Anatomy and Embryology

, Volume 210, Issue 5–6, pp 463–472 | Cite as

Functional clusters in the human parietal cortex as revealed by an observer-independent meta-analysis of functional activation studies

Original Article


The human parietal cortex is a highly differentiated structure consisting of cytoarchitectonically defined subareas that are specifically connected with other cortical and subcortical areas. Based on evidence from neurophysiological studies in subhuman primates these subareas are supposed to be functionally highly specialized. Here, we reviewed 51 different neuroimaging studies on healthy subjects with activation of the parietal lobe in statistical parametric maps. Running a cluster analysis on the stereotactic coordinates of the centers of gravity of the activation areas and plotting them into Talairach space showed a high consistency of the mean activation foci for similar paradigms across different laboratories and functional imaging modalities. Our meta-analysis exposed seven distinct pairs of quite symmetrically distributed subareas of the parietal cortex of each hemisphere as well as three unpaired regions that are critically involved in the generation of limb and eye movements in egocentric and allocentric coordinates, but also in attention, memory and cognitive problem solving. These data highlights the modular organization of the human parietal lobe. By its locally interspersed distributed circuits it orchestrates specialized cognitive subfunctions interfacing perception and action. Our meta-analysis provides a new framework for understanding information processing in the human parietal cortex.


Parietal lobe Functional imaging fMRT PET Topography 


  1. Astafiev SV, Shulman GL, Stanley CM, Snyder AZ, Van Essen DC, Corbetta M (2003) Functional organization of human intraparietal and frontal cortex for attending, looking, and pointing. J Neurosci 23:4689–4699PubMedGoogle Scholar
  2. Azari NP, Nickel J, Wunderlich G et al (2001) Neural correlates of religious experience. Eur J Neurosci 13:1649–1652PubMedCrossRefGoogle Scholar
  3. Binkofski F, Butler A, Buccino G et al (2003) Mirror apraxia affects the peripersonal mirror space. A combined lesion and cerebral activation study. Exp Brain Res 153:210–219PubMedCrossRefGoogle Scholar
  4. Bonda E, Petrides M, Frey S, Evans A (1995) Neural correlates of mental transformations of the body-in-space. Proc Natl Acad Sci USA 92:11180–11184PubMedCrossRefGoogle Scholar
  5. Bremmer F, Schlack A, Shah NJ et al (2001) Polymodal motion processing in posterior parietal and premotor cortex: a human fMRI study strongly implies equivalencies between humans and monkeys. Neuron 29:287–296PubMedCrossRefGoogle Scholar
  6. Brett M (2002) The MNI brain and the Talairach atlas. 14-2-2002. Ref Type: Internet CommunicationGoogle Scholar
  7. Caminiti R, Ferraina S, Johnson PB (1996) The sources of visual information to the primate frontal lobe: a novel role for the superior parietal lobule. Cereb Cortex 6:319–328PubMedCrossRefGoogle Scholar
  8. Chaminade T, Decety J (2002) Leader or follower? Involvement of the inferior parietal lobule in agency. Neuroreport 13:1975–1978PubMedCrossRefGoogle Scholar
  9. Clower DM, Hoffman JM, Votaw JR, Faber TL, Woods RP, Alexander GE (1996) Role of posterior parietal cortex in the recalibration of visually guided reaching. Nature 383:618–621PubMedCrossRefGoogle Scholar
  10. Coull JT, Nobre AC (1998) Where and when to pay attention: the neural systems for directing attention to spatial locations and to time intervals as revealed by both PET and fMRI. J Neurosci 18:7426–7435PubMedGoogle Scholar
  11. Decety J, Grezes J, Costes N et al (1997) Brain activity during observation of actions. Influence of action content and subject’s strategy. Brain 120(Pt 10):1763–1777PubMedCrossRefGoogle Scholar
  12. Dehaene S, Spelke E, Pinel P, Stanescu R, Tsivkin S (1999) Sources of mathematical thinking: behavioral and brain-imaging evidence. Science 284:970–974PubMedCrossRefGoogle Scholar
  13. Deiber MP, Passingham RE, Colebatch JG, Friston KJ, Nixon PD, Frackowiak RS (1991) Cortical areas and the selection of movement: a study with positron emission tomography. Exp Brain Res 84:393–402PubMedCrossRefGoogle Scholar
  14. Desmurget M, Grea H, Grethe JS, Prablanc C, Alexander GE, Grafton ST (2001) Functional anatomy of nonvisual feedback loops during reaching: a positron emission tomography study. J Neurosci 21:2919–1928PubMedGoogle Scholar
  15. Dolan RJ, Fink GR, Rolls E et al (1997) How the brain learns to see objects and faces in an impoverished context. Nature 389:596–599PubMedCrossRefGoogle Scholar
  16. Ehrsson HH, Kuhtz-Buschbeck JP, Forssberg H (2002) Brain regions controlling nonsynergistic versus synergistic movement of the digits: a functional magnetic resonance imaging study. J Neurosci 22:5074–5080PubMedGoogle Scholar
  17. Faillenot I, Toni I, Decety J, Gregoire MC, Jeannerod M (1997) Visual pathways for object-oriented action and object recognition: functional anatomy with PET. Cereb Cortex 7:77–85PubMedCrossRefGoogle Scholar
  18. Farrer C, Franck N, Georgieff N, Frith CD, Decety J, Jeannerod M (2003) Modulating the experience of agency: a positron emission tomography study. Neuroimage 18:324–333PubMedCrossRefGoogle Scholar
  19. Farrer C, Frith CD (2002) Experiencing oneself vs another person as being the cause of an action: the neural correlates of the experience of agency. Neuroimage 15:596–603PubMedCrossRefGoogle Scholar
  20. Fletcher PC, Frith CD, Baker SC, Shallice T, Frackowiak RS, Dolan RJ (1995) The mind’s eye—precuneus activation in memory-related imagery. Neuroimage 2:195–200PubMedCrossRefGoogle Scholar
  21. Foerster O (1936) Sensorischer Kortex. In: Bumke OFO (ed) Allgemeine Neurologie. Julius Springer Verlag, BerlinGoogle Scholar
  22. Gerardin E, Sirigu A, Lehericy S et al (2000) Partially overlapping neural networks for real and imagined hand movements. Cereb Cortex 10:1093–1104PubMedCrossRefGoogle Scholar
  23. Glickstein M, May JG III, Mercier BE (1985) Corticopontine projection in the macaque: the distribution of labelled cortical cells after large injections of horseradish peroxidase in the pontine nuclei. J Comp Neurol 235:343–359PubMedCrossRefGoogle Scholar
  24. Gurd JM, Amunts K, Weiss PH et al (2002) Posterior parietal cortex is implicated in continuous switching between verbal fluency tasks: an fMRI study with clinical implications. Brain 125:1024–1038PubMedCrossRefGoogle Scholar
  25. Hermsdorfer J, Goldenberg G, Wachsmuth C et al (2001) Cortical correlates of gesture processing: clues to the cerebral mechanisms underlying apraxia during the imitation of meaningless gestures. Neuroimage 14:149–161PubMedCrossRefGoogle Scholar
  26. Jancke L, Kleinschmidt A, Mirzazade S, Shah NJ, Freund HJ (2001) The role of the inferior parietal cortex in linking the tactile perception and manual construction of object shapes. Cereb Cortex 11:114–121PubMedCrossRefGoogle Scholar
  27. Jeannerod M, Arbib MA, Rizzolatti G, Sakata H (1995) Grasping objects: the cortical mechanisms of visuomotor transformation. Trends Neurosci 18:314–320PubMedCrossRefGoogle Scholar
  28. Jessen F, Erb M, Klose U, Lotze M, Grodd W, Heun R (1999) Activation of human language processing brain regions after the presentation of random letter strings demonstrated with event-related functional magnetic resonance imaging. Neurosci Lett 270:13–16PubMedCrossRefGoogle Scholar
  29. Kawashima R, Roland PE, O’Sullivan BT (1995) Functional anatomy of reaching and visuomotor learning: a positron emission tomography study. Cereb Cortex 5:111–122PubMedCrossRefGoogle Scholar
  30. Kertzman C, Schwarz U, Zeffiro TA, Hallett M (1997) The role of posterior parietal cortex in visually guided reaching movements in humans. Exp Brain Res 114:170–183PubMedCrossRefGoogle Scholar
  31. Konen CS, Kleiser R, Wittsack HJ, Bremmer F, Seitz RJ (2004) The encoding of saccadic eye movements within human posterior parietal cortex. Neuroimage 22:304–314PubMedCrossRefGoogle Scholar
  32. Kuhtz-Buschbeck JP, Ehrsson HH, Forssberg H (2001) Human brain activity in the control of fine static precision grip forces: an fMRI study. Eur J Neurosci 14:382–390PubMedCrossRefGoogle Scholar
  33. Lancaster JL (2000) Talairach Daemon. Ref Type: Internet CommunicationGoogle Scholar
  34. Leiguarda RC, Marsden CD (2000) Limb apraxias: higher-order disorders of sensorimotor integration. Brain 123(Pt 5):860–879PubMedCrossRefGoogle Scholar
  35. Makuuchi M, Kaminaga T, Sugishita M (2003) Both parietal lobes are involved in drawing: a functional MRI study and implications for constructional apraxia. Brain Res Cogn Brain Res 16:338–347PubMedCrossRefGoogle Scholar
  36. Medendorp WP, Goltz HC, Vilis T, Crawford JD (2003) Gaze-centered updating of visual space in human parietal cortex. J Neurosci 23:6209–6214PubMedGoogle Scholar
  37. Mesulam MM (1981) A cortical network for directed attention and unilateral neglect. Ann Neurol 10:309–325PubMedCrossRefGoogle Scholar
  38. Middleton FA, Strick PL (2000) Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Res Brain Res Rev 31:236–250PubMedCrossRefGoogle Scholar
  39. Milner AD, Goodale MA (1993) Visual pathways to perception and action. Prog Brain Res 95:317–337PubMedCrossRefGoogle Scholar
  40. Owen AM, Doyon J, Petrides M, Evans AC (1996) Planning and spatial working memory: a positron emission tomography study in humans. Eur J Neurosci 8:353–364PubMedCrossRefGoogle Scholar
  41. Pardo JV, Fox PT, Raichle ME (1991) Localization of a human system for sustained attention by positron emission tomography. Nature 349:61–64PubMedCrossRefGoogle Scholar
  42. Parsons LM, Fox PT, Downs JH et al (1995) Use of implicit motor imagery for visual shape discrimination as revealed by PET. Nature 375:54–58PubMedCrossRefGoogle Scholar
  43. Paulesu E, Frith CD, Frackowiak RS (1993) The neural correlates of the verbal component of working memory. Nature 362:342–345PubMedCrossRefGoogle Scholar
  44. Perry RJ, Zeki S (2000) The neurology of saccades and covert shifts in spatial attention: an event-related fMRI study. Brain 123(Pt 11):2273–2288PubMedCrossRefGoogle Scholar
  45. Pesenti M, Zago L, Crivello F et al (2001) Mental calculation in a prodigy is sustained by right prefrontal and medial temporal areas. Nat Neurosci 4:103–107PubMedCrossRefGoogle Scholar
  46. Petrides M, Alivisatos B, Meyer E, Evans AC (1993) Functional activation of the human frontal cortex during the performance of verbal working memory tasks. Proc Natl Acad Sci USA 90:878–882PubMedCrossRefGoogle Scholar
  47. Petrides M, Pandya DN (1984) Projections to the frontal cortex from the posterior parietal region in the rhesus monkey. J Comp Neurol 228:105–116PubMedCrossRefGoogle Scholar
  48. Rizzolatti G, Luppino G, Matelli M (1998) The organization of the cortical motor system: new concepts. Electroencephalogr Clin Neurophysiol 106:283–296PubMedCrossRefGoogle Scholar
  49. Rowe JB, Toni I, Josephs O, Frackowiak RS, Passingham RE (2000) The prefrontal cortex: response selection or maintenance within working memory? Science 288:1656–1660PubMedCrossRefGoogle Scholar
  50. Ruby P, Decety J (2001) Effect of subjective perspective taking during simulation of action: a PET investigation of agency. Nat Neurosci 4:546–550PubMedGoogle Scholar
  51. Rushworth MF, Paus T, Sipila PK (2001) Attention systems and the organization of the human parietal cortex. J Neurosci 21:5262–5271PubMedGoogle Scholar
  52. Sakai K, Hikosaka O, Takino R, Miyauchi S, Nielsen M, Tamada T (2000) What and when: parallel and convergent processing in motor control. J Neurosci 20:2691–2700PubMedGoogle Scholar
  53. Schwarz C, Thier P (1999) Binding of signals relevant for action: towards a hypothesis of the functional role of the pontine nuclei. Trends Neurosci 22:443–451PubMedCrossRefGoogle Scholar
  54. Seitz RJ, Binkofski F (2003) Modular organization of parietal lobe functions as revealed by functional activation studies. Adv Neurol 93:281–292PubMedGoogle Scholar
  55. Seitz RJ, Stephan KM, Binkofski F (2000) Control of action as mediated by the human frontal lobe. Exp Brain Res 133:71–80PubMedCrossRefGoogle Scholar
  56. Sereno MI, Pitzalis S, Martinez A (2001) Mapping of contralateral space in retinotopic coordinates by a parietal cortical area in humans. Science 294:1350–1354PubMedCrossRefGoogle Scholar
  57. Shikata E, Hamzei F, Glauche V et al (2001) Surface orientation discrimination activates caudal and anterior intraparietal sulcus in humans: an event-related fMRI study. J Neurophysiol 85:1309–1314PubMedGoogle Scholar
  58. Simon O, Mangin JF, Cohen L, Le Bihan D, Dehaene S (2002) Topographical layout of hand, eye, calculation, and language-related areas in the human parietal lobe. Neuron 33:475–487PubMedCrossRefGoogle Scholar
  59. Stoeckel MC, Weder B, Binkofski F, Buccino G, Shah NJ, Seitz RJ (2003) A fronto-parietal circuit for tactile object discrimination: an event-related fMRI study. Neuroimage 19:1103–1114PubMedCrossRefGoogle Scholar
  60. Suchan B, Yaguez L, Wunderlich G et al (2002) Neural correlates of visuospatial imagery. Behav Brain Res 131:163–168PubMedCrossRefGoogle Scholar
  61. Suchan B, Yaguez L, Wunderlich G et al (2002) Hemispheric dissociation of visual-pattern processing and visual rotation. Behav Brain Res 136:533–544PubMedCrossRefGoogle Scholar
  62. Taira M, Nose I, Inoue K, Tsutsui K (2001) Cortical areas related to attention to 3D surface structures based on shading: an fMRI study. Neuroimage 14:959–966PubMedCrossRefGoogle Scholar
  63. Talairach JTP (1988) Co-planar stereotaxic atlas of the human brain 3-dimensional proportional system: an approach to cerebral imaging. Thieme, StuttgartGoogle Scholar
  64. Ungerleider LG, Haxby JV (1994) ’What’ and ’where’ in the human brain. Curr Opin Neurobiol 4:157–165PubMedCrossRefGoogle Scholar
  65. Vandenberghe R, Price C, Wise R, Josephs O, Frackowiak RS (1996) Functional anatomy of a common semantic system for words and pictures. Nature 383:254–256PubMedCrossRefGoogle Scholar
  66. Van Essen DC, Anderson CH, Felleman DJ (1992) Information processing in the primate visual system: an integrated systems perspective. Science 255:419–423PubMedCrossRefGoogle Scholar
  67. Weiss PH, Marshall JC, Wunderlich G et al (2000) Neural consequences of acting in near versus far space: a physiological basis for clinical dissociations. Brain 123(Pt 12):2531–2541PubMedCrossRefGoogle Scholar
  68. Zago L, Pesenti M, Mellet E, Crivello F, Mazoyer B, Tzourio-Mazoyer N (2001) Neural correlates of simple and complex mental calculation. Neuroimage 13:314–327PubMedCrossRefGoogle Scholar
  69. Zilles K, Palomero-Gallagher N (2001) Cyto-, myelo-, and receptor architectonics of the human parietal cortex. Neuroimage 14:S8–S20PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Department of NeurologyUniversity Hospital DüsseldorfDüsseldorfGermany
  2. 2.Brain Imaging Center WestResearch Center JülichJülichGermany
  3. 3.Biomedical Research CenterHeinrich-Heine-University DüsseldorfDüsseldorfGermany

Personalised recommendations