Anatomy and Embryology

, Volume 207, Issue 3, pp 221–232 | Cite as

Prenatal development of the human mandible

3D reconstructions, morphometry and bone remodelling pattern, sizes 12–117 mm CRL
  • Ralf J. Radlanski
  • Herbert Renz
  • Marie C. Klarkowski
Original Article


Human embryos and fetuses (n=25) ranging from 12 to 117 mm CRL (crown-rump-length) were serially sectioned and the mandibles were reconstructed in 3D. In addition, characteristic areas of apposition, resorption and resting zones were projected onto the surface of the mandibular reconstructions after histological evaluation of the remodeling processes. Furthermore, morphometric data were taken to describe growth processes in horizontal views. In this way the changing outlines as seen in 3D could be correlated with the remodeling patterns and with the changes in growth. In these stages the mandible showed a general appositional growth, but resorption areas were found at the posterior margins of the mental foramen and at the lateral and medial posterior bony planes at concave surfaces. The bulging of bone underneath and over Meckel's cartilage could be recognized as active appositional growth areas. Meckel's cartilage itself lay in a trough which could be characterized by less apposition and even resorption. Questions were raised in how much the gap between our present knowledge of genetic expression of signaling molecules and the precise morphologic description of the mandibles can be bridged.


Human mandible Mandibular prenatal growth 3D reconstructions Bone remodeling Morphometry 



We thank Prof. Dr. G. Steding (Göttingen) and PD Dr. J. Männer (Göttingen) for permission to use part of the Göttingen collection and Mrs. B. Danielowski and Mrs. B. Schwarz for their technical support in our histological and image analysis laboratory. Concerning statistical questions we thank PD Dr. Dr. W. Hopfenmüller (Dept of Medical Informatics, University Clinic Benjamin Franklin) for his assistance. We are indebted to Mrs. Hala Zreiquat, PhD, for proofreading our manuscript as a native speaker. Parts of this study have been supported by the Deutsche Forschungsgemeinschaft (DFG) Ra 428/1–3.


  1. Berkovitz BKB, Moxham BJ (1988) A textbook of head and neck anatomy. Wolfe Publishing, BarcelonaGoogle Scholar
  2. Berkovitz BKB, Holland GR, Moxham BJ (2002) Oral anatomy, histology and embryology. Mosby, Edinburgh, pp 1–378Google Scholar
  3. Blechschmidt E (1948) Mechanische Genwirkungen—Funktionsentwicklung I. Musterschmidt, GöttingenGoogle Scholar
  4. Blechschmidt E (1960) The stages of human development before birth. An introduction to human embryology.—Die vorgeburtlichen Entwicklungsstadien des Menschen. Eine Einführung in die Humanembryologie. S. Karger, London New York Basel Freiburg i. B.Google Scholar
  5. Blechschmidt E (1973) Die Entstehung des Unterkiefers. Eine funktionelle Differenzierung im 1. Fertilisationsmonat. Fortschr Kieferorthop 34:337–358Google Scholar
  6. Burdi AR (1968) Morphogenesis of mandibular dental arch shape in human embryos. J Dent Res 47:50–58Google Scholar
  7. Cobourne MT, Sharpe PT (2003) Tooth and jaw: molecular mechanisms of patterning in the first branchial arch. Arch Oral Biol 48:1–14Google Scholar
  8. Depew MJ, Lufkin T, Rubenstein JLR (2002) Specification of jaw subdivisions by Dlx genes. Science 298:381–385Google Scholar
  9. Doskocil M (1988) Role of cartilage in the development of the mandible in man. Acta Univ Carol Med (Praha) 33:437–462Google Scholar
  10. Durst-Zivkovic B, Davila S (1974) Strukturelle Veränderungen des Meckelschen Knorpels im Laufe der Bildung des Corpus mandibulae. Anat Anz 135:12–23Google Scholar
  11. Fawcett E (1906) On the development, ossification, and growth of the palate bone of man. J Anat Physiol 40:400Google Scholar
  12. Fawcett E (1910) Description of a reconstruction of the head of a 30 mm human embryo. J Anat 44:303–311Google Scholar
  13. Gantz SJZ (1922) Studies on the fetal development of the human jaws and teeth. Dent Cosmos 64:131–140Google Scholar
  14. Gaunt PN, Gaunt WA (1978) Three dimensional reconstruction in biology. Pittman Medical Publications, LondonGoogle Scholar
  15. Glatthor KD (1963) Über die pränatale Entwicklung der Kiefer. Thesis, ErlangenGoogle Scholar
  16. Goret-Nicaise M (1982) The mandibular symphysis of the newborn. Histologic and microradiographic study. Rev Stomatol Chir Maxillofac 83:266–276Google Scholar
  17. Helms JA, Schneider RA (2003) Cranial skeletal biology. Nature 423:326–331Google Scholar
  18. Helms JA, Kim CH, Hu D, Minkoff R, Thaller C, Eichele G (1997) Sonic hedgehog participates in craniofacial morphogenesis and is down-regulated by teratogenic doses of retinoic acid. Dev Biol 187:25–35Google Scholar
  19. Hinrichsen KV (1990) Humanembryologie. Springer, Berlin Heidelberg New YorkGoogle Scholar
  20. Jäger A (1996) Untersuchungen der Remodellierungsvorgänge der Lamina dura menschlichen Alveolarknochens. Entwicklung und Anwendung eines halbautomatischen Meßsystems zur histomorphometrischen Analyse. Quintessenz, BerlinGoogle Scholar
  21. Jösten M, Rudolph R, Stein H, Walter JH (1993) Immun- und enzymhistochemische Differenzierung zwischen Geschwulst-Riesenzellen und osteoklasten-ähnlichen Riesenzellen in Neoplasien und Hunden am Paraffinschnitt. Berl Münch Tierärztl Wochenschr 106:390Google Scholar
  22. Kaufman MH, Brune RM, Davidson DR, Baldock RA (1998) Computer-generated three-dimensional reconstructions of serially sectioned mouse embryos. J Anat 193:323–336CrossRefPubMedGoogle Scholar
  23. Kirsch T (1955) Röntgenologische Studie am fetalen Unterkiefer. Dtsch Zahn Mund Kieferheilkd 23:177–185Google Scholar
  24. Kitamura H (1989). Embryology of the mouth and related structures. Manzen, TokyoGoogle Scholar
  25. Kjaer I (1989a) Formation and early prenatal location of the human mental foramen. Scand J Dent Res 97:1–7Google Scholar
  26. Kjaer I (1989b) Human prenatal palatinal closure related to skeletal maturity of the jaw. J Craniofac Genet Dev Biol 9:265–270Google Scholar
  27. Kjaer I (1990) Correlated appearance of ossification and nerve tissue in human fetal jaws. J Craniofac Genet Dev Biol 10:329–336Google Scholar
  28. Kjaer I, Graem N (1990) Simple autopsy method for analysis of complex fetal cranial malformations. Pediatr Pathol 10:717–727Google Scholar
  29. Kjaer I, Keeling JW, Fischer-Hansen B (1999) The prenatal human cranium—normal and patholologic development. Munksgaard, CopenhagenGoogle Scholar
  30. Kvinnsland S (1969) Observations on the early ossification process of the mandible as seen in plastic embedded human embryos. Acta Odont Scand 27:643–648Google Scholar
  31. Lee SH, Fu KK, Hui JN, Richman JM (2001) Noggin and retinoic acid transforms the identity of avian facial prominences. Nature 414:909–912Google Scholar
  32. Lee SK, Kim YS, Oh HS, Yang KH, Kim EC, Chi JG (2001) Prenatal development of the human mandible. Anat Rec 263:314–325Google Scholar
  33. Low A (1909) Further observations on the ossification of the human lower jaw. J Anat 44:83–95Google Scholar
  34. Macklin CC (1914) The skull of a human foetus of 40 mm. Am J Anat 16:314–423Google Scholar
  35. Macklin CC (1921) The skull of a human foetus of 43 mm greatest length. Contrib Embryol 10:57–103Google Scholar
  36. Mall FP (1906) On ossification centers in human embryos less than one hundred days old. Am J Anat 5:433–452Google Scholar
  37. Mauser C, Enlow DH, Overman DO, McCafferty REA (1975) Study of the prenatal growth of the human face and cranium. In: McNamara JA Jr (ed) Determinants of mandibular form and growth. Proceedings of a sponsored symposium honoring Prof. Robert E. Moyers. Monograph No. 4: Craniofacial growth series.Center of Human Growth and Development, The University of Michigan Ann Arbor, Michigan, USA, pp 243–275Google Scholar
  38. Meckel JF (1820) Handbuch der menschlichen Anatomie. IV. Band. Lehre und Geschichte des Foetus. Eingeweide, Berlin HalleGoogle Scholar
  39. Moore KL (1977) The developing human. W. B. Saunders, Philadelphia London TorontoGoogle Scholar
  40. Müller U (1995) Untersuchungen zur Morphogenese des Foramen mentale des Menschen. Computergestützte 3D-Rekonstruktionen und morphometrische Untersuchungen an der Mandibula und am Foramen mentale anhand von Schnittserien menschlicher Embryonen und Feten von 19–76 mm SSL. Thesis, Freie Universität BerlinGoogle Scholar
  41. Neumann K, Moegelin A, Temminghoff N et al. (1997) 3D-Computed tomography: a new method for the evaluation of fetal cranial morphology. J Craniofac Genet Dev Biol 17:9–22Google Scholar
  42. Olsen BR, Riginato AM, Wang W (2000) Bone development. Ann Rev Cell Dev Biol 16:191–220Google Scholar
  43. Orliaguet T, Darcha C, Déchelotte P, Vanneuville G (1994) Meckel's cartilage in the human embryo and fetus. Anat Rec 238:491–497Google Scholar
  44. Plant MR, MacDonald ME, Grad LI, Ritchie SJ, Richman JM (2000) Locally releaded acid prepatterns in the first branchial arch cartilages in vivo. Dev Biol 222:22–26CrossRefGoogle Scholar
  45. Presnell JK, Schreibman MP (1997) Humanson's animal tissue techniques The Johns Hopkins University Press, Baltimore LondonGoogle Scholar
  46. Radlanski RJ, Klarkowski M-C (2001) Bone remodeling of the human mandible during prenatal development. J Orofac Orthop 62:191–201Google Scholar
  47. Radlanski RJ, Lieck S, Bontschev NE (1999a) Development of the human temporomandibular joint. Computer-aided 3D-reconstructions. Eur J Oral Sci 107:25–34Google Scholar
  48. Radlanski RJ, Linden FPGM van der, Ohnesorge I (1999b) 4D-Computerized visualisation of human craniofacial skeletal growth and of the development of the dentition. Ann Anat 181:3–8Google Scholar
  49. Radlanski RJ, Renz H, Tabatabai A (2001) Prenatal development of the muscles in the floor of the mouth in human embryos and fetuses from 6.9 to 76 mm CRL. Ann Anat 183:511–518Google Scholar
  50. Radlanski RJ, Renz H, Müller U, Schneider RA, Marcucio RS, Helms JA (2002) Prenatal morphogenesis of the human mental foramen. Eur J Oral Sci 110:452–459CrossRefPubMedGoogle Scholar
  51. Reulen C (1997) Beiträge zur pränatalen Morphogenese der Mandibula des Menschen. Computergestützte 3D-Rekonstruktionen anhand von Schnittserien menschlicher Embryonen und Feten von 12–76 mm SSL. Thesis Freie Universität BerlinGoogle Scholar
  52. Rodriguez-Vasquez JF, Merida-Velasco JA, Merida-Vasquez JA, Sanchez-Montesinos I, Espin-Ferra J, Jiminez-Collado J (1997) Development of Meckel's cartilage in the symphyseal region in man. Anat Rec 249:249–254CrossRefPubMedGoogle Scholar
  53. Romeis B (1989). Mikroskopische Technik. Urban und Schwarzenberg, MünchenGoogle Scholar
  54. Rossant J, Tam PPL (eds) (2002) Mouse development. Patterning, morphogenesis, and organogenesis. Academic Press, San DiegoGoogle Scholar
  55. Schenk RK, Olah AJ, Merz A (1973) Bone and cell counts. Exerpta Medica, International Congress Series 270:103–113Google Scholar
  56. Schneider RA, Hu D, Helms JA (1999) From head to toe: conservation of molecular signals regulating limb and craniofacial morphogenesis. Cell Tissue Res 296:103–109Google Scholar
  57. Schneider RA, Hu D, Rubenstein JLR, Maden M, Helms JA (2001) Local retinoic signaling coordinates forebrain and facial morphogenesis by maintaining FGF8 and SSH. Development 128:2755–2767Google Scholar
  58. Scott JH, Dixon AD (1978) Anatomy for students of dentistry. Churchill Livingstone, Edinburgh London New YorkGoogle Scholar
  59. Shui C, Spelsberg TC, Riggs BL, Khosla S (2003) Changes in Runx2/Cbfa1 expression and activity during osteoblastic differentiation of human bone marrow stromal cells. J Bone Miner Res 18:213–221Google Scholar
  60. Sperber GH (2001) Craniofacial development. Decker, HamiltonGoogle Scholar
  61. Ten Cate AR (1998) Oral histology. Development, structure, and function. Mosby, St. LouisGoogle Scholar
  62. Testut J (1893) Traite d'anatomie humaine. Dion, ParisGoogle Scholar
  63. Thorogood P, Sarkar S, Moore R (1998) Skeletogenesis in the head. Proceedings of the conference Oral Biology at the Turn of the Century—Misconceptions, Truths, Challenges and Prospects. Interlaken, Switzerland, S. KargerGoogle Scholar
  64. Virapongse C, Shapiro R (1985) Computed tomography in the study of development of the skull base: 1. normal morphology. J Comput Assist Tomogr 9:85–94PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • Ralf J. Radlanski
    • 1
  • Herbert Renz
    • 1
  • Marie C. Klarkowski
    • 1
  1. 1.Universitätsklinikum Benjamin Franklin der FU Berlin Klinik und Poliklinik für Zahn-Mund- und KieferheilkundeDepartment of Experimental Dentistry and Oral Structural Biology Berlin-WilmersdorfGermany

Personalised recommendations