Anatomy and Embryology

, Volume 210, Issue 5–6, pp 423–431 | Cite as

Consequences of large interindividual variability for human brain atlases: converging macroscopical imaging and microscopical neuroanatomy

  • H. B. M. UylingsEmail author
  • G. Rajkowska
  • E. Sanz-Arigita
  • K. Amunts
  • K. Zilles
Original Article


In human brain imaging studies, it is common practice to use the Talairach stereotaxic reference system for signifying the convergence of brain function and structure. In nearly all neuroimaging reports, the studied cortical areas are specified further with a Brodmann Area (BA) number. This specification is based upon macroscopic extrapolation from Brodmann’s projection maps into the Talairach atlas rather than upon a real microscopic cytoarchitectonic study. In this review we argue that such a specification of Brodmann area(s) via the Talairach atlas is not appropriate. Cytoarchitectonic studies reviewed in this paper show large interindividual differences in 3-D location of primary sensory cortical areas (visual cortex) as well as heteromodal associational areas (prefrontal cortical areas), even after correction for differences in brain size and shape. Thus, the simple use of Brodmann cortical areas derived from the Talairach atlas can lead to erroneous results in the specification of pertinent BA. This in turn can further lead to wrong hypotheses on brain system(s) involved in normal functions or in specific brain disorders. In addition, we will briefly discuss the different ‘Brodmann’ nomenclatures which are in use for the cerebral cortex.


Brain mapping Cerebral cortex Sulcal pattern Brodmann areas Cytoarchitectonics 



We would like to thank Mrs. W.T.P. Verweij for secretarial assistance and Mr. G. Van der Meulen for photography. The different studies on which this short review is based were supported by various grants: NATO grant CRG 9671225 (HBMU, GR), by NIH grants# MH 55872 and MH61578 (GR), by grant of Hersenstichting Ned. (HBMU, ES) and by grant of RIKEN, Japan (HBMU,ES) and by the National Institute of Biomedical Imaging and Bioengineering, the National Institute of Neurological Disorders and Stroke, and the National Institute of Mental Health (KZ, KA).


  1. Amunts K, Schleicher A, Bürgel U, Mohlberg H, Uylings HBM, Zilles K (1999) Broca’s region re-visited: cytoarchitecture and intersubject variability. J Comp Neurol 412:319–341PubMedCrossRefGoogle Scholar
  2. Amunts K, Malikovic A, Mohlberg H, Schormann T, Zilles K (2000) Brodmann’s areas 17 and 18 brought into stereotactic space—where and how variable? NeuroImage 11:66–84PubMedCrossRefGoogle Scholar
  3. Amunts K, Weiss PH, Mohlberg H, Pieperhoff P, Gurd J, Shah JN, Marshall CJ, Fink GR, Zilles K (2004) Analysis of the neural mechanisms underlying verbal fluency in cytoarchitectonically defined stereotaxic space—the role of Brodmann’s areas 44 and 45. Neuroimage 22:42–56PubMedCrossRefGoogle Scholar
  4. Baaré WFC, Hulshoff Pol HE, Boomsma DI, Posthuma D, De Geus EJC, Schnack HG, Van Haren NEM, Van Oel CJ, Kahn RS (2001) Quantitative genetic modeling of variation in human brain morphology. Cereb Cortex 11:816–824PubMedCrossRefGoogle Scholar
  5. Beck E (1949) A cytoarchitectural investigation into the boundaries of cortical areas 13 and 14 in the human brain. J Anat 83:147–157PubMedGoogle Scholar
  6. Bozkurt A, Zilles K, Schleicher A, Kamper L, Sanz Arigita E, Uylings HBM, Kötter R (2005) Distributions of transmitter receptors in the macaque cingulate cortex. NeuroImage 25:219–229PubMedCrossRefGoogle Scholar
  7. Braak H (1980) Architectonics of the human telencephalic cortex. Studies of brain function, vol 4. Springer, Berlin Heidelberg New York, pp 147Google Scholar
  8. Brett M, Johnsrude IS, Owen AM (2002) The problem of functional localization in the human brain. Nat Rev Neurosci 3:243–249PubMedCrossRefGoogle Scholar
  9. Brodmann K (1909) Vergleichende Lokalisationslehre der Grosshirnrinde, Barth Verlag, Leipzig, 324 ppGoogle Scholar
  10. Brodmann K (1914) Physiologie des Gehirns. In: Von Bruns P (ed) Neue Deutsche Chirurgie, vol 11. Enke, Stuttgart, pp 85–426Google Scholar
  11. Chau W, McIntosh AR (2005) The Talairach coordinate of a point in the MNI space: how to interpret it. NeuroImage 25:408–416PubMedCrossRefGoogle Scholar
  12. Crivello F, Schormann T, Tzourio-Mazoyer N, Roland PE, Zilles K, Mazoyer BM (2002) Comparison of spatial normalization procedures and their impact on functional maps. Hum Brain Mapp 16:228–250PubMedCrossRefGoogle Scholar
  13. Crum WR, Griffin LD, Hill DLG, Hawkes DJ (2003) Zen and the art of medical image registration: correspondence, homology, and quality. NeuroImage 20:1425–1437PubMedCrossRefGoogle Scholar
  14. Duvernoy H (1991) The human brain. Surface, three-dimensional sectional anatomy and MRI. Springer, Berlin Heidelberg New York, 554 ppGoogle Scholar
  15. Filimonov IN (1932) Uber die Variabilität der Grosshirn rindenstruktur Mitt 2: Regio occipitalis beim erwachsenen Menschen. J Psychol Neurol 44:1–96Google Scholar
  16. Frackowiak RSJ, Friston KJ, Frith CD, Dolan RJ, Mazziotta JC (1997) Human brain function. Academic, San Diego, pp 528Google Scholar
  17. Geyer S, Ledberg A, Schleicher A, Kinomura S, Schormann T, Bürgel U, Klingberg T, Larsson J, Zilles K, Roland PE (1996) Two different areas within the primary motor cortex of man. Nature 382:805–807PubMedCrossRefGoogle Scholar
  18. Geyer S, Schleicher A, Zilles K (1999) Areas 3a, 3b, and 1 of human primary somatosensory cortex: 1. Microstructural organization and interindividual variability. NeuroImage 10:63–83PubMedCrossRefGoogle Scholar
  19. Geyer S, Schormann T, Mohlberg H, Zilles K (2000) Areas 3a, 3b, and 1 of human primary somatosensory cortex: II. Spatial normalization to standard anatomical space. Neuroimage 11:684–696PubMedCrossRefGoogle Scholar
  20. Gur RC, Mozley PD, Resnick S, Gottlieb G, Kohn M, Zimmerman R, Herman G, Atlas S, Grossman R, Berreta D, Erwin R, Gur RE (1991) Gender differences in age effect on brain atrophy measured by MRI. Proc Natl Acad Sci USA 88:2845–2849PubMedCrossRefGoogle Scholar
  21. Henery CC, Mayhew TM (1989) The cerebrum and cerebellum of the fixed human brain: efficient and unbiased estimates of volumes and cortical surface areas. J Anat 167:167–180PubMedGoogle Scholar
  22. Kandel ER, Schwartz JH, Jessel TM (2000) Principles of neural sciences, 4th edn. Mcgraw Hill, Newyork, pp 1414 Google Scholar
  23. Kochunov P, Fox P, Lancaster J, Tan LH, Amunts K, Zilles K, Mazziotta J, Gao JH (2003) Localized morphological brain differences between English-speaking Caucasians and Chinese-speaking Asians: new evidence of anatomical plasticity. Neuroreport 14(7):961–964PubMedCrossRefGoogle Scholar
  24. Kononova EP (1935) The variability of structure of the cortex of the brain: inferior frontal gyrus of adult man (in Russian). Brain Res Inst Publ 1:49–118Google Scholar
  25. Kötter R, Stephan KE, Palomero-Gallagher N, Geyer S, Schleicher A, Zilles K. (2001) Multimodal characterisation of cortical areas by multivariate analyses of receptor binding and connectivity data. Anat Embryol 204:333–350PubMedCrossRefGoogle Scholar
  26. Lancaster JL, Woldorff MG, Parsons LM, Liotti M, Freitas CS, Rainey L, Kochunov PV, Nickerson D, Mikiten SA, Fox PT (2000) Automated Talairach atlas labels for functional brain mapping. Hum Brain Mapp 10:120–131PubMedCrossRefGoogle Scholar
  27. Luders E, Narr KI, Thompson PM, Rex DE, Jancke L, Steinmetz H, Toga AW (2004) Gender differences in cortical complexity. Nature Neurosci 7:799–800PubMedCrossRefGoogle Scholar
  28. Mai JK, Assheuer J, Paxinos G (1997) Atlas of the human brain. Academic, San Diego, pp 328Google Scholar
  29. Mazziotta JC, Toga AW, Evans A, Fox P, Lancaster J (1995) A probabilistic atlas of the human brain: theory and rationale for its development. NeuroImage 2:89–101PubMedCrossRefGoogle Scholar
  30. Morosan P, Rademacher J, Schleicher A, Amunts K, Schormann T, Zilles K (2001) Human primary auditory cortex: cytoarchitectonic subdivisions and mapping into a spatial reference system. NeuroImage 13:684–701PubMedCrossRefGoogle Scholar
  31. Nieuwenhuys R, Voogd J, Van Huijzen Chr (1988) The human central nervous system. A synopsis and atlas, 3rd ed. Springer, Berlin Heidelberg New York, pp 437Google Scholar
  32. Öngür D, Price JL (2000) The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb Cortex 10:206–219PubMedCrossRefGoogle Scholar
  33. Öngür D, Ferry AT, Price JL (2003) Architectonic subdivision of the human orbital and medial prefrontal cortex. J Comp Neurol 460:425–449PubMedCrossRefGoogle Scholar
  34. Ono M, Kubik S, Abernathy CD (1990) Atlas of the cerebral sulci. Georg Thieme Verlag, Stuttgart, pp 218Google Scholar
  35. Petrides M, Pandya DN (1994) Comparative architectonic analysis of the human and the macaque frontal cortex. In: Boller F, Grafman J (eds) Handbook of neuropsychology, vol 9. Elsevier, Amsterdam, pp 17–58Google Scholar
  36. Petrides M, Pandya DN (2001) Comparative analysis of the human and macaque ventrolateral prefrontal cortex and corticocortical connection patterns in the monkey. Eur J Neurosci 16:291–310CrossRefGoogle Scholar
  37. Rademacher J, Caviness VS, Steinmetz H, Galaburda AM (1993) Topographical variation of the human primary cortices: implications for neuroimaging, brain mapping, and neurobiology. Cereb Cortex 3:313–329PubMedCrossRefGoogle Scholar
  38. Rademacher J, Morosan P, Schormann T, Schleicher A, Werner C, Freund H-J, Zilles K (2001) Probabilistic mapping and volume measurement of human primary auditory cortex. NeuroImage 13:669–683PubMedCrossRefGoogle Scholar
  39. Rajkowska G, Goldman-Rakic PS (1995a) Cytoarchitectonic definition of prefrontal areas in the normal human cortex: I Quantitative criteria for distinguishing areas 9 and 46. Cereb Cortex 4:307–322CrossRefGoogle Scholar
  40. Rajkowska G, Goldman-Rakic PS (1995b) Cytoarchitectonic definition of prefrontal areas in the normal human cortex: II Variability in locations of areas 9 and 46. Cereb Cortex 4:323–337CrossRefGoogle Scholar
  41. Rajkowska G, Selemon LD, Goldman-Rakic PS (1998) Neuronal and glial somal size in prefrontal cortex: a postmortem study of schizophrenia and Huntington’s disease. Arch Gen Psych 55:215–224CrossRefGoogle Scholar
  42. Rajkowska G, Miguel-Hidalgo JJ, Wei J, Dilley G, Pittman SD, Meltzer HY, Overholser JC, Roth BL, Stockmeier CA (1999) Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression. Biol Psychiatry 45:1085–1098PubMedCrossRefGoogle Scholar
  43. Retzius G (1896) Das Menschen Hirn. Teil 1 Text. Norstedt& Söner, Stockholm, pp 167Google Scholar
  44. Roland PE, Zilles K (1998) Structural divisions and functional fields in the human cerebral cortex. Brain Res Rev 26:87–105PubMedCrossRefGoogle Scholar
  45. Roland PE, Svensson G, Lindeberg T, Risch T. Baumann P, Dehmel A, Frederiksson J, Halldorson H, Forsberg L, Young J, Zilles K (2001) A database generator for human brain imaging. Trends Neurosci 24:562–564PubMedCrossRefGoogle Scholar
  46. Sarkisov SA (1967) Grundriss der Struktur und Funktion des Gehirns. VEB Verlag, Berlin, pp 361Google Scholar
  47. Sarkisov SA, Filimonov IN, Kononova EP, Preobraschenskaja IS, Kukuev LA (1955) Atlas of cytoarchitectonics of the human cerebral cortex. Medzig, Moscow (in Russian)Google Scholar
  48. Schleicher A, Amunts K, Geyer S, Kowalski T, Schormann T, Palomero-Gallagher N, Zilles K (2000) A stereological approach to human cortical architecture: identification and delineation of cortical areas. J Chem Neuroanat 20:31–47PubMedCrossRefGoogle Scholar
  49. Schormann T, Zilles K (1998) Three-dimensional linear and nonlinear transformations: an integration of light microscopical and MRI data. Human Brain Mapp 6:339–347CrossRefGoogle Scholar
  50. Selemon LD, Rajkowska G, Goldman-Rakic PS (1995) Abnormally high neuronal density in the schizophrenic cortex A morphometric analysis of prefrontal area 9 and occipital area 17. Arch Gen Psych 52:805–818Google Scholar
  51. Sereno MI, Dale AM, Reppas JB, Kwong KK, Belliveau JW, Brady TI, Rosen BR, Tootell RBH (1995) Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268:889–893PubMedCrossRefGoogle Scholar
  52. Sherwood CC, Holloway RL, Erwin JM, Schleicher A, Zilles K, Hof PR (2004) Cortical orofacial motor representation in Old World monkeys, great apes, and humans. I Quantitative analysis of cytoarchitecture. Brain Behav Evol 63:61–81PubMedCrossRefGoogle Scholar
  53. Steinmetz H, Fürst G, Freund H-J (1990) Variation of perisylvyan and calcarine anatomic landmarks within stereotaxic proportional coordinates. Am J NeuroRadiol 11:1123–1130PubMedGoogle Scholar
  54. Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. 3-D proportioned system: an approach to cerebral imaging. Thieme-Verlag, Stuttgart, 122ppGoogle Scholar
  55. Thompson PM, Schwart C, Lin RT, Khan AA, Toga AW (1996) Three-dimensional statistical analysis of sulcal variability in the human brain. J Neurosci 16:4261–4274PubMedGoogle Scholar
  56. Toga AW (2002) Neuroimage databases: the good, the bad and the ugly. Nature Rev Neurosci 3:302–309CrossRefGoogle Scholar
  57. Uylings HBM (2002) About assumptions in estimation of density of neurons and glial cells. Biol Psychiatry 51:840–842PubMedCrossRefGoogle Scholar
  58. Uylings HBM, De Brabander JM (2002) Neuronal changes in normal human aging and Alzheimer’s disease. Brain Cogn 49:268–276PubMedCrossRefGoogle Scholar
  59. Uylings HBM, Zilles K, Rajkowska G (1999a) Optimal staining methods for delineation of cortical areas and neuron counts in human brains. NeuroImage 9:439–445PubMedCrossRefGoogle Scholar
  60. Uylings HBM, Malofeeva LI, Bogolepova IN, Amunts K, Zilles K (1999b) Broca’s language area from a neuroanatomical and developmental perspective. In: Brown CM, Hagoort P (eds) The neurocognition of language. Oxford University Press, Oxford, pp 319–336Google Scholar
  61. Uylings HBM, Sanz-Arigita E, De Vos K, Smeets WJAJ, Pool CW, Amunts K, Rajkowska G, Zilles K (2000) The importance of a human 3D database and atlas for studies of prefrontal and thalamic functions. In: Uylings HBM, Van Eden CG, De Bruin JPC, Feenstra MPG, Pennartz CMA (eds) Progress in brain research, vol. 126, Elsevier, Amsterdam, pp 357–368Google Scholar
  62. Uylings HBM, Jacobsen AM, Zilles K, Amunts K (2005) Left-right asymmetry in volume and number of neurons in adult Broca’s area. Cortex (in press)Google Scholar
  63. Van Essen DC (2002) Windows on the brain: the emerging role of atlases and databases in neuroscience. Curr Opin Neurobiol 12:574–579PubMedCrossRefGoogle Scholar
  64. Walker EA (1940) A cytoarchitectural study of the prefrontal area of the macaque monkey. J Comp Neurol 73:59–86CrossRefGoogle Scholar
  65. Walters NB, Egan GF, Kril JJ, Kean M, Waley P, Jenkinson M, Watson JDG (2003) In vivo identification of human cortical areas using high resolution MRI: an approach to structure-function correlation. Proc Nat Acad Sci 100:2981–2986PubMedCrossRefGoogle Scholar
  66. Woolsey TA, Hanaway J, Gado MH (2003) The brain atlas. A visual guide to the human central nervous system, 2nd edn. Wiley, Hoboken, pp 249Google Scholar
  67. Yücel M, Stuart GW, Maruff P, Velakoulis D, Crowe SF, Savage G, Pantelis C (2001) Hemispheric and gender-related differences in the gross morphology of the anterior cingulate/paracingulate cortex in normal volunteers: an MRI morphometric study. Cereb Cortex 11:17–25PubMedCrossRefGoogle Scholar
  68. Zilles K, Palomero-Gallagher N (2001) Cyto-, myelo- and receptor architectonics of the human parietal cortex. NeuroImage 14:8–20CrossRefGoogle Scholar
  69. Zilles K, Armstrong E, Schleicher A, Kretschmann H-J (1988) The human pattern of gyrification in the cerebral cortex. Anat Embryol 179:173–179PubMedCrossRefGoogle Scholar
  70. Zilles K, Schlaug G, Matelli M, Luppino G, Schleicher A, Qü M, Dabringhaus A, Seitz R, Roland PE (1995) Mapping of human and macaque sensorimotor areas by integrating architectonic, transmitter receptor, MRI and PET data. J Anat 187:515–537PubMedGoogle Scholar
  71. Zilles K, Schleicher A, Langemann C, Amunts K, Morosan P, Palomero-Gallagher N, Schormann T, Mohlberg H, Bürgel U, Steinmetz H, Schlaug G, Roland PE (1997) Quantitative analysis of sulci in the human cerebral cortex: development, regional heterogeneity, gender difference, asymmetry, intersubject variability and cortical architecture. Human Brain Mapp 5:218–221CrossRefGoogle Scholar
  72. Zilles K, Kawashima R, Dabringhaus A, Fukuda H, Schormann T (2001) Hemispheric shape of European and Japanese brains: 3-D MRI analysis of intersubject variability, ethnical, and gender differences. NeuroImage 13:262–271PubMedCrossRefGoogle Scholar
  73. Zilles K, Palomero-Gallagher N, Grefkes C, Scheperjans F, Boy C, Amunts K, Schleicher A (2002a) Architectonics of the human cerebral cortex and transmitter receptor fingerprints: reconciling functional neuroanatomy and neurochemistry. Eur Neuropsychopharmacol 12:587–599PubMedCrossRefGoogle Scholar
  74. Zilles K, Schleicher A, Palomero-Gallagher N, Amunts K (2002b) Quantitative analysis of cyto- and receptorarchitecture of the human brain. In: Toga AW, Mazziotta JC (eds) Brain mapping: the methods, 2nd edn. Academic, New York, pp 573–602Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • H. B. M. Uylings
    • 1
    • 2
    Email author
  • G. Rajkowska
    • 3
  • E. Sanz-Arigita
    • 1
  • K. Amunts
    • 4
    • 5
  • K. Zilles
    • 4
    • 6
  1. 1.Netherlands Institute for Brain ResearchGraduate School Neurosciences Amsterdam, Royal Netherlands Academy of Arts and SciencesAmsterdamThe Netherlands
  2. 2.Department of Anatomy, VU University Medical CenterGraduate School Neurosciences AmsterdamAmsterdamThe Netherlands
  3. 3.Department of Psychiatry and Department of AnatomyUniversity of Mississippi Medical CenterJacksonUSA
  4. 4.Institute of MedicineResearch Center JülichJülichGermany
  5. 5.Department of Psychiatry and PsychotherapyRWTH Aachen UniversityAachenGermany
  6. 6.C. and O. Vogt Institute for Brain ResearchUniversity of DüsseldorfDüsseldorfGermany

Personalised recommendations