Anatomy and Embryology

, Volume 210, Issue 5–6, pp 447–453 | Cite as

Analysis of neuroreceptor PET-data based on cytoarchitectonic maximum probability maps: a feasibility study

  • René Hurlemann
  • Andreas Matusch
  • Simon B. Eickhoff
  • Nicola Palomero-Gallagher
  • Philipp T. Meyer
  • Christian Boy
  • Wolfgang Maier
  • Karl Zilles
  • Katrin Amunts
  • Andreas Bauer
Original Article

Abstract

Three-dimensional maximum probability maps (MPMs) of cytoarchitectonically defined cortical regions based on postmortem histological studies have recently been made available in the stereotaxic reference space of the Montreal Neurological Institute (MNI) single subject template. This permits the use of cytoarchitectonic maps for the analysis of functional in vivo datasets, including neuroreceptor positron emission tomography (PET) studies. In this feasibility study, we used 5-hydroxytryptamine 2A (5-HT2A) receptor PET to test the applicability of maximum cytoarchitectonic probability maps for quantitative analysis. As the outcome parameter, we extracted local distribution volume ratios (DVRs) from 19 cytoarchitectonically defined volumes of interest (VOIs) per hemisphere from five healthy subjects. The experimental design included a forward (‘PET to atlas‘ normalization) and a backward (‘atlas to PET’ normalization) procedure to double-check the stability of transformation and overlay. Resulting DVRs were compared with receptor densities (RDs) obtained from postmortem [3H]ketanserin autoradiography of multiple areas. Correlations between the bi-directional normalization procedures (r=0.89; 38 VOIs) as well as between in vivo and vitro data (nine VOIs; r=0.64 and r=0.47 for forward and backward procedure, respectively) suggest that the implementation of cytoarchitectonic maximum probability maps is a promising method for an accurate and observer-independent analysis of neuroreceptor PET data.

Keywords

5-HT2A [18F]Altanserin PET Probabalistic Atlas Cytoarchitecture 

References

  1. Abi-Dargham A, Laruelle M, Seibl J, Rattner Z, Baldwin RM, Zoghbi SS, Zea-Ponce Y, Bremmer JD, Hyde TM, Charney DS, Hoffer PB, Innis RB (1994) SPECT Measurement of benzodiazepine receptors in human brain with iodine-123-iomazenil: kinetic and equilibrium paradigms. J Nucl Med 35:228–238PubMedGoogle Scholar
  2. Adams KH, Pinborg LH, Svarer C, Hasselbalch SG, Holm S, Haugbol S, Madsen K, Frokjaer V, Martiny L, Paulson OB, Knudsen GM (2004) A database of [(18)F]-altanserin binding to 5-HT(2A) receptors in normal volunteers: normative data and relationship to physiological and demographic variables. Neuroimage 21:1105–1113PubMedCrossRefGoogle Scholar
  3. Amunts K, Schleicher A, Buergel U, Mohlberg H, Uylings HBM, Zilles K (1999) Broca’s region revisited: cytoarchitecture and intersubject variability. J Comp Neurol 412:319–341PubMedCrossRefGoogle Scholar
  4. Amunts K, Malikovic A, Mohlberg H, Schormann T, Zilles K (2000) Brodmann’s areas 17 and 18 brought into stereotaxic space—where and how variable? Neuroimage 11:66–84PubMedCrossRefGoogle Scholar
  5. Amunts K, Schleicher A, Zilles K (2002) Architectonic mapping of human cerebral cortex. In: Schütz A, Miller R (eds) Cortical areas: unity and diversity. Herwood Academic Publishers, pp 29–521.Google Scholar
  6. Choi HJ, Amunts K, Mohlberg H, Fink GR, Schleicher A, Zilles K (2002) Cytoarchitectonic mapping of the anterior ventral bank of the intraparietal sulcus in humans. Human brain mapping 2002 meeting. Neuroimage 16:S591Google Scholar
  7. Collins DL, Neelin P, Peters TM, Evans AC (1994) Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. J Comp Assist Tomogr 18:192–205CrossRefGoogle Scholar
  8. Eickhoff S, Walters NB, Schleicher A, Krill J, Egan GF, Zilles K, Watson JDG, Amunts K (2004) High-resolution MRI reflects myeloarchitecture and cytoarchitecture of human cerebral cortex. Hum Brain Mapp 24:206–215CrossRefGoogle Scholar
  9. Eickhoff S, Mohlerg H, Stephan KE, Fink GR, Zilles K, Amunts K (2004) A new SPM toolbox for the combined analysis of fMRI data and probabilistic cytoarchitectonic maps. Human brain mapping 2004 meeting, Poster No. WE 167Google Scholar
  10. Eickhoff S, Schleicher A, Zilles K, Amunts K (2005b) The human parietal operculum. I. Cytoarchitectonic mapping of subdivisions. Cerebral Cortex (in press)Google Scholar
  11. Eickhoff S, Amunts K, Mohlberg H, Zilles K (2005a) The human parietal operculum II. Stereotaxic maps and correlation with functional imaging results. Cerebral Cortex (in press)Google Scholar
  12. Evans AC, Collins DL, Mills SR, Brown ED, Kelly RL, Peters TM (1993) 3D statistical neuroanatomical models from 305 MRI volumes. In: Nuclear science symposium and medical imaging conference, 1993 IEEE conference record 3, pp 1813–1817Google Scholar
  13. Geyer S, Ledberg A, Schleicher A, Kinomura S, Schormann T, Buergel U, Klingberg T, Larsson J, Zilles K, Roland PE (1996) Two different areas within the primary motor cortex of man. Nature 382:805–807PubMedCrossRefGoogle Scholar
  14. Geyer S, Schleicher A, Zilles K (1999) Area 3a, 3b, and 1 of human primary somatosensory cortex: 1. Microstructural organization and interindividual variability. Neuroimage 10:63–83PubMedCrossRefGoogle Scholar
  15. Geyer S, Schormann T, Mohlberg H, Zilles K (2000) Areas 3a, 3b, and 1 of human primary somatosensory cortex: 2. Spatial normalization to standard anatomical space. Neuroimage 11:684–696PubMedCrossRefGoogle Scholar
  16. Geyer S, Schleicher A, Schormann T, Mohlberg H, Bodegard A, Roland PE, Zilles K (2001) Integration of microstructural and functional aspects of human somatosensory areas 3a, 3b, and 1 on the basis of a computerized brain atlas. Anat Embryol (Berl) 204:351–366CrossRefGoogle Scholar
  17. Grefkes C, Geyer S, Schormann T, Roland P, Zilles K (2001) Human somatosensory area 2: observer-independent cytoarchitectonic mapping, interindividual variability, and population map. Neuroimage 14:617–631PubMedCrossRefGoogle Scholar
  18. Hamacher K, Hamkens W (1995) Remote controlled one step production of 18F labeled butyrophenone neuroleptics exemplified by the synthesis of n.c.a. [18F]N-methyl-spiperone. Appl Radiat Isot 46:911–916CrossRefGoogle Scholar
  19. Hoffman EJ, Huang SC, Phelps ME (1979) Quantitation in positron emission computed tomography: 1. Effects of object size. J Comput Assist Tomogr 3:299–308PubMedCrossRefGoogle Scholar
  20. Holmes CJ, Hoge R, Collins L, Woods R, Toga AW, Evans AC (1998) Enhancement of MR images using registration for signal averaging. J Comput Assist Tomogr 22:324–333PubMedCrossRefGoogle Scholar
  21. Koepp MJ, Hand KS, Labbe C, Richardson MP, Van Paesschen W, Baird VH, Cunningham VJ, Bowery NG, Brooks DJ, Duncan JS (1998) In vivo [11C]flumazenil-PET correlates with ex vivo [3H]flumazenil autoradiography in hippocampal sclerosis. Ann Neurol 43:618–626PubMedCrossRefGoogle Scholar
  22. Laruelle M, Baldwin RM, Rattner Z, Al-Tikriti MS, Zea-Ponce Y, Zoghbi SS, Charney DS, Price JC, Frost JJ, Hoffer PB, Innis RB (1994) J Cereb Blood Flow Metab 14:439–452PubMedGoogle Scholar
  23. Lemaire C, Cantineau R, Guillaume M, Pleneveaux A, Christiaens L (1991) Fluorine-18-Altanserin: a radioligand for the study of serotonin receptors with PET: radiolabeling and in vivo biologic behavior in rats. J Nucl Med 32:2266–2272PubMedGoogle Scholar
  24. Logan J, Fowler JS, Volkow ND, Wang GJ, Ding YS, Alexoff DL (1996) Distribution volume ratios without blood sampling from graphical analysis of PET data. J Cereb Blood Flow Metab 16:834–840PubMedCrossRefGoogle Scholar
  25. Mohlberg H, Evans AC, Lerch J, Amunts K, Zilles K (2003) Probabilistic cytoarchitectonic maps transformed into MNI space. Human brain mapping 2003 meeting. NeuroImage 19:S905Google Scholar
  26. Morosan P, Rademacher J, Schleicher A, Amunts K, Schormann T, Zilles K (2001) Human primary auditory cortex: cytoarchitectonic subdivisions and mapping into a spatial reference system. Neuroimage 13:684–701PubMedCrossRefGoogle Scholar
  27. Morosan P, Rademacher J, Palomero-Gallagher N, Zilles K (2005) Anatomical organization of the human auditory cortex: cytoarchitecture and transmitter receptors. In: Heil, König, Budinger (eds) Auditory cortex: towards a synthesis of human and animal research. Lawrence Erlbaum, Mahwah, NJGoogle Scholar
  28. Pazos A, Probst A, Palacios JM (1987) Serotonin receptors in the human brain—IV. Autoradiographic mapping of serotonin-2 receptors. Neuroscience 21:123–139PubMedCrossRefGoogle Scholar
  29. Price JC, Lopresti BJ, Mason NS, Holt DP, Huang Y, Mathis CA (2001a) Analyses of [(18)F] altanserin bolus injection PET data. I: consideration of radiolabeled metabolites in baboons. Synapse 41:1–10PubMedCrossRefGoogle Scholar
  30. Price JC, Lopresti BJ, Meltzer CC, Smith GS, Mason NS, Huang Y, Holt DP, Gunn RN, Mathis CA (2001b) Analyses of [(18)F]altanserin bolus injection PET data. II: consideration of radiolabeled metabolites in humans. Synapse 41:11–21PubMedCrossRefGoogle Scholar
  31. Schleicher A, Amunts K, Geyer S, Morosan P, Zilles K (1999) Observer-independent method for microstructural parcellation of cerebral cortex: a quantitative approach to cytoarchitectonics. Neuroimage 9:165–177PubMedCrossRefGoogle Scholar
  32. Tan PZ, Baldwin RM, VanDyck CH, Al-Tikriti M, Roth B, Khan N, Charney DS,Innis RB (1999) Characterization of radioactive metabolites of 5-HT2A-receptor PET ligand [18F]altanserin in human and rodent. Nuclear Med Biol 26:601–608CrossRefGoogle Scholar
  33. Zilles K, Palomero-Gallagher N, Grefkes C, Scheperjans F, Boy C, Amunts K, Schleicher A (2002) Architectonics of the human cerebral cortex and transmitter receptor fingerprints: reconciling functional neuroanatomy and neurochemistry. Eur Neuropsychopharmacol 12:587–599PubMedCrossRefGoogle Scholar
  34. Zilles K, Schleicher A, Palomero-Gallagher N, Amunts K (2002) Quantitative analysis of cyto- and receptor architecture of the human brain. In: Mazziotta JC, Toga A (eds) Brain mapping: the methods. Elsevier, NY, pp 573–602Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • René Hurlemann
    • 1
    • 2
  • Andreas Matusch
    • 1
  • Simon B. Eickhoff
    • 1
  • Nicola Palomero-Gallagher
    • 1
  • Philipp T. Meyer
    • 1
  • Christian Boy
    • 1
  • Wolfgang Maier
    • 2
  • Karl Zilles
    • 1
    • 3
  • Katrin Amunts
    • 1
  • Andreas Bauer
    • 1
  1. 1.Brain Imaging Center West, Institute of MedicineResearch Center JülichJülichGermany
  2. 2.Department of PsychiatryUniversity of BonnBonnGermany
  3. 3.C & O Vogt Institute for Brain ResearchUniversity of DuesseldorfDuesseldorfGermany

Personalised recommendations