Anatomy and Embryology

, Volume 210, Issue 5–6, pp 485–495 | Cite as

Human V5/MT+: comparison of functional and cytoarchitectonic data

  • Marcus Wilms
  • Simon B. Eickhoff
  • Karsten Specht
  • Katrin Amunts
  • Nadim J. Shah
  • Aleksandar Malikovic
  • Gereon R. Fink
Original Article

Abstract

To date, the delineation of the human visual “motion area” still relies on functional paradigms originally devised to identify monkey area MT. Using fMRI, we have identified putative human area V5/MT+ in normals by modelling the BOLD responses to alternating radially moving and stationary dot patterns. Functional activations were compared with cytoarchitectonic probability maps of its putative correlate area hOc5, which was calculated based upon data from histological sections of ten human post-mortem brains. Bilateral visual cortex activations were seen in the single subject dynamic versus stationary contrasts and in the group random-effects analysis. Comparison of group data with area hOc5 revealed that 19.0%/39.5% of the right/left functional activation was assigned to the right/left hOc5. Conversely, 83.2%/53.5% of the right/left hOc5 was functionally activated. Comparison of functional probability maps (fPM) with area hOc5 showed that 28.6%/18.1% of the fPM was assigned to hOc5. In turn, 84.9%/41.5% of the area hOc5 was covered by the respective fPM. Thus, random-effects data and fPMs yielded similar results. The present study shows for the first time the correspondence between the functionally defined human V5/MT+ and the post-mortem cytoarchitectonic area hOc5.

Keywords

Functional probability map fMRI Motion Post-mortem Visual cortex 

Notes

Acknowledgements

We are grateful to our colleagues from the MR and Cognitive Neurology group for their assistance. Gereon R. Fink is supported by the Deutsche Forschungsgemeinschaft (DFG KPO-112, TP1 and TP8).

References

  1. Allman JM, Kaas JH (1971) A representation of the visual field in the caudal third of the middle temporal gyrus of the owl monkey (Aotus trivirgatus). Brain Res 31(1):85–105PubMedCrossRefGoogle Scholar
  2. Amunts K, Malikovic A, Mohlberg H, Schormann T, Zilles K (2000) Brodman’s areas 17 and 18 brought into stereotaxic space. Where and how variable? NeuroImage 11:66–84Google Scholar
  3. Annese J, Gazzaniga MS, Toga AW (2005) Localization of the human cortical visual area MT based on computer aided histological analysis. Cerebral Cortex 15(7):1044–1053PubMedCrossRefGoogle Scholar
  4. Beauchamp MS, Cox RW, DeYoe EA (1997) Graded effects of spatial and featural attention on human area MT and associated motion processing areas. J Neurophysiol 78:516–520PubMedGoogle Scholar
  5. Brett M (2002) http://www.mrc-cbu.cam.ac.uk/Imaging/Common/mnispace.shtmlGoogle Scholar
  6. Collins DL, Neelin P, Peters TM, Evans AC (1994) Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. J Comput Assist Tomogr 18(2):192–205PubMedCrossRefGoogle Scholar
  7. Dukelow SP, De Souza JFX, Culham JC, van den Berg AV, Menon RS, Vilis T (2001) Distinguishing subregions of human MT+ complex using visual field and pursuit eye movements. J Neurophysiol 86:1991–2000PubMedGoogle Scholar
  8. Dumoulin SO, Bittar RG, Kabani NJ, Baker CL Jr, Le Goualher G, Pike GB, Evans AC (2000) A new anatomical landmark for reliable identification of human area V5/MT: a quantitative analysis of sulcal patterning. Cereb Cortex 10:454–463PubMedCrossRefGoogle Scholar
  9. Dupont P, Orban GA, Vogels R, Bormans G, Nuyts J, Schiepers C, De Roo M, Mortelmans L (1993) Different perceptual tasks performed with the same visual stimulus attribute activate different regions of the human brain: a positron emission tomography study. PNAS 90:10927–10931PubMedCrossRefGoogle Scholar
  10. Dupont P, Orban GA, de Bruyn B, Verbruggen A, Mortelmans L (1994) Many areas in the human brain respond to visual motion. J Neurophysiol 72:1420–1424PubMedGoogle Scholar
  11. Dupont P, de Bruyn B, Vandenberghe R, Rosier A-M, Michiels J, Marchal G, Mortelmans L, Orban GA (1997) The kinetic occipital region in human visual cortex. Cereb Cortex 7:283–292PubMedCrossRefGoogle Scholar
  12. Eickhoff SB, Stephan KE, Mohlberg H, Grefkes C, Fink GR, Amunts K, Zilles K (2005) A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. NeuroImage 25:1325–1335PubMedCrossRefGoogle Scholar
  13. Evans AC, Marrett S, Neelin P, Collins L, Worsley K, Dai W, Milot S, Meyer E, Bub D (1992) Anatomical mapping of functional activation in stereotactic coordinate space. NeuroImage 1:43–53PubMedCrossRefGoogle Scholar
  14. Fink GR, Halligan PW, Marshall JC, Frith CD, Frackowiak RS, Dolan RJ (1996) Where in the brain does visual attention select the forest and the trees? Nature 382:626–628PubMedCrossRefGoogle Scholar
  15. Flechsig P (1927) Meine myelogenetische Hirnlehre mit biographischer Einleitung. Springer, BerlinGoogle Scholar
  16. Friston KJ, Holmes A, Poline J-B, Price CJ, Frith CD (1996) Detecting activations in PET and fMRI: Levels of inference and power. NeuroImage 4:223–235PubMedCrossRefGoogle Scholar
  17. Goebel R, Khorram-Sefat D, Muckli L, Hacker H, Singer W (1998) The constructive nature of vision: direct evidence from fMRI studies of apparent motion and motion imagery. Eur J Neurosci 10:1563–1573PubMedCrossRefGoogle Scholar
  18. Hasnain MK, Fox PT, Woldorff MG (1998) Intersubject variability of functional areas in the human visual cortex. Hum Brain Map 6:301–315CrossRefGoogle Scholar
  19. Heilman KM, Van den Abell T (1980) Right hemisphere dominance for attention: The mechanism underlying hemispheric asymmetries of inattention (neglect). Neurology 30:327–330PubMedGoogle Scholar
  20. Holmes CJ, Hoge R, Collins L, Woods R, Toga AW, Evans AC (1998) Enhancement of MR images using registration for signal averaging. J Comput Assist Tomogr 22:324–333PubMedCrossRefGoogle Scholar
  21. Huk AC, Dougherty RF, Heeger DJ (2002) Retinotopy and functional subdivision of human areas MT and MST. J Neurosci 22:7195–7205PubMedGoogle Scholar
  22. Kastner S, De Weerd P, Desimone R, Ungerleider LG (1998) Mechanisms of directed attention in the human extrastriate cortex as revealed by functional MRI. Science 282:108–111PubMedCrossRefGoogle Scholar
  23. Malikovic A, Amunts K, Schleicher A, Mohlberg H, Palomero-Gallagher N, Schormann T, Zilles K (2001) Cytoarchitecture and stereotactic location of a preoccipital area in the region of V5/MT. NeuroImage 13:S909CrossRefGoogle Scholar
  24. Marshall JC, Fink GR (2001) Spatial cognition: where we were and where we are. Neuroimage 14:2–7CrossRefGoogle Scholar
  25. Maunsell JHR, Nealey TA, DePriest DD (1990) Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey. J Neurosci 10:3323–3334PubMedGoogle Scholar
  26. Mugler JP 3rd, Brookeman JR (1990) Three-dimensional magnetization-prepared rapid gradient-echo imaging (3D MP RAGE). Magn Reson Med 15(1):152–157PubMedCrossRefGoogle Scholar
  27. O’Craven KM, Rosen BR, Kwong KK, Treisman A, Savoy RL (1997) Voluntary attention modulates fMRI activity in human MT-MST. Neuron 18:591–598PubMedCrossRefGoogle Scholar
  28. Oldfield RC (1971) The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia 9:97–113PubMedCrossRefGoogle Scholar
  29. Rees G, Friston K, Koch C (2000) A direct quantitative relationship between the functional properties of human and macaque V5. Nature Neuroscience 3(7):716–723PubMedCrossRefGoogle Scholar
  30. Schleicher A, Amunts K, Geyer S, Morosan P, Zilles K (1999) Observer-independent method for microstructural parcellation of cerebral cortex. A quantitative approach to cytoarchitectonics. NeuroImage 9:165–177Google Scholar
  31. Smith AT, Greenlee MW, Singh KD, Kraemer FM, Hennig J (1998) The processing of first- and second-order motion in human visual cortex assessed by functional magnetic resonance imaging fMRI. J Neurosci 18:3816–3830PubMedGoogle Scholar
  32. Sunaert S, van Hecke P, Marchal G, Orban GA (1999) Motion-responsive regions of the human brain. Exp Brain Res 127:355–370PubMedCrossRefGoogle Scholar
  33. Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain: 3-dimensional proportional system—an approach to cerebral imaging. Thieme, New YorkGoogle Scholar
  34. Toga AW, Thompson PM (2003) Mapping brain asymmetry. Nat Rev Neurosci 4:37–48PubMedCrossRefGoogle Scholar
  35. Tootell RBH, Reppas JB, Kwong KK, Malach R, Born RT, Brady TJ, Rosen BR, Belliveau JW (1995) Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging. J Neurosci 15(4):3215–3230PubMedGoogle Scholar
  36. Watson JDG, Myers R, Frackowiak RSJ, Hajnal JV, Woods RP, Mazziotta JC, Shipp S, Zeki S (1993) Area V5 of the human brain: evidence from a combined study using Positron Emission Tomography and Magnetic Resonance Imaging. Cereb Cortex 3:79–94PubMedCrossRefGoogle Scholar
  37. Wohlschläger AM, Specht K, Lie C, Wohlschläger A, Bente K, Pietrzyk U, Stöcker T, Zilles K, Amunts K, Fink GR (2005) Linking retinotopic fMRI mapping and anatomical probability maps of human occipital areas V1 and V2. NeuroImage 26(1):73–82PubMedCrossRefGoogle Scholar
  38. Yarbus AL (1967) Eye movements and vision. Plenum Press, New YorkGoogle Scholar
  39. Zeki S (1974) Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey. J Physiol 236:549–573PubMedGoogle Scholar
  40. Zeki S, Watson JDG, Lueck CJ, Friston KJ, Kennard C, Frackowiak RSJ (1991) A direct demonstration of functional specialization in human visual cortex. J Neurosci 11(3):641–649PubMedGoogle Scholar
  41. Zeki S (1993) A Vision of the Brain. Blackwell Scientific Publications, OxfordGoogle Scholar
  42. Zilles K, Dabringhaus A, Geyer S, Amunts K, Qu M, Schleicher A, Gilissen E, Schlaug G, Steinmetz H (1996) Structural asymmetries in the human forebrain and the forebrain of non-human primates and rats. Neurosci Biobehav Rev 20(4):593–605PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Marcus Wilms
    • 1
  • Simon B. Eickhoff
    • 1
  • Karsten Specht
    • 1
  • Katrin Amunts
    • 1
    • 2
  • Nadim J. Shah
    • 1
    • 3
    • 4
  • Aleksandar Malikovic
    • 1
  • Gereon R. Fink
    • 1
    • 3
    • 5
  1. 1.Institute of MedicineResearch Centre JülichJülichGermany
  2. 2.Department of Psychiatry and Psychotherapy—Brain MappingUniversity Hospital Aachen, RWTH AachenAachenGermany
  3. 3.Brain Imaging Centre WestResearch Centre JülichJülichGermany
  4. 4.Institute of PhysicsUniversity of DortmundDortmundGermany
  5. 5.Department of Neurology—Cognitive NeurologyUniversity Hospital Aachen, RWTH AachenAachenGermany

Personalised recommendations