inferior wall of cochlear duct, (5) Reissner’s membrane and (6) tectorial membrane. Based on the results, we concluded that ideal raw images of cochlear sections can be acquired by combining the processes of conventional histochemistry and photographing while slicing. After several vital image processing and analysis steps, this could further generate a vivid 3D model of the intact cochlea complete with internal details. This novel 3D model has great potential in teaching, basic medical research and in several clinical applications.

Keywords

Cochlea 3D modeling Registration Segmentation Reconstruction Visualization Virtual endoscope 

Notes

Acknowledgments

We thank Guang-wei Du for providing the professional registration software, Chen Wang’s assistance in visualization, and Mary-Magdalene Ugo Nzekwu for her valuable work on correcting the English. We are also grateful for the financial support from Beijing Natural Funds.

Supplementary material

429_2007_146_MOESM1_ESM.wrl (6.9 mb)
ESM 1 (WRL 29304 kb)
429_2007_146_MOESM2_ESM.wrl (6.9 mb)
ESM 2 (WRL 2740 kb)
429_2007_146_MOESM3_ESM.wrl (22 mb)
ESM 3 (WRL 2740 kb)
429_2007_146_MOESM4_ESM.wrl (22 mb)
ESM 4 (WRL 7068 kb)
429_2007_146_MOESM5_ESM.wrl (23.3 mb)
ESM 5 (WRL 7067 kb)
429_2007_146_MOESM6_ESM.wrl (23.3 mb)
ESM 6 (WRL 22544 kb)
429_2007_146_MOESM7_ESM.wrl (10.9 mb)
ESM 7 (WRL 22543 kb)
429_2007_146_MOESM8_ESM.wrl (10.9 mb)
ESM 8 (WRL 23863 kb)
429_2007_146_MOESM9_ESM.wrl (28.6 mb)
ESM 9 (WRL 23862 kb)
429_2007_146_MOESM10_ESM.wrl (28.6 mb)
ESM 10 (WRL 11161 kb)
429_2007_146_MOESM11_ESM.wrl (2.7 mb)
ESM 11 (WRL 11161 kb)
429_2007_146_MOESM12_ESM.wrl (2.7 mb)
ESM 12 (WRL 29305 kb)

Virtual endoscope (AVI 28690 kb)

References

  1. Barbara A, Lorenz J, Gerd G (1996) Visualization of inner ear structures by three-dimensional high-resolution magnetic resonance imaging. Am J Otol 17(3):480–485Google Scholar
  2. Dahm MC, Mack MG, Tykocinski M et al (1997) Submillimeter imaging and reconstruction of the inner ear. Am J Otol 18(6 suppl):S54–S56PubMedGoogle Scholar
  3. Ferguson SJ, Bryant JT, Ito K (1999) Three-dimensional computational reconstruction of mixed anatomical tissues following histological preparation. Med Eng Phys 21(2):111–117PubMedCrossRefGoogle Scholar
  4. Glover P, Mansfield SP (2002) Limits to magnetic resonance microscopy. Rep Prog Phys 65:1489–1511CrossRefGoogle Scholar
  5. Hashimoto S, Kimura RS (1988) Computer-aided three-dimensional reconstruction and morphometry of the outer hair cells of the guinea pig cochlea. Acta Otolaryngol 105(1–2):64–74PubMedGoogle Scholar
  6. Hashimoto S, Kimura RS, Takasaka T (1990) Computer-aided three-dimensional reconstruction of the inner hair cells and their nerve endings in the guinea pig cochlea. Acta Otolaryngol 109(3–4):228–234PubMedGoogle Scholar
  7. Hermans R, Marchal G, Feenstra L et al (1995) Spiral CT of the temporal bone: value of image reconstruction at submillimetric table increments. Neuroradiology 37:150–154PubMedGoogle Scholar
  8. Himi T, Kataura A, Sakata M et al (1996) Three-dimensional imaging of temporal bone using a helical CT scan and its application in patients with cochlear implantation. J Otorhinolaryngol Relat Spec 58(6):298–300Google Scholar
  9. Hiroshi W, Sugawara M, Kobayashi T et al (1998) Measurement of guinea pig basilar membrane using computer-aided three-dimensional reconstruction system. Hear Res 120(1–2):1–6Google Scholar
  10. Hu H (1999) Multi-slice helical CT scan and reconstruction. Med Phys 26:5–18PubMedCrossRefGoogle Scholar
  11. Isono M, Murata K, Aiba K et al (1997) Minute findings of inner ear anomalies by three-dimensional CT scanning. Int J Pediatr Otorhinolaryngol 42:41–53PubMedCrossRefGoogle Scholar
  12. Kapur T (1999) Model based three-dimensional medical image segmentation. Artificial Intelligence Laboratory, Massachusetts Institute of Technology, CambridgeGoogle Scholar
  13. Laurence A, Frank R, Raymond H et al (1989) Computer-generated three-dimensional reconstruction of the cochlea. Otolaryngol Head Neck Surg 100(2):87–91Google Scholar
  14. Nakashima K, Morikawa M, Ishimaru H et al (2002) Three-dimensional fast recovery fast spin–echo imaging of the inner ear and the vestibulocochlear nerve. Eur Radiol 12(11):2776–2780PubMedGoogle Scholar
  15. Natalie A, Glen, Edwin W (2004) A new method for imaging and 3D reconstruction of mammalian cochlea by fluorescent confocal microscopy. Brain Res 1000:200–210CrossRefGoogle Scholar
  16. Neri E, Caramella D, Cosottini M et al (2000) High-resolution magnetic resonance and volume rendering of the labyrinth. Eur Radiol 10:114–118PubMedCrossRefGoogle Scholar
  17. Ratiu P, Becker H, Bartling S et al (2002) 3D visualisation of the middle ear and adjacent structures using reconstructed multi-slice CT datasets, correlating 3D images and virtual endoscopy to the 2D cross-sectional images. Head Neck Radiol 44:783–790Google Scholar
  18. Reisser C, Schubert O, Forsting M et al (1996) Anatomy of the temporal bone: detailed three-dimensional display based on image data from high-resolution helical CT: a preliminary report. Am J Otol 17(3):473–479PubMedGoogle Scholar
  19. Shibata T, Nagano T (1996) Applying very high resolution microfocus X-ray CT and 3D reconstruction to the human auditory apparatus. Nat Med 2:933–935PubMedCrossRefGoogle Scholar
  20. Spitzer VM, Whitlock DG (1998) The visible human dataset: the anatomical platform for human simulation. Anat Rec 253(2):49–57PubMedCrossRefGoogle Scholar
  21. Takahashi H, Isamu S (1990) Computer-aided 3d temporal bone anatomy for cochlea implant surgery. Laryngoscope 100(4):417–421PubMedCrossRefGoogle Scholar
  22. Takahashi H, Isamu S, Akira T (1990) Computer-aided three-dimensional reconstruction and measurement for multiple-electrode cochlear implant. Laryngoscope 100(12):1319–1322PubMedCrossRefGoogle Scholar
  23. Thorne M, Salt AN, DeMott JE et al (1999) Cochlear fluid space dimensions for six species derived from reconstructions of 3D magnetic resonance images. Laryngoscope 109:1661–1668PubMedCrossRefGoogle Scholar
  24. Viktor, Chroboka, Milan et al (2002) Growth curves, measurement and three-dimensional reconstruction in the histopathology of temporal bones. Otorhinolaryngol Nova 3(12):109–118Google Scholar
  25. Yonekawa H, Ohashi M, Miyashita S et al (1993) A three-dimensional reconstruction of the temporal bone by the helical scanning CT and its clinical application. Nippon Jibiinkoka Gakkai Kaiho 96(9):1465–1470PubMedGoogle Scholar
  26. Yuan L, Huang WH, Tang L et al (2003) The research of vital technology for VCH. Acta Anatomica Sinica 34(3):225–230Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Bo Liu
    • 1
  • Xiu L. Gao
    • 1
    Email author
  • Hong X. Yin
    • 2
  • Shu Q. Luo
    • 2
  • Jing Lu
    • 3
  1. 1.Department of AnatomyCapital Medical UniversityBeijingChina
  2. 2.School of Biomedical EngineeringCapital Medical UniversityBeijingChina
  3. 3.Department of Cell BiologyCapital Medical UniversityBeijingChina

Personalised recommendations