Advertisement

Anatomy and Embryology

, Volume 210, Issue 5–6, pp 387–400 | Cite as

Three-dimensional cytoarchitectonic analysis of the posterior bank of the human precentral sulcus

  • O. Schmitt
  • J. Modersitzki
  • S. Heldmann
  • S. Wirtz
  • L. Hömke
  • W. Heide
  • D. Kömpf
  • A. Wree
Original Article

Abstract

Studies employing functional magnetic resonance imaging have identified the human frontal eye field as being in the anterior and partly in the posterior wall, as well as at the base of the precentral sulcus. Moreover, it is known that the frontal eye field extends rostrally to the superior frontal sulcus. According to Brodmann’s cytoarchitectonic map, this region belongs to the dysgranular Brodmann area 6 of the premotor cortex. However, the frontal eye field in non-human primates has been located within the arcuate sulcus in Brodmann area 8, generating considerable debate about where to locate exactly the frontal eye field in humans. Functional studies of the primate frontal eye field have revealed a principal homology of voluntary saccadic control systems in human and old-world monkeys, especially the macaque. But these homologies seem to be contradicted by the reported topographic localization at the cytoarchitectonic level. Therefore, we studied the cytoarchitectonic structure of the posterior bank of the precentral sulcus of a human brain, employing newly developed spatial mapping techniques to provide data about whether or not this region should be considered cytoarchitecturally homogeneous or heterogeneous. We used functional magnetic resonance imaging results, as an initial guide in localizing a region which is activated by saccadic tasks. A maximum of activation was detected around the junction of the superior frontal sulcus and the precentral sulcus extending 1.5 cm along the precentral sulcus in direction of the lateral sulcus. Here, one human brain has been analyzed to obtain preliminary data about the cytoarchitectonical changes of a part of area 6. Statistical analysis of the three-dimensional architectonic data from this region allowed us to identify a zone at the posterior bank, which in other studies has been associated with a functional region that controls pursuit eye movements and performs sensory-to-motor transformations. We found two significant sectors along the ventral part of the posterior bank of the precentral sulcus. The caudal transition region coincides partly with a region that integrates retinal and eye position signals for target location, arm, and axial movements. The second more ventrally located region is attributed to process oral-facial movements. The caudal transition region coincides with our functional magnetic resonance imaging investigation. It was revealed that this region lies at the inferior frontal eye field, where a pronounced activation over a larger region can be stimulated. Currently, more studies are needed to combine functional magnetic resonance imaging data of maximal activation with data from whole histologic brain sections of more individuals and to quantify the variability of this region and its sub-regions by means of a standardized brain atlas.

Keywords

Human brain Frontal eye field Brodmann’s area 6·Mapping Precentral sulcus Superior frontal sulcus fMRI Cytoarchitectonic mapping 

Abbreviations

3D

three-dimensional

BA

Brodmann’s area

BOLD

blood oxygen level dependent

CS

central sulcus

EPI

echo planar imaging

FEF

frontal eye field

FOV

field of view

iFEF

inferior frontal eye field

fMRI

functional magnetic resonance imaging

L

layer, lamina

LIP

lateral intraparietal area

MNI

Montreal Neurologic Institute

MRI

magnetic resonance imaging

NeuN

neuronal nuclear protein

PET

positron emission tomography

PCS

precentral sulcus

PMd

dorsal superior premotor cortex

PMd-caudal

caudal part of the dorsal premotor cortex

PMd-rostral

rostral part of the dorsal premotor cortex

PMv

ventral inferior premotor cortex

PMv-caudal

caudal part of the ventral premotor cortex

PMv-rostral

rostral part of the ventral premotor cortex

Pocg

postcentral gyrus

ROI

region of interest

Prcg

precentral gyrus

SEF

supplementary eye field

sFEF

superior frontal eye field

SWM

spatial working memory task

T1

longitudinal relaxation time

TE

echo time

TR

repetition time

VOI

volume of interest

Notes

Acknowledgement

We thank U. Almert and P. Lau of the Institute of Anatomy (University of Lübeck) for excellent histologic preparations. Dr. F. Binkofski and Dr. M. Nagel were of great help, as they provided the activation maxima of saccadic experiments. We also thank S. Haas for support and M. Westlund for editing of the manuscript.

References

  1. Amunts K, Weiss PH, Mohlberg H, Pieperhoff P, Eickhoff S, Gurd JM, Marshall JC, Shah NJ, Fink GR, Zilles K (2004) Analysis of neural mechanisms underlying verbal fluency in cytoarchitectonically defined stereotaxic space–the roles of Brodmann areas 44 and 45. Neuroimage 22:42–56PubMedCrossRefGoogle Scholar
  2. Andersen RA, Essick GK, Siegel RM (1985) Encoding of spatial location by posterior parietal neurons. Science 230:456–458PubMedCrossRefGoogle Scholar
  3. Andersen RA, Bracewell RM, Barash S, Gnadt JW, Fogassi L (1990) Eye position effects on visual, memory and saccade related activity in areas LIP and 7A of macaque. J Neurosci 10:1176–1196PubMedGoogle Scholar
  4. Anderson TJ, Jenkins IH, Brooks DJ, Hawken MB, Frackowiak RS, Kennard C (1994) Cortical control of saccades and fixation in man. A PET study. Brain 117:1073–1084Google Scholar
  5. Bailey P, von Bonin G (1951) The isocortex of man. University of Illinois Press, Urbana, ILGoogle Scholar
  6. Barbas H, Pandya DN (1987) Architecture and frontal cortical connections of the premotor cortex (area 6) in the rhesus monkey. J Comp Neurol 286:211–228CrossRefGoogle Scholar
  7. Barbas H, Pandya DN (1989) Architecture and intrinsic connections of the prefrontal cortex in the rhesus monkey. J Comp Neurol 286:353–375PubMedCrossRefGoogle Scholar
  8. Berman RA, Colby CL, Genovese CR, Voyvodic JT, Luna B, Thulborn KR, Sweeney JA (1999) Cortical networks subserving pursuit and saccadic eye movements in humans: an fMRI study. Hum Brain Mapp 8:209–225PubMedCrossRefGoogle Scholar
  9. Blanke O, Seeck M (2003) Direction of saccadic and smooth eye movements induced by electrical stimulation of the human frontal eye field: effect of orbital position. Exp Brain Res 150:174–183PubMedGoogle Scholar
  10. von Bonin G, Bailey P (1947) The neocortex of Macaca mulatta. University of Illinois Press, Urbana, ILGoogle Scholar
  11. Boussaoud D, Bremmer F (1999) Gaze effects in the cerebral cortex: reference frames for space coding and action. Exp Brain Res 128:170–180PubMedCrossRefGoogle Scholar
  12. Braak H (1980) Architectonics of the human telencephalic cortex. Springer, Berlin Heidelberg New YorkGoogle Scholar
  13. Brauer K, Schober W (1970) Catalogue of Mammalian Brains. VEB Gustav Fischer Verlag, JenaGoogle Scholar
  14. Bremmer F, Ilg UJ, Thiele A, Distler C, Hoffmann K-P (1997a) Eye position effects in monkey cortex. I. Visual and pursuit related activity in extrastriate areas MT and MST. J Neurophysiol 77:944–961PubMedGoogle Scholar
  15. Bremmer F, Distler C, Hoffmann K-P (1997b) Eye position effects in monkey cortex. I. Pursuit- and fixation-related activity in posterior parietal areas LIP and 7A. J Neurophysiol 77:962–977PubMedGoogle Scholar
  16. Bremmer F, Pouget A, Hoffmann K-P (1998) Eye position encoding in the macaque posterior parietal cortex. Eur J Neurosci 10:153–160PubMedCrossRefGoogle Scholar
  17. Brodmann K (1909) Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Barth, LeipzigGoogle Scholar
  18. Chalupa LM, Werner JS (eds) (2004) The visual neuroscience. MIT Press, CambridgeGoogle Scholar
  19. Courtney SM, Petit L, Maisog JM, Ungerleider LG, Haxby JV (1998) An area specialized for spatial working memory in human frontal cortex. Science 279:1347–1351PubMedCrossRefGoogle Scholar
  20. Crammond DJ, Kalaska JF (1996) Differential relation of discharge in primary motor cortex and premotor cortex to movements versus actively maintained postures during a reaching task. Exp Brain Res 108:45–61PubMedCrossRefGoogle Scholar
  21. Duke-Elder S, Wybar KC (1961) The anatomy of the visual system. Henry Kimpton, LondonGoogle Scholar
  22. Duvernoy HM (1999) The human brain surface, blood supply, and three-dimensional sectional anatomy. Springer, WienGoogle Scholar
  23. von Economo C, Koskinas GN (1925) Die Zytoarchitektonik der Hirnrinde des erwachsenen Menschen. Springer, WienGoogle Scholar
  24. Fadiga L, Fogassi L, Gallese V, Rizzolatti G (2000) Visuomotor neurons: ambiguity of the discharge or ‘motor’ perception? Int J Psychophysiol 35:165–177PubMedCrossRefGoogle Scholar
  25. Ferrier D (1875) Experiments on the brains of monkeys. Proc R Soc Lond 23:409–432Google Scholar
  26. Foerster O (1931) The cerebral cortex in man. Lancet 2:309–312Google Scholar
  27. Fogassi L, Raos V, Franchi G, Gallese V, Luppino G, Matelli M (1999) Visual responses in the dorsal premotor area F2 of the macaque monkey. Exp Brain Res 128:194–199PubMedCrossRefGoogle Scholar
  28. Fox PT, Fox JM, Raichle ME, Burde RM (1985) The role of cerebral cortex in the generation of voluntary saccades: a positron emission tomographic study. J Neurophysiol 54:348–369PubMedGoogle Scholar
  29. Gabernet L, Meskenaite V, Hepp-Reymond MC (1999) Parcellation of the lateral premotor cortex of the macaque monkey based on staining with the neurofilament antibody SMI-32. Exp Brain Res 128:188–193PubMedCrossRefGoogle Scholar
  30. Gentilucci M, Fogassi L, Luppino G, Matelli M, Camarda R, Rizzolatti G (1988) Functional organization of inferior area 6 in the macaque monkey. I. Somatotopy and the control of proximal movements. Exp Brain Res 71:475–490PubMedCrossRefGoogle Scholar
  31. Gentilucci M, Fogassi L, Luppino G, Matelli M, Camarda R, Rizzolatti G (1989) Somatotopic representation in inferior area 6 of the macaque monkey. Brain Behav Evol 33:118–121PubMedGoogle Scholar
  32. Geyer S, Matelli M, Luppino G, Zilles K (2000) Functional neuroanatomy of the primate isocortical motor system. Anat Embryol 202:443–474PubMedCrossRefGoogle Scholar
  33. Godoy J, Luders H, Dinner DS, Morris HH, Wyllie E (1990) Versive eye movements elicited by cortical stimulation of the human brain. Neurology 40:296–299PubMedGoogle Scholar
  34. Heide W, Binkofski F, Seitz JR, Posse S, Nitschke MF, Freund H-J, Kömpf D (2001) Activation of frontoparietal cortices during memorized triple-step sequences of saccadic eye movements: an fMRI study. Eur J Neurosci 13:1177–1189PubMedCrossRefGoogle Scholar
  35. Hepp-Reymond MC, Husler EJ, Maier MA, Ql HX (1994) Force-related neuronal activity in two regions of the primate ventral premotor cortex. Can J Physiol Pharmacol 72:571–579PubMedGoogle Scholar
  36. Lobel E, Kahane P, Leonards U, Grosbras M, Lehericy S, Le Bihan D, Berthoz A (2001) Localization of human frontal eye fields: anatomical and functional findings of functional magnetic resonance imaging and intracerebral electrical stimulation. J Neurosurg 95:804–815PubMedCrossRefGoogle Scholar
  37. Luna B, Thulborn KR, Strojwas MH, McCurtain BJ, Berman RA, Genovese CR, Sweeney JA (1998) Dorsal cortical regions subserving visually guided saccades in humans: an fMRI study. Cereb Cortex 8:40–47PubMedCrossRefGoogle Scholar
  38. Matelli M, Luppino G (1996) Thalamic input to mesial and superior area 6 in the macaque monkey. J Comp Neurol 372:59–87PubMedCrossRefGoogle Scholar
  39. Matelli M, Luppino G, Rizzolatti G (1985) Patterns of cytochrome oxidase activity in the frontal agranular cortex of the macaque monkey. Behav Brain Res 18:125–136PubMedCrossRefGoogle Scholar
  40. Matelli M, Luppino G, Rizzolatti G (1991) Architecture of superior and mesial area 6 and the adjacent cingulate cortex in the macaque monkey. J Comp Neurol 311:445–462PubMedCrossRefGoogle Scholar
  41. Modersitzki J (2004) Numerical methods for image registration. Oxford University Press, OxfordGoogle Scholar
  42. Muri RM, Heid O, Nirkko AC, Ozdoba C, Felblinger J, Schroth G, Hess CW (1998) Functional organization of saccades and antisaccades in the frontal lobe in humans: a study with echo planar functional magnetic resonance imaging. J Neurol Neurosurg Psychiatry 65:374–377PubMedGoogle Scholar
  43. Ngowyang G (1934) Die Cytoarchitektonik des menschlichen Stirnhirns. Monogr Nat Res Inst Psychol Acad Sin 7:1–69Google Scholar
  44. O’Driscoll GA, Wolff AL, Benkelfat C, Florencio PS, Lal S, Evans AC (2000) Functional neuroanatomy of smooth pursuit and predictive saccades. Neuroreport 11:1335–1340PubMedCrossRefGoogle Scholar
  45. Ono M, Kubik S, Abernathey CD (1990) Atlas of the cerebral sulci. Thieme, StuttgartGoogle Scholar
  46. Paus T (1996) Location and function of the human frontal eye-field: a selective review. Neuropsychologia 34:475–483PubMedCrossRefGoogle Scholar
  47. Penfield W, Jasper H (1954) Epilepsy and the functional anatomy of the human brain. Little Brown and Co, BostonGoogle Scholar
  48. Petit L, Haxby JV (1999) Functional anatomy of pursuit eye movements in humans as revealed by fMRI. J Neurophysiol 82:463–471PubMedGoogle Scholar
  49. Petit L, Orssaud C, Tzourio N, Salamon G, Mazoyer B, Berthoz A (1993) PET study of voluntary saccadic eye movements in humans: basal ganglia-thalamocortical system and cingulate cortex involvement. J Neurophysiol 69:1009–10017PubMedGoogle Scholar
  50. Petit L, Orssaud C, Tzourio N, Crivello F, Berthoz A, Mazoyer B (1996) Functional anatomy of a prelearned sequence of horizontal saccades in humans. J Neurosci 16:3714–3726PubMedGoogle Scholar
  51. Picard N, Strick PL (2001) Imaging the premotor areas. Curr Opin Neurobiol 11:663–672PubMedCrossRefGoogle Scholar
  52. Rasmussen T, Penfield W (1948) Movement of head and eyes from stimulation of human frontal cortex. Res Publ Assoc Res Nerv Ment Dis 27:346–361PubMedGoogle Scholar
  53. Rizzolatti G, Camarda R, Fogassi L, Gentilucci M, Luppino G, Matelli M (1988) Functional organization of inferior area 6 in the macaque monkey. II. Area F5 and the control of distal movements. Exp Brain Res 71:491–507PubMedCrossRefGoogle Scholar
  54. Rizzolatti G, Gentilucci M, Camarda RM, Gallese V, Luppino G, Matelli M, Fogassi L (1990) Neurons related to reaching-grasping arm movements in the rostral part of area 6 (area 6a beta). Exp Brain Res 82:337–350PubMedCrossRefGoogle Scholar
  55. Rizzolatti G, Fogassi L, Gallese V (2002) Motor and cognitive functions of the ventral premotor cortex. Curr Opin Neurobiol 12:149–154PubMedCrossRefGoogle Scholar
  56. Rosano C, Krisky CM, Welling JS, Eddy WF, Luna B, Thulborn KR, Sweeney JA (2002) Pursuit and saccadic eye movement subregions in human frontal eye field: a high-resolution fMRI investigation. Cereb Cortex 12:107–115PubMedCrossRefGoogle Scholar
  57. Rosano C, Sweeney JA, Melchitzky DS, Lewis DA (2003) The human precentral sulcus: chemoarchitecture of a region corresponding to the frontal eye fields. Brain Res 972:16–30PubMedCrossRefGoogle Scholar
  58. Sanides F (1962) Die Architektonik des menschlichen Stirnhirns Monographien aus dem Gesamtgebiete der Neurologie und Psychiatrie: 98. Springer, Berlin Heidelberg New YorkGoogle Scholar
  59. Sarkissov SA, Filimonoff IN, Kononowa EP, Preobraschenskaja IS, Kukuew LA (1955) Atlas of the cytoarchitectonics of the human cerebral cortex. Medgiz, MoscowGoogle Scholar
  60. Schall JD (1997) Visuomotor areas of the frontal lobe. In: Rockland K, Peters A, Kaas J (eds) Extrastriate cortex of primates, vol 12, Cerebral cortex. Plenum Press, New York, pp 527–638Google Scholar
  61. Schieber MH (1999) Somatotopic gradients in the distributed organization of the human primary motor cortex hand area: evidence from small infarcts. Exp Brain Res 128:139–148PubMedCrossRefGoogle Scholar
  62. Schmitt O, Böhme M (2002) A robust transcortical profile scanner for generating 2D-traverses in histological sections of rich curved cortical courses. Neuroimage 16:1103–1119PubMedCrossRefGoogle Scholar
  63. Schmitt O, Hömke L, Dümbgen L (2003) Detection of cortical transition regions utilizing statistical analysis of excess masses. Neuroimage 19:42–63PubMedGoogle Scholar
  64. Schmitt O, Pakura M, Aach T, Hömke L, Böhme M, Bock S, Preuße S (2004a) Analysis of nerve fibers and their distribution in histologic sections of the human brain. Microsc Res Tech 63:220–243PubMedCrossRefGoogle Scholar
  65. Schmitt O, Preuße S, Haas SJP (2004b) Comparison of contrast, sensitivity and efficiency of signal amplified and nonamplified immunohistochemical reactions suitable for videomicroscopy based quantification and neuroimaging. Brain Res Methods 12:157–171Google Scholar
  66. Shen L, Alexander GE (1997) Preferential representation of instructed target location versus limb trajectory in dorsal premotor area. J Neurophysiol 77:1195–1212PubMedGoogle Scholar
  67. Somogyi P, Takagi H (1982) A note on the use of picric acid and paraformaldehyde glutaraldehyde fixative for correlated light and electron mircoscopic immuno-cytochemistry. Neuroscience 7:1779–1783PubMedCrossRefGoogle Scholar
  68. Stanton GB, Deng SY, Goldberg ME, McMullen NT (1989) Cytoarchitectural characteristics of the frontal eye fields in macaque monkeys. J Comp Neurol 282:415–427PubMedCrossRefGoogle Scholar
  69. Stanton GB, Bruce CJ, Goldberg ME (1993) Topography of projections to the frontal lobe from the macaque frontal eye fields. J Comp Neurol 330:286–301PubMedCrossRefGoogle Scholar
  70. Stanton GB, Bruce CJ, Goldberg ME (1995) Topography of projections to posterior cortical areas from the macaque frontal eye fields. J Comp Neurol 353:291–305PubMedCrossRefGoogle Scholar
  71. Strasburger E (1937) Die myeloarchitektonische Gliederung des Stirnhirns beim Menschen und Schimpansen. J Psychol Neurol 47:461–491Google Scholar
  72. Sweeney JA, Mintun MA, Kwee S, Wiseman MB, Brown DL, Rosenberg DR, Carl JR (1996) Positron emission tomography study of voluntary saccadic eye movements and spatial working memory. J Neurophysiol 75:454–468PubMedGoogle Scholar
  73. Talairach J, Tournoux P (1993) Referentially orientated cerebral MRI anatomy. Thieme Medical publishers Inc, New YorkGoogle Scholar
  74. Tehovnik EJ, Sommer MA, Chou IH, Slocum WM, Schiller PH (2000) Eye fields in the frontal lobes of primates. Brain Res Brain Res Rev 32:413–448PubMedCrossRefGoogle Scholar
  75. Vogt O (1910) Die myeloarchitektonische Felderung des menschlichen Stirnhirns. J Psychol Neurol 15:221–238Google Scholar
  76. Vogt O (1926) Die vergleichend-architektonische und die vergleichend-reizphysiologische Felderung der Großhirnrinde unter besonderer Berücksichtigung der menschlichen. Naturwissenschaften 14:1190–1194CrossRefGoogle Scholar
  77. Vogt C, Vogt O (1919) Allgemeine Ergebnisse unserer Hirnforschung. J Psychol Neurol 25:279–461Google Scholar
  78. Zipser D, Andersen RA (1988) A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons. Nature 331:679–684PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • O. Schmitt
    • 1
  • J. Modersitzki
    • 2
  • S. Heldmann
    • 3
  • S. Wirtz
    • 3
  • L. Hömke
    • 4
  • W. Heide
    • 5
  • D. Kömpf
    • 6
  • A. Wree
    • 1
  1. 1.Institute of AnatomyUniversity RostockRostockGermany
  2. 2.Mathematics & Science CenterEmory UniversityAtlantaUSA
  3. 3.Institute of MathematicsUniversity LübeckLübeckGermany
  4. 4.Institute of MedicineResearch Center JülichJülichGermany
  5. 5.Department of NeurologyAKH-CelleCelleGermany
  6. 6.Department of NeurologyUniversity LübeckLübeckGermany

Personalised recommendations