Advertisement

What is new about the molecular genetics in matrix-producing soft tissue tumors? -The contributions to pathogenetic understanding and diagnostic classification

  • Yu-Chien Kao
  • Jen-Chieh Lee
  • Hsuan-Ying HuangEmail author
Review Article
  • 45 Downloads

Abstract

Soft tissue tumors encompass a wide variety of mesenchymal neoplasms exhibiting diverse clinical, pathologic, and molecular features. Among these, osteoid and/or chondroid matrix deposition in some soft tissue tumors represents a noticeable characteristic. Unlike matrices present in bone tumors where they likely reveal the respective cells of origin (i.e., osteoblastic or chondroblastic precursors), those existing in soft tissue tumors more often denote a metaplastic phenomenon and reflect the diversity of differentiation these tumors can display. While many soft tissue tumor types can occasionally harbor metaplastic bone or cartilage as an incidental component or heterologous differentiation, in some other tumor types, the production of these matrices is a frequent and distinctive, if not diagnostic, feature. This review focuses on the latter tumor types where emerging immunohistochemical and molecular evidence has significantly improved our understanding of their respective pathogenesis and histopathological spectra. These tumor types include ossifying fibromyxoid tumor, phosphaturic mesenchymal tumor, synovial chondromatosis, soft tissue chondroma, calcifying aponeurotic fibroma, giant cell tumor of soft tissue, myositis ossificans and related diseases, mesenchymal chondrosarcoma, and extraskeletal osteosarcoma.

Keywords

Soft tissue Matrix Tumor Genetics Diagnosis 

Notes

Acknowledgments

This work was sponsored in part by Chang Gung Hospital (CMRPG8G0882 to H.Y.H.). The authors thank Ms. Shih-Chen Yu for her superb technical assistance in molecular testing. The authors thank Ping-Yuan Chu for excellent technical and editorial assistance.

Contributions of authors

Y.C.K., J.C.L., and H.Y.H. prepared the gross and microscopic figures and wrote the paper. H.Y.H. contributed to the data of molecular testing.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    Cho SJ, Horvai A (2015) Chondro-osseous lesions of soft tissue. Surg Pathol Clin 8(3):419–444.  https://doi.org/10.1016/j.path.2015.05.004 CrossRefPubMedGoogle Scholar
  2. 2.
    Schneider N, Fisher C, Thway K (2016) Ossifying fibromyxoid tumor: morphology, genetics, and differential diagnosis. Ann Diagn Pathol 20:52–58.  https://doi.org/10.1016/j.anndiagpath.2015.11.002 CrossRefPubMedGoogle Scholar
  3. 3.
    Graham RP, Dry S, Li X, Binder S, Bahrami A, Raimondi SC, Dogan A, Chakraborty S, Souchek JJ, Folpe AL (2011) Ossifying fibromyxoid tumor of soft parts: a clinicopathologic, proteomic, and genomic study. Am J Surg Pathol 35(11):1615–1625.  https://doi.org/10.1097/PAS.0b013e3182284a3f CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Folpe AL, Weiss SW (2003) Ossifying fibromyxoid tumor of soft parts: a clinicopathologic study of 70 cases with emphasis on atypical and malignant variants. Am J Surg Pathol 27(4):421–431.  https://doi.org/10.1097/00000478-200304000-00001 CrossRefPubMedGoogle Scholar
  5. 5.
    Graham RP, Weiss SW, Sukov WR, Goldblum JR, Billings SD, Dotlic S, Folpe AL (2013) PHF1 rearrangements in ossifying fibromyxoid tumors of soft parts: a fluorescence in situ hybridization study of 41 cases with emphasis on the malignant variant. Am J Surg Pathol 37(11):1751–1755.  https://doi.org/10.1097/PAS.0b013e31829644b4 CrossRefPubMedGoogle Scholar
  6. 6.
    Antonescu CR, Sung YS, Chen CL, Zhang L, Chen HW, Singer S, Agaram NP, Sboner A, Fletcher CD (2014) Novel ZC3H7B-BCOR, MEAF6-PHF1, and EPC1-PHF1 fusions in ossifying fibromyxoid tumors—molecular characterization shows genetic overlap with endometrial stromal sarcoma. Genes Chromosomes Cancer 53(2):183–193.  https://doi.org/10.1002/gcc.22132 CrossRefPubMedGoogle Scholar
  7. 7.
    Kao YC, Sung YS, Zhang L, Chen CL, Huang SC, Antonescu CR (2017) Expanding the molecular signature of ossifying fibromyxoid tumors with two novel gene fusions: CREBBP-BCORL1 and KDM2A-WWTR1. Genes Chromosomes Cancer 56(1):42–50.  https://doi.org/10.1002/gcc.22400 CrossRefPubMedGoogle Scholar
  8. 8.
    Suurmeijer AJH, Song W, Sung YS, Zhang L, Swanson D, Fletcher CDM, Dickson BC, Antonescu CR (2019) Novel recurrent PHF1-TFE3 fusions in ossifying fibromyxoid tumors. Genes Chromosomes Cancer.  https://doi.org/10.1002/gcc.22755
  9. 9.
    Folpe AL, Fanburg-Smith JC, Billings SD, Bisceglia M, Bertoni F, Cho JY, Econs MJ, Inwards CY, Jan de Beur SM, Mentzel T, Montgomery E, Michal M, Miettinen M, Mills SE, Reith JD, O'Connell JX, Rosenberg AE, Rubin BP, Sweet DE, Vinh TN, Wold LE, Wehrli BM, White KE, Zaino RJ, Weiss SW (2004) Most osteomalacia-associated mesenchymal tumors are a single histopathologic entity: an analysis of 32 cases and a comprehensive review of the literature. Am J Surg Pathol 28(1):1–30.  https://doi.org/10.1097/00000478-200401000-00001 CrossRefPubMedGoogle Scholar
  10. 10.
    Florenzano P, Gafni RI, Collins MT (2017) Tumor-induced osteomalacia. Bone Rep 7:90–97.  https://doi.org/10.1016/j.bonr.2017.09.002 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Boland JM, Tebben PJ, Folpe AL (2018) Phosphaturic mesenchymal tumors: what an endocrinologist should know. J Endocrinol Invest 41(10):1173–1184.  https://doi.org/10.1007/s40618-018-0849-5 CrossRefPubMedGoogle Scholar
  12. 12.
    Chong WH, Andreopoulou P, Chen CC, Reynolds J, Guthrie L, Kelly M, Gafni RI, Bhattacharyya N, Boyce AM, El-Maouche D, Crespo DO, Sherry R, Chang R, Wodajo FM, Kletter GB, Dwyer A, Collins MT (2013) Tumor localization and biochemical response to cure in tumor-induced osteomalacia. J Bone Miner Res 28(6):1386–1398.  https://doi.org/10.1002/jbmr.1881 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Yamada Y, Kinoshita I, Kenichi K, Yamamoto H, Iwasaki T, Otsuka H, Yoshimoto M, Ishihara S, Toda Y, Kuma Y, Setsu N, Koga Y, Honda Y, Inoue T, Yanai H, Yamashita K, Ito I, Takahashi M, Ohga S, Furue M, Nakashima Y, Oda Y (2018) Histopathological and genetic review of phosphaturic mesenchymal tumours, mixed connective tissue variant. Histopathology 72(3):460–471.  https://doi.org/10.1111/his.13377 CrossRefPubMedGoogle Scholar
  14. 14.
    Agaimy A, Michal M, Chiosea S, Petersson F, Hadravsky L, Kristiansen G, Horch RE, Schmolders J, Hartmann A, Haller F, Michal M (2017) Phosphaturic mesenchymal tumors: clinicopathologic, immunohistochemical and molecular analysis of 22 cases expanding their morphologic and immunophenotypic spectrum. Am J Surg Pathol 41(10):1371–1380.  https://doi.org/10.1097/PAS.0000000000000890 CrossRefPubMedGoogle Scholar
  15. 15.
    Tajima S, Takashi Y, Ito N, Fukumoto S, Fukuyama M (2016) ERG and FLI1 are useful immunohistochemical markers in phosphaturic mesenchymal tumors. Med Mol Morphol 49(4):203–209.  https://doi.org/10.1007/s00795-015-0115-2 CrossRefPubMedGoogle Scholar
  16. 16.
    Tajima S, Fukayama M (2015) CD56 may be a more useful immunohistochemical marker than somatostatin receptor 2A for the diagnosis of phosphaturic mesenchymal tumors. Int J Clin Exp Pathol 8(7):8159–8164PubMedPubMedCentralGoogle Scholar
  17. 17.
    Houang M, Clarkson A, Sioson L, Elston MS, Clifton-Bligh RJ, Dray M, Ranchere-Vince D, Decouvelaere AV, de la Fouchardiere A, Gill AJ (2013) Phosphaturic mesenchymal tumors show positive staining for somatostatin receptor 2A (SSTR2A). Hum Pathol 44(12):2711–2718.  https://doi.org/10.1016/j.humpath.2013.07.016 CrossRefPubMedGoogle Scholar
  18. 18.
    Tajima S, Fukayama M (2015) Possibility of D2-40 as a diagnostic and tumor differentiation-suggestive marker for some of phosphaturic mesenchymal tumors. Int J Clin Exp Pathol 8(8):9390–9396PubMedPubMedCentralGoogle Scholar
  19. 19.
    Creytens D, Van Dorpe J (2016) DOG1 expression in phosphaturic mesenchymal tumour. J Clin Pathol.  https://doi.org/10.1136/jclinpath-2016-203893 CrossRefGoogle Scholar
  20. 20.
    Shiba E, Matsuyama A, Shibuya R, Yabuki K, Harada H, Nakamoto M, Kasai T, Hisaoka M (2016) Immunohistochemical and molecular detection of the expression of FGF23 in phosphaturic mesenchymal tumors including the non-phosphaturic variant. Diagn Pathol 11:26.  https://doi.org/10.1186/s13000-016-0477-3 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Carter JM, Caron BL, Dogan A, Folpe AL (2015) A novel chromogenic in situ hybridization assay for FGF23 mRNA in phosphaturic mesenchymal tumors. Am J Surg Pathol 39(1):75–83.  https://doi.org/10.1097/PAS.0000000000000290 CrossRefPubMedGoogle Scholar
  22. 22.
    Lee JC, Su SY, Changou CA, Yang RS, Tsai KS, Collins MT, Orwoll ES, Lin CY, Chen SH, Shih SR, Lee CH, Oda Y, Billings SD, Li CF, Nielsen GP, Konishi E, Petersson F, Carpenter TO, Sittampalam K, Huang HY, Folpe AL (2016) Characterization of FN1-FGFR1 and novel FN1-FGF1 fusion genes in a large series of phosphaturic mesenchymal tumors. Mod Pathol 29(11):1335–1346.  https://doi.org/10.1038/modpathol.2016.137 CrossRefPubMedGoogle Scholar
  23. 23.
    Lee JC, Jeng YM, Su SY, Wu CT, Tsai KS, Lee CH, Lin CY, Carter JM, Huang JW, Chen SH, Shih SR, Marino-Enriquez A, Chen CC, Folpe AL, Chang YL, Liang CW (2015) Identification of a novel FN1-FGFR1 genetic fusion as a frequent event in phosphaturic mesenchymal tumour. J Pathol 235(4):539–545.  https://doi.org/10.1002/path.4465 CrossRefPubMedGoogle Scholar
  24. 24.
    Tajima S, Fukayama M (2015) Fibroblast growth factor receptor 1 (FGFR1) expression in phosphaturic mesenchymal tumors. Int J Clin Exp Pathol 8(8):9422–9427PubMedPubMedCentralGoogle Scholar
  25. 25.
    Dahlen A, Mertens F, Rydholm A, Brosjo O, Wejde J, Mandahl N, Panagopoulos I (2003) Fusion, disruption, and expression of HMGA2 in bone and soft tissue chondromas. Mod Pathol 16(11):1132–1140.  https://doi.org/10.1097/01.MP.0000092954.42656.94 CrossRefPubMedGoogle Scholar
  26. 26.
    Amary F, Perez-Casanova L, Ye H, Cottone L, Strobl AC, Cool P, Miranda E, Berisha F, Aston W, Rocha M, O'Donnell P, Pillay N, Tirabosco R, Baumhoer D, Hookway ES, Flanagan AM (2019) Synovial chondromatosis and soft tissue chondroma: extraosseous cartilaginous tumor defined by FN1 gene rearrangement. Mod Pathol.:1–10.  https://doi.org/10.1038/s41379-019-0315-8
  27. 27.
    Puls F, Hofvander J, Magnusson L, Nilsson J, Haywood E, Sumathi VP, Mangham DC, Kindblom LG, Mertens F (2016) FN1-EGF gene fusions are recurrent in calcifying aponeurotic fibroma. J Pathol 238(4):502–507.  https://doi.org/10.1002/path.4683 CrossRefPubMedGoogle Scholar
  28. 28.
    Al-Ibraheemi A, Folpe AL, Perez-Atayde AR, Perry K, Hofvander J, Arbajian E, Magnusson L, Nilsson J, Mertens F (2019) Aberrant receptor tyrosine kinase signaling in lipofibromatosis: a clinicopathological and molecular genetic study of 20 cases. Mod Pathol 32(3):423–434.  https://doi.org/10.1038/s41379-018-0150-3 CrossRefPubMedGoogle Scholar
  29. 29.
    Oliveira AM (2013) Giant cell tumor of soft tissue. In: Fletcher CD, Bridge JA, Hogendoorn PC, Mertens F (eds) WHO classification of tumours of soft tissue and bone, 4th edn. IARC Press, Lyon, pp 106–107Google Scholar
  30. 30.
    Behjati S, Tarpey PS, Presneau N, Scheipl S, Pillay N, Van Loo P, Wedge DC, Cooke SL, Gundem G, Davies H, Nik-Zainal S, Martin S, McLaren S, Goodie V, Robinson B, Butler A, Teague JW, Halai D, Khatri B, Myklebost O, Baumhoer D, Jundt G, Hamoudi R, Tirabosco R, Amary MF, Futreal PA, Stratton MR, Campbell PJ, Flanagan AM (2013) Distinct H3F3A and H3F3B driver mutations define chondroblastoma and giant cell tumor of bone. Nat Genet 45(12):1479–1482.  https://doi.org/10.1038/ng.2814 CrossRefPubMedGoogle Scholar
  31. 31.
    Lee JC, Liang CW, Fletcher CD (2017) Giant cell tumor of soft tissue is genetically distinct from its bone counterpart. Mod Pathol 30(5):728–733.  https://doi.org/10.1038/modpathol.2016.236 CrossRefPubMedGoogle Scholar
  32. 32.
    Mancini I, Righi A, Gambarotti M, Picci P, Dei Tos AP, Billings SD, Simi L, Franchi A (2017) Phenotypic and molecular differences between giant-cell tumour of soft tissue and its bone counterpart. Histopathology 71(3):453–460.  https://doi.org/10.1111/his.13249 CrossRefPubMedGoogle Scholar
  33. 33.
    Rosenberg AE, Oliveira AM (2013) Myositis ossificans and fibro-osseous pseudotumor of digits. In: Fletcher CD, Bridge JA, Hogendoorn PC, Mertens F (eds) WHO classification of tumours of soft tissue and bone, 4th edn. IARC Press, Lyon, pp 50–51Google Scholar
  34. 34.
    Svajdler M, Michal M, Martinek P, Ptakova N, Kinkor Z, Szepe P, Svajdler P, Mezencev R, Michal M (2019) Fibro-osseous pseudotumor of digits and myositis ossificans show consistent COL1A1-USP6 rearrangement: a clinicopathological and genetic study of 27 cases. Hum Pathol 88:39–47.  https://doi.org/10.1016/j.humpath.2019.02.009 CrossRefPubMedGoogle Scholar
  35. 35.
    Wilson JD, Montague CJ, Salcuni P, Bordi C, Rosai J (1999) Heterotopic mesenteric ossification ('intraabdominal myositis ossificans'): report of five cases. Am J Surg Pathol 23(12):1464–1470.  https://doi.org/10.1097/00000478-199912000-00003 CrossRefPubMedGoogle Scholar
  36. 36.
    Patel RM, Weiss SW, Folpe AL (2006) Heterotopic mesenteric ossification: a distinctive pseudosarcoma commonly associated with intestinal obstruction. Am J Surg Pathol 30(1):119–122.  https://doi.org/10.1097/01.pas.0000184820.71752.20 CrossRefPubMedGoogle Scholar
  37. 37.
    Hornick JL (2018) Practical soft tissue pathology: a diagnostic approach. Elsevier/Saunders, PhiladelphiaGoogle Scholar
  38. 38.
    Nielsen GP, Fletcher CD, Smith MA, Rybak L, Rosenberg AE (2002) Soft tissue aneurysmal bone cyst: a clinicopathologic study of five cases. Am J Surg Pathol 26(1):64–69.  https://doi.org/10.1097/00000478-200201000-00007 CrossRefPubMedGoogle Scholar
  39. 39.
    Sukov WR, Franco MF, Erickson-Johnson M, Chou MM, Unni KK, Wenger DE, Wang X, Oliveira AM (2008) Frequency of USP6 rearrangements in myositis ossificans, brown tumor, and cherubism: molecular cytogenetic evidence that a subset of "myositis ossificans-like lesions" are the early phases in the formation of soft-tissue aneurysmal bone cyst. Skeletal Radiol 37(4):321–327.  https://doi.org/10.1007/s00256-007-0442-z CrossRefPubMedGoogle Scholar
  40. 40.
    Song W, Suurmeijer AJH, Bollen SM, Cleton-Jansen AM, Bovee J, Kroon HM (2019) Soft tissue aneurysmal bone cyst: six new cases with imaging details, molecular pathology, and review of the literature. Skeletal Radiol 48(7):1059–1067.  https://doi.org/10.1007/s00256-018-3135-x CrossRefPubMedGoogle Scholar
  41. 41.
    Oliveira AM, Chou MM (2014) USP6-induced neoplasms: the biologic spectrum of aneurysmal bone cyst and nodular fasciitis. Hum Pathol 45(1):1–11.  https://doi.org/10.1016/j.humpath.2013.03.005 CrossRefPubMedGoogle Scholar
  42. 42.
    Jacquot C, Szymanska J, Nemana LJ, Steinbach LS, Horvai AE (2015) Soft-tissue aneurysmal bone cyst with translocation t(17;17)(p13;q21) corresponding to COL1A1 and USP6 loci. Skeletal Radiol 44(11):1695–1699.  https://doi.org/10.1007/s00256-015-2205-6 CrossRefPubMedGoogle Scholar
  43. 43.
    Wehrli BM, Huang W, De Crombrugghe B, Ayala AG, Czerniak B (2003) Sox9, a master regulator of chondrogenesis, distinguishes mesenchymal chondrosarcoma from other small blue round cell tumors. Hum Pathol 34(3):263–269.  https://doi.org/10.1053/hupa.2003.41 CrossRefPubMedGoogle Scholar
  44. 44.
    Fanburg-Smith JC, Auerbach A, Marwaha JS, Wang Z, Santi M, Judkins AR, Rushing EJ (2010) Immunoprofile of mesenchymal chondrosarcoma: aberrant desmin and EMA expression, retention of INI1, and negative estrogen receptor in 22 female-predominant central nervous system and musculoskeletal cases. Ann Diagn Pathol 14(1):8–14.  https://doi.org/10.1016/j.anndiagpath.2009.09.003 CrossRefPubMedGoogle Scholar
  45. 45.
    Shon W, Folpe AL, Fritchie KJ (2015) ERG expression in chondrogenic bone and soft tissue tumours. J Clin Pathol 68(2):125–129.  https://doi.org/10.1136/jclinpath-2014-202601 CrossRefPubMedGoogle Scholar
  46. 46.
    Folpe AL, Graham RP, Martinez A, Schembri-Wismayer D, Boland J, Fritchie KJ (2018) Mesenchymal chondrosarcomas showing immunohistochemical evidence of rhabdomyoblastic differentiation: a potential diagnostic pitfall. Hum Pathol 77:28–34.  https://doi.org/10.1016/j.humpath.2018.03.012 CrossRefGoogle Scholar
  47. 47.
    Shibuya R, Matsuyama A, Nakamoto M, Shiba E, Kasai T, Hisaoka M (2014) The combination of CD99 and NKX2.2, a transcriptional target of EWSR1-FLI1, is highly specific for the diagnosis of Ewing sarcoma. Virchows Arch 465(5):599–605.  https://doi.org/10.1007/s00428-014-1627-1 CrossRefPubMedGoogle Scholar
  48. 48.
    Hung YP, Fletcher CD, Hornick JL (2016) Evaluation of NKX2-2 expression in round cell sarcomas and other tumors with EWSR1 rearrangement: imperfect specificity for Ewing sarcoma. Mod Pathol 29(4):370–380.  https://doi.org/10.1038/modpathol.2016.31 CrossRefPubMedGoogle Scholar
  49. 49.
    Wang L, Motoi T, Khanin R, Olshen A, Mertens F, Bridge J, Dal Cin P, Antonescu CR, Singer S, Hameed M, Bovee JV, Hogendoorn PC, Socci N, Ladanyi M (2012) Identification of a novel, recurrent HEY1-NCOA2 fusion in mesenchymal chondrosarcoma based on a genome-wide screen of exon-level expression data. Genes Chromosomes Cancer 51(2):127–139.  https://doi.org/10.1002/gcc.20937 CrossRefPubMedGoogle Scholar
  50. 50.
    Nyquist KB, Panagopoulos I, Thorsen J, Haugom L, Gorunova L, Bjerkehagen B, Fossa A, Guriby M, Nome T, Lothe RA, Skotheim RI, Heim S, Micci F (2012) Whole-transcriptome sequencing identifies novel IRF2BP2-CDX1 fusion gene brought about by translocation t(1;5)(q42;q32) in mesenchymal chondrosarcoma. PLoS One 7(11):e49705.  https://doi.org/10.1371/journal.pone.0049705 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Schneiderman BA, Kliethermes SA, Nystrom LM (2017) Survival in mesenchymal chondrosarcoma varies based on age and tumor location: a survival analysis of the SEER database. Clin Orthop Relat Res 475(3):799–805.  https://doi.org/10.1007/s11999-016-4779-2 CrossRefPubMedGoogle Scholar
  52. 52.
    Tsuda Y, Ogura K, Hakozaki M, Kikuta K, Ae K, Tsuchiya H, Iwata S, Ueda T, Kawano H, Kawai A (2017) Mesenchymal chondrosarcoma: a Japanese Musculoskeletal Oncology Group (JMOG) study on 57 patients. J Surg Oncol 115(6):760–767.  https://doi.org/10.1002/jso.24567 CrossRefPubMedGoogle Scholar
  53. 53.
    Frezza AM, Cesari M, Baumhoer D, Biau D, Bielack S, Campanacci DA, Casanova J, Esler C, Ferrari S, Funovics PT, Gerrand C, Grimer R, Gronchi A, Haffner N, Hecker-Nolting S, Holler S, Jeys L, Jutte P, Leithner A, San-Julian M, Thorkildsen J, Vincenzi B, Windhager R, Whelan J (2015) Mesenchymal chondrosarcoma: prognostic factors and outcome in 113 patients. A European Musculoskeletal Oncology Society study. Eur J Cancer 51(3):374–381.  https://doi.org/10.1016/j.ejca.2014.11.007 CrossRefPubMedGoogle Scholar
  54. 54.
    Chung EB, Enzinger FM (1987) Extraskeletal osteosarcoma. Cancer 60(5):1132–1142.  https://doi.org/10.1002/1097-0142(19870901)60:5<1132::AID-CNCR2820600536>3.0.CO;2-L CrossRefGoogle Scholar
  55. 55.
    Bane BL, Evans HL, Ro JY, Carrasco CH, Grignon DJ, Benjamin RS, Ayala AG (1990) Extraskeletal osteosarcoma. A clinicopathologic review of 26 cases. Cancer 65(12):2762–2770.  https://doi.org/10.1002/1097-0142(19900615)65:12<2762::AID-CNCR2820651226>3.0.CO;2-K CrossRefGoogle Scholar
  56. 56.
    Lee JS, Fetsch JF, Wasdhal DA, Lee BP, Pritchard DJ, Nascimento AG (1995) A review of 40 patients with extraskeletal osteosarcoma. Cancer 76(11):2253–2259.  https://doi.org/10.1002/1097-0142(19951201)76:11<2253::AID-CNCR2820761112>3.0.CO;2-8 CrossRefGoogle Scholar
  57. 57.
    Lidang Jensen M, Schumacher B, Myhre Jensen O, Steen Nielsen O, Keller J (1998) Extraskeletal osteosarcomas: a clinicopathologic study of 25 cases. Am J Surg Pathol 22(5):588–594.  https://doi.org/10.1097/00000478-199805000-00010 CrossRefPubMedGoogle Scholar
  58. 58.
    Choi LE, Healey JH, Kuk D, Brennan MF (2014) Analysis of outcomes in extraskeletal osteosarcoma: a review of fifty-three cases. J Bone Joint Surg Am 96(1):e2.  https://doi.org/10.2106/JBJS.M.00339 CrossRefPubMedGoogle Scholar
  59. 59.
    Longhi A, Bielack SS, Grimer R, Whelan J, Windhager R, Leithner A, Gronchi A, Biau D, Jutte P, Krieg AH, Klenke FM, Grignani G, Donati DM, Capanna R, Casanova J, Gerrand C, Bisogno G, Hecker-Nolting S, De Lisa M, D'Ambrosio L, Willegger M, Scoccianti G, Ferrari S (2017) Extraskeletal osteosarcoma: a European Musculoskeletal Oncology Society study on 266 patients. Eur J Cancer 74:9–16.  https://doi.org/10.1016/j.ejca.2016.12.016 CrossRefPubMedGoogle Scholar
  60. 60.
    Jour G, Wang L, Middha S, Zehir A, Chen W, Sadowska J, Healey J, Agaram NP, Choi L, Nafa K, Hameed M (2016) The molecular landscape of extraskeletal osteosarcoma: a clinicopathological and molecular biomarker study. J Pathol Clin Res 2(1):9–20.  https://doi.org/10.1002/cjp2.29 CrossRefPubMedGoogle Scholar
  61. 61.
    Yi ES, Shmookler BM, Malawer MM, Sweet DE (1991) Well-differentiated extraskeletal osteosarcoma. A soft-tissue homologue of parosteal osteosarcoma. Arch Pathol Lab Med 115(9):906–909PubMedGoogle Scholar
  62. 62.
    Abramovici LC, Hytiroglou P, Klein RM, Karkavelas G, Drevelegas A, Panousi E, Steiner GC (2005) Well-differentiated extraskeletal osteosarcoma: report of 2 cases, 1 with dedifferentiation. Hum Pathol 36(4):439–443.  https://doi.org/10.1016/j.humpath.2005.01.023 CrossRefPubMedGoogle Scholar
  63. 63.
    Yamashita K, Kohashi K, Yamada Y, Nishida Y, Urakawa H, Oda Y, Toyokuni S (2017) Primary extraskeletal osteosarcoma: a clinicopathological study of 18 cases focusing on MDM2 amplification status. Hum Pathol 63:63–69.  https://doi.org/10.1016/j.humpath.2017.02.007 CrossRefPubMedGoogle Scholar
  64. 64.
    Makise N, Sekimizu M, Kubo T, Wakai S, Watanabe SI, Kato T, Kinoshita T, Hiraoka N, Fukayama M, Kawai A, Ichikawa H, Yoshida A (2018) Extraskeletal osteosarcoma: MDM2 and H3K27me3 analysis of 19 cases suggest disease heterogeneity. Histopathology 73(1):147–156.  https://doi.org/10.1111/his.13506 CrossRefPubMedGoogle Scholar
  65. 65.
    Yamashita K, Kohashi K, Yamada Y, Ishii T, Nishida Y, Urakawa H, Ito I, Takahashi M, Inoue T, Ito M, Ohara Y, Oda Y, Toyokuni S (2018) Osteogenic differentiation in dedifferentiated liposarcoma: a study of 36 cases in comparison to the cases without ossification. Histopathology 72(5):729–738.  https://doi.org/10.1111/his.13421 CrossRefPubMedGoogle Scholar
  66. 66.
    Chen E, O'Connell F, Fletcher CD (2011) Dedifferentiated leiomyosarcoma: clinicopathological analysis of 18 cases. Histopathology 59(6):1135–1143.  https://doi.org/10.1111/j.1365-2559.2011.04070.x CrossRefPubMedGoogle Scholar
  67. 67.
    Thway K, Hayes A, Ieremia E, Fisher C (2013) Heterologous osteosarcomatous and rhabdomyosarcomatous elements in dedifferentiated solitary fibrous tumor: further support for the concept of dedifferentiation in solitary fibrous tumor. Ann Diagn Pathol 17(5):457–463.  https://doi.org/10.1016/j.anndiagpath.2012.08.006 CrossRefPubMedGoogle Scholar
  68. 68.
    Kurisaki-Arakawa A, Akaike K, Hara K, Arakawa A, Takahashi M, Mitani K, Yao T, Saito T (2014) A case of dedifferentiated solitary fibrous tumor in the pelvis with TP53 mutation. Virchows Arch 465(5):615–621.  https://doi.org/10.1007/s00428-014-1625-3 CrossRefPubMedGoogle Scholar
  69. 69.
    Prieto-Granada CN, Wiesner T, Messina JL, Jungbluth AA, Chi P, Antonescu CR (2016) Loss of H3K27me3 expression is a highly sensitive marker for sporadic and radiation-induced MPNST. Am J Surg Pathol 40(4):479–489.  https://doi.org/10.1097/PAS.0000000000000564 CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Makise N, Sekimizu M, Kubo T, Wakai S, Hiraoka N, Komiyama M, Fukayama M, Kawai A, Ichikawa H, Yoshida A (2018) Clarifying the distinction between malignant peripheral nerve sheath tumor and dedifferentiated liposarcoma: a critical reappraisal of the diagnostic utility of MDM2 and H3K27me3 status. Am J Surg Pathol 42(5):656–664.  https://doi.org/10.1097/PAS.0000000000001014 CrossRefPubMedGoogle Scholar
  71. 71.
    Makise N, Sekimizu M, Konishi E, Motoi T, Kubo T, Ikoma H, Watanabe SI, Okuma T, Hiraoka N, Fukayama M, Kawai A, Ichikawa H, Yoshida A (2019) H3K27me3 deficiency defines a subset of dedifferentiated chondrosarcomas with characteristic clinicopathological features. Mod Pathol 32(3):435–445.  https://doi.org/10.1038/s41379-018-0140-5 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PathologyShuang Ho Hospital and School of Medicine, College of Medicine, Taipei Medical UniversityTaipeiTaiwan
  2. 2.Bone and Soft Tissue Study Group, Taiwan Society of PathologyKaohsiungTaiwan
  3. 3.Department and Graduate Institute of PathologyNational Taiwan University Hospital, National Taiwan University College of MedicineTaipeiTaiwan
  4. 4.Department of Anatomical PathologyKaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung CityTaiwan

Personalised recommendations