Advertisement

Update on selected advances in the immunohistochemical and molecular genetic analysis of soft tissue tumors

  • Khin Thway
  • Andrew L FolpeEmail author
Review and Perspectives

Abstract

Although traditional morphological evaluation remains the cornerstone for the diagnosis of soft tissue tumor, ancillary diagnostic modalities such as immunohistochemistry and molecular genetic analysis are of ever-increasing importance in this field. New insights into the molecular pathogenesis of soft tissue tumors, often obtained from high-throughput sequencing technologies, has enabled significant progress in the characterization and biologic stratification of mesenchymal neoplasms, expanding the spectrum of immunohistochemical tests (often aimed towards recently discovered genetic events) and molecular genetic assays (most often fluorescence in situ hybridization and reverse transcription-polymerase chain reaction). This review discusses selected novel molecular and immunohistochemical assays with diagnostic applicability in mesenchymal neoplasms, with emphasis on diagnosis, refinement of tumor classification, and treatment stratification.

Keywords

Immunohistochemistry Molecular diagnosis Sarcoma Soft tissue tumor BCOR CIC-DUX4 EWSR1 NTRK SMARCB1 SMARCA4 Pathology Genetics Targeted therapy 

Notes

Authors’ contributions

Dr Folpe contributed to the writing of manuscript and the production of the figures. Dr. Thway contributed to the writing of the manuscript.

Compliance with ethical standards

Drs. Folpe and Thway attest that this manuscript was produced in accordance with the ethical standards of the institutional research committees of Mayo Clinic and The Royal Marsden NHS Trust and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Andrici J, Gill AJ, Hornick JL (2018) Next generation immunohistochemistry: Emerging substitutes to genetic testing? Semin Diagn Pathol 35(3):161–169PubMedCrossRefGoogle Scholar
  2. 2.
    Le Loarer F, Laffont S, Lesluyes T, Tirode F, Antonescu C, Baglin AC et al (2019) Clinicopathologic and Molecular Features of a Series of 41 Biphenotypic Sinonasal Sarcomas Expanding Their Molecular Spectrum. Am J Surg Pathol 43(6):747–754CrossRefGoogle Scholar
  3. 3.
    Wong WJ, Lauria A, Hornick JL, Xiao S, Fletcher JA, Marino-Enriquez A (2016) Alternate PAX3-FOXO1 oncogenic fusion in biphenotypic sinonasal sarcoma. Genes Chromosom Cancer 55(1):25–29PubMedCrossRefGoogle Scholar
  4. 4.
    Alaggio R, Rosolen A, Sartori F, Leszl A, d'Amore ES, Bisogno G et al (2007) Spindle cell tumor with EWS-WT1 transcript and a favorable clinical course: a variant of DSCT, a variant of leiomyosarcoma, or a new entity? Report of 2 pediatric cases. Am J Surg Pathol 31(3):454–459PubMedCrossRefGoogle Scholar
  5. 5.
    Ud Din N, Pekmezci M, Javed G, Horvai AE, Ahmad Z, Faheem M et al (2015) Low-grade small round cell tumor of the cauda equina with EWSR1-WT1 fusion and indolent clinical course. Hum Pathol 46(1):153–158PubMedCrossRefGoogle Scholar
  6. 6.
    Kohashi K, Oda Y (2017) Oncogenic roles of SMARCB1/INI1 and its deficient tumors. Cancer Sci 108(4):547–552PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Wilson BG, Roberts CW (2011) SWI/SNF nucleosome remodellers and cancer. Nat Rev Cancer 11(7):481–492PubMedCrossRefGoogle Scholar
  8. 8.
    Biegel JA (2006) Molecular genetics of atypical teratoid/rhabdoid tumor. Neurosurg Focus 20(1):E11PubMedCrossRefGoogle Scholar
  9. 9.
    Biegel JA, Tan L, Zhang F, Wainwright L, Russo P, Rorke LB (2002) Alterations of the hSNF5/INI1 gene in central nervous system atypical teratoid/rhabdoid tumors and renal and extrarenal rhabdoid tumors. Clin Cancer Res : Off J Am Assoc Cancer Res 8(11):3461–3467Google Scholar
  10. 10.
    Biegel JA, Zhou JY, Rorke LB, Stenstrom C, Wainwright LM, Fogelgren B (1999) Germ-line and acquired mutations of INI1 in atypical teratoid and rhabdoid tumors. Cancer Res 59(1):74–79PubMedGoogle Scholar
  11. 11.
    Hoot AC, Russo P, Judkins AR, Perlman EJ, Biegel JA (2004) Immunohistochemical analysis of hSNF5/INI1 distinguishes renal and extra-renal malignant rhabdoid tumors from other pediatric soft tissue tumors. Am J Surg Pathol 28(11):1485–1491PubMedCrossRefGoogle Scholar
  12. 12.
    Sigauke E, Rakheja D, Maddox DL, Hladik CL, White CL, Timmons CF et al (2006) Absence of expression of SMARCB1/INI1 in malignant rhabdoid tumors of the central nervous system, kidneys and soft tissue: an immunohistochemical study with implications for diagnosis. Mod Pathol 19(5):717–725PubMedCrossRefGoogle Scholar
  13. 13.
    Judkins AR, Burger PC, Hamilton RL, Kleinschmidt-DeMasters B, Perry A, Pomeroy SL et al (2005) INI1 protein expression distinguishes atypical teratoid/rhabdoid tumor from choroid plexus carcinoma. J Neuropathol Exp Neurol 64(5):391–397PubMedCrossRefGoogle Scholar
  14. 14.
    Perry A, Fuller CE, Judkins AR, Dehner LP, Biegel JA (2005) INI1 expression is retained in composite rhabdoid tumors, including rhabdoid meningiomas. Mod Pathol 18(7):951–958PubMedCrossRefGoogle Scholar
  15. 15.
    Judkins AR, Mauger J, Ht A, Rorke LB, Biegel JA (2004) Immunohistochemical analysis of hSNF5/INI1 in pediatric CNS neoplasms. Am J Surg Pathol 28(5):644–650PubMedCrossRefGoogle Scholar
  16. 16.
    Kosemehmetoglu K, Kaygusuz G, Bahrami A, Raimondi SC, Kilicarslan K, Yildiz Y et al (2011) Intra-articular epithelioid sarcoma showing mixed classic and proximal-type features: report of 2 cases, with immunohistochemical and molecular cytogenetic INI-1 study. Am J Surg Pathol 35(6):891–897PubMedCrossRefGoogle Scholar
  17. 17.
    Hollmann TJ, Hornick JL (2011) INI1-deficient tumors: diagnostic features and molecular genetics. Am J Surg Pathol 35(10):e47–e63PubMedCrossRefGoogle Scholar
  18. 18.
    Raoux D, Peoc'h M, Pedeutour F, Vaunois B, Decouvelaere AV, Folpe AL (2009) Primary epithelioid sarcoma of bone: report of a unique case, with immunohistochemical and fluorescent in situ hybridization confirmation of INI1 deletion. Am J Surg Pathol 33(6):954–958PubMedCrossRefGoogle Scholar
  19. 19.
    Orrock JM, Abbott JJ, Gibson LE, Folpe AL (2009) INI1 and GLUT-1 expression in epithelioid sarcoma and its cutaneous neoplastic and nonneoplastic mimics. Am J Dermatopathol 31(2):152–156PubMedCrossRefGoogle Scholar
  20. 20.
    Hornick JL, Dal Cin P, Fletcher CD (2009) Loss of INI1 expression is characteristic of both conventional and proximal-type epithelioid sarcoma. Am J Surg Pathol 33(4):542–550PubMedCrossRefGoogle Scholar
  21. 21.
    Carter JM, O'Hara C, Dundas G, Gilchrist D, Collins MS, Eaton K et al (2012) Epithelioid malignant peripheral nerve sheath tumor arising in a schwannoma, in a patient with "neuroblastoma-like" schwannomatosis and a novel germline SMARCB1 mutation. Am J Surg Pathol 36(1):154–160PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Patil S, Perry A, Maccollin M, Dong S, Betensky RA, Yeh TH et al (2008) Immunohistochemical analysis supports a role for INI1/SMARCB1 in hereditary forms of schwannomas, but not in solitary, sporadic schwannomas. Brain Pathol 18(4):517–519PubMedPubMedCentralGoogle Scholar
  23. 23.
    Jo VY, Fletcher CDM (2017) SMARCB1/INI1 Loss in Epithelioid Schwannoma: A Clinicopathologic and Immunohistochemical Study of 65 Cases. Am J Surg Pathol 41(8):1013–1022PubMedCrossRefGoogle Scholar
  24. 24.
    Hasselblatt M, Thomas C, Hovestadt V, Schrimpf D, Johann P, Bens S et al (2016) Poorly differentiated chordoma with SMARCB1/INI1 loss: a distinct molecular entity with dismal prognosis. Acta Neuropathol 132(1):149–151PubMedCrossRefGoogle Scholar
  25. 25.
    Knutson SK, Warholic NM, Wigle TJ, Klaus CR, Allain CJ, Raimondi A et al (2013) Durable tumor regression in genetically altered malignant rhabdoid tumors by inhibition of methyltransferase EZH2. Proc Natl Acad Sci U S A 110(19):7922–7927PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Wilson BG, Wang X, Shen X, McKenna ES, Lemieux ME, Cho YJ et al (2010) Epigenetic antagonism between polycomb and SWI/SNF complexes during oncogenic transformation. Cancer Cell 18(4):316–328PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Bookhout C, Bouldin TW, Ellison DW (2017) Atypical teratoid/rhabdoid tumor with retained INI1 (SMARCB1) expression and loss of BRG1 (SMARCA4). Neuropathology.Google Scholar
  28. 28.
    Kohashi K, Yamamoto H, Yamada Y, Kinoshita I, Taguchi T, Iwamoto Y et al (2018) SWI/SNF Chromatin-remodeling Complex Status in SMARCB1/INI1-preserved Epithelioid Sarcoma. Am J Surg Pathol 42(3):312–318PubMedCrossRefGoogle Scholar
  29. 29.
    Karanian-Philippe M, Velasco V, Longy M, Floquet A, Arnould L, Coindre JM et al (2015) SMARCA4 (BRG1) loss of expression is a useful marker for the diagnosis of ovarian small cell carcinoma of the hypercalcemic type (ovarian rhabdoid tumor): a comprehensive analysis of 116 rare gynecologic tumors, 9 soft tissue tumors, and 9 melanomas. Am J Surg Pathol 39(9):1197–1205PubMedCrossRefGoogle Scholar
  30. 30.
    Agaimy A, Hartmann A, Antonescu CR, Chiosea SI, El-Mofty SK, Geddert H et al (2017) SMARCB1 (INI-1)-deficient Sinonasal Carcinoma: A Series of 39 Cases Expanding the Morphologic and Clinicopathologic Spectrum of a Recently Described Entity. Am J Surg Pathol 41(4):458–471PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Agaimy A, Fuchs F, Moskalev EA, Sirbu H, Hartmann A, Haller F (2017) SMARCA4-deficient pulmonary adenocarcinoma: clinicopathological, immunohistochemical, and molecular characteristics of a novel aggressive neoplasm with a consistent TTF1(neg)/CK7(pos)/HepPar-1(pos) immunophenotype. Virchows Arch 471(5):599–609CrossRefGoogle Scholar
  32. 32.
    Agaimy A, Daum O, Markl B, Lichtmannegger I, Michal M, Hartmann A (2016) SWI/SNF Complex-deficient Undifferentiated/Rhabdoid Carcinomas of the Gastrointestinal Tract: A Series of 13 Cases Highlighting Mutually Exclusive Loss of SMARCA4 and SMARCA2 and Frequent Co-inactivation of SMARCB1 and SMARCA2. Am J Surg Pathol 40(4):544–553PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Sauter JL, Graham RP, Larsen BT, Jenkins SM, Roden AC, Boland JM (2017) SMARCA4-deficient thoracic sarcoma: a distinctive clinicopathological entity with undifferentiated rhabdoid morphology and aggressive behavior. Mod Pathol 30(10):1422–1432CrossRefGoogle Scholar
  34. 34.
    Kuwamoto S, Matsushita M, Takeda K, Tanaka N, Endo Y, Yamasaki A et al (2017) SMARCA4-deficient thoracic sarcoma: report of a case and insights into how to reach the diagnosis using limited samples and resources. Hum Pathol 70:92–97PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Le Loarer F, Watson S, Pierron G, de Montpreville VT, Ballet S, Firmin N et al (2015) SMARCA4 inactivation defines a group of undifferentiated thoracic malignancies transcriptionally related to BAF-deficient sarcomas. Nat Genet 47(10):1200–1205CrossRefGoogle Scholar
  36. 36.
    Perret R, Chalabreysse L, Watson S, Serre I, Garcia S, Forest F et al (2019) SMARCA4-deficient Thoracic Sarcomas: Clinicopathologic Study of 30 Cases With an Emphasis on Their Nosology and Differential Diagnoses. Am J Surg Pathol 43(4):455–465PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Antonescu C (2014) Round cell sarcomas beyond Ewing: emerging entities. Histopathology. 64(1):26–37PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Italiano A, Sung YS, Zhang L, Singer S, Maki RG, Coindre JM et al (2012) High prevalence of CIC fusion with double-homeobox (DUX4) transcription factors in EWSR1-negative undifferentiated small blue round cell sarcomas. Genes Chromosom Cancer 51(3):207–218PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Graham C, Chilton-MacNeill S, Zielenska M, Somers GR (2012) The CIC-DUX4 fusion transcript is present in a subgroup of pediatric primitive round cell sarcomas. Hum Pathol 43(2):180–189PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Kao YC, Owosho AA, Sung YS, Zhang L, Fujisawa Y, Lee JC et al (2018) BCOR-CCNB3 Fusion Positive Sarcomas: A Clinicopathologic and Molecular Analysis of 36 Cases With Comparison to Morphologic Spectrum and Clinical Behavior of Other Round Cell Sarcomas. Am J Surg Pathol 42(5):604–615PubMedPubMedCentralGoogle Scholar
  41. 41.
    Gambarotti M, Benini S, Gamberi G, Cocchi S, Palmerini E, Sbaraglia M et al (2016) CIC-DUX4 fusion-positive round-cell sarcomas of soft tissue and bone: a single-institution morphological and molecular analysis of seven cases. Histopathology. 69(4):624–634PubMedCrossRefGoogle Scholar
  42. 42.
    Sugita S, Arai Y, Tonooka A, Hama N, Totoki Y, Fujii T et al (2014) A novel CIC-FOXO4 gene fusion in undifferentiated small round cell sarcoma: a genetically distinct variant of Ewing-like sarcoma. Am J Surg Pathol 38(11):1571–1576PubMedCrossRefGoogle Scholar
  43. 43.
    Yoshimoto M, Graham C, Chilton-MacNeill S, Lee E, Shago M, Squire J et al (2009) Detailed cytogenetic and array analysis of pediatric primitive sarcomas reveals a recurrent CIC-DUX4 fusion gene event. Cancer Genet Cytogenet 195(1):1–11PubMedCrossRefGoogle Scholar
  44. 44.
    Solomon DA, Brohl AS, Khan J, Miettinen M (2014) Clinicopathologic features of a second patient with Ewing-like sarcoma harboring CIC-FOXO4 gene fusion. Am J Surg Pathol 38(12):1724–1725PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Specht K, Sung YS, Zhang L, Richter GH, Fletcher CD, Antonescu CR (2014) Distinct transcriptional signature and immunoprofile of CIC-DUX4 fusion-positive round cell tumors compared to EWSR1-rearranged Ewing sarcomas: further evidence toward distinct pathologic entities. Genes Chromosom Cancer 53(7):622–633PubMedCrossRefGoogle Scholar
  46. 46.
    Hung YP, Fletcher CD, Hornick JL (2016) Evaluation of ETV4 and WT1 expression in CIC-rearranged sarcomas and histologic mimics. Mod Pathol 29(11):1324–1334PubMedCrossRefGoogle Scholar
  47. 47.
    Antonescu CR, Owosho AA, Zhang L, Chen S, Deniz K, Huryn JM et al (2017) Sarcomas With CIC-rearrangements Are a Distinct Pathologic Entity With Aggressive Outcome: A Clinicopathologic and Molecular Study of 115 Cases. Am J Surg Pathol 41(7):941–949PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Yamada Y, Kuda M, Kohashi K, Yamamoto H, Takemoto J, Ishii T et al (2017) Histological and immunohistochemical characteristics of undifferentiated small round cell sarcomas associated with CIC-DUX4 and BCOR-CCNB3 fusion genes. Virchows Arch 470(4):373–380PubMedCrossRefGoogle Scholar
  49. 49.
    Le Guellec S, Velasco V, Perot G, Watson S, Tirode F, Coindre JM (2016) ETV4 is a useful marker for the diagnosis of CIC-rearranged undifferentiated round-cell sarcomas: a study of 127 cases including mimicking lesions. Mod Pathol 29(12):1523–1531PubMedCrossRefGoogle Scholar
  50. 50.
    Machado I, Yoshida A, Lopez-Guerrero JA, Nieto MG, Navarro S, Picci P et al (2017) Immunohistochemical analysis of NKX2.2, ETV4, and BCOR in a large series of genetically confirmed Ewing sarcoma family of tumors. Pathol Res Pract 213(9):1048–1053PubMedCrossRefGoogle Scholar
  51. 51.
    Siegele B, Roberts J, Black JO, Rudzinski E, Vargas SO, Galambos C (2017) DUX4 Immunohistochemistry Is a Highly Sensitive and Specific Marker for CIC-DUX4 Fusion-positive Round Cell Tumor. Am J Surg Pathol 41(3):423–429PubMedCrossRefGoogle Scholar
  52. 52.
    Pierron G, Tirode F, Lucchesi C, Reynaud S, Ballet S, Cohen-Gogo S et al (2012) A new subtype of bone sarcoma defined by BCOR-CCNB3 gene fusion. Nat Genet 44(4):461–466PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Puls F, Niblett A, Marland G, Gaston CL, Douis H, Mangham DC et al (2014) BCOR-CCNB3 (Ewing-like) sarcoma: a clinicopathologic analysis of 10 cases, in comparison with conventional Ewing sarcoma. Am J Surg Pathol 38(10):1307–1318PubMedCrossRefGoogle Scholar
  54. 54.
    Kao YC, Sung YS, Zhang L, Chen CL, Huang SC, Antonescu CR (2017) Expanding the molecular signature of ossifying fibromyxoid tumors with two novel gene fusions: CREBBP-BCORL1 and KDM2A-WWTR1. Genes Chromosom Cancer 56(1):42–50PubMedCrossRefGoogle Scholar
  55. 55.
    Specht K, Zhang L, Sung YS, Nucci M, Dry S, Vaiyapuri S et al (2016) Novel BCOR-MAML3 and ZC3H7B-BCOR Gene Fusions in Undifferentiated Small Blue Round Cell Sarcomas. Am J Surg Pathol 40(4):433–442PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Kao YC, Sung YS, Zhang L, Huang SC, Argani P, Chung CT et al (2016) Recurrent BCOR Internal Tandem Duplication and YWHAE-NUTM2B Fusions in Soft Tissue Undifferentiated Round Cell Sarcoma of Infancy: Overlapping Genetic Features With Clear Cell Sarcoma of Kidney. Am J Surg Pathol 40(8):1009–1020PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Cohen-Gogo S, Cellier C, Coindre JM, Mosseri V, Pierron G, Guillemet C et al (2014) Ewing-like sarcomas with BCOR-CCNB3 fusion transcript: a clinical, radiological and pathological retrospective study from the Societe Francaise des Cancers de L'Enfant. Pediatr Blood Cancer 61(12):2191–2198PubMedCrossRefGoogle Scholar
  58. 58.
    Ludwig K, Alaggio R, Zin A, Peron M, Guzzardo V, Benini S et al (2017) BCOR-CCNB3 Undifferentiated Sarcoma-Does Immunohistochemistry Help in the Identification? Pediatr Dev Pathol 20(4):321–329PubMedCrossRefGoogle Scholar
  59. 59.
    Matsuyama A, Shiba E, Umekita Y, Nosaka K, Kamio T, Yanai H et al (2017) Clinicopathologic Diversity of Undifferentiated Sarcoma With BCOR-CCNB3 Fusion: Analysis of 11 Cases With a Reappraisal of the Utility of Immunohistochemistry for BCOR and CCNB3. Am J Surg Pathol 41(12):1713–1721PubMedCrossRefGoogle Scholar
  60. 60.
    Kao YC, Sung YS, Zhang L, Jungbluth AA, Huang SC, Argani P et al (2016) BCOR Overexpression Is a Highly Sensitive Marker in Round Cell Sarcomas With BCOR Genetic Abnormalities. Am J Surg Pathol 40(12):1670–1678PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Errani C, Zhang L, Sung YS, Hajdu M, Singer S, Maki RG et al (2011) A novel WWTR1-CAMTA1 gene fusion is a consistent abnormality in epithelioid hemangioendothelioma of different anatomic sites. Genes Chromosom Cancer 50(8):644–653PubMedCrossRefGoogle Scholar
  62. 62.
    Tanas MR, Sboner A, Oliveira AM, Erickson-Johnson MR, Hespelt J, Hanwright PJ et al (2011) Identification of a disease-defining gene fusion in epithelioid hemangioendothelioma. Sci Transl Med 3(98):98ra82PubMedCrossRefGoogle Scholar
  63. 63.
    Huentelman MJ, Papassotiropoulos A, Craig DW, Hoerndli FJ, Pearson JV, Huynh KD et al (2007) Calmodulin-binding transcription activator 1 (CAMTA1) alleles predispose human episodic memory performance. Hum Mol Genet 16(12):1469–1477PubMedCrossRefGoogle Scholar
  64. 64.
    Shibuya R, Matsuyama A, Shiba E, Harada H, Yabuki K, Hisaoka M (2015) CAMTA1 is a useful immunohistochemical marker for diagnosing epithelioid haemangioendothelioma. Histopathology. 67(6):827–835PubMedCrossRefGoogle Scholar
  65. 65.
    Doyle LA, Fletcher CD, Hornick JL (2016) Nuclear Expression of CAMTA1 Distinguishes Epithelioid Hemangioendothelioma From Histologic Mimics. Am J Surg Pathol 40(1):94–102PubMedCrossRefGoogle Scholar
  66. 66.
    Yusifli Z, Kosemehmetoglu K (2014) CAMTA1 immunostaining is not useful in differentiating epithelioid hemangioendothelioma from its potential mimickers. Turk Patoloji Derg 30(3):159–165PubMedGoogle Scholar
  67. 67.
    Antonescu CR, Le Loarer F, Mosquera JM, Sboner A, Zhang L, Chen CL et al (2013) Novel YAP1-TFE3 fusion defines a distinct subset of epithelioid hemangioendothelioma. Genes Chromosom Cancer 52(8):775–784PubMedCrossRefGoogle Scholar
  68. 68.
    Sharain RF, Gown AM, Greipp PT, Folpe AL (2019) Immunohistochemistry for TFE3 lacks specificity and sensitivity in the diagnosis of TFE3-rearranged neoplasms: a comparative, 2-laboratory study. Hum Pathol 87:65–74PubMedCrossRefGoogle Scholar
  69. 69.
    Billings SD, Folpe AL, Weiss SW (2003) Epithelioid sarcoma-like hemangioendothelioma. Am J Surg Pathol 27(1):48–57PubMedCrossRefGoogle Scholar
  70. 70.
    Hornick JL, Fletcher CD (2011) Pseudomyogenic hemangioendothelioma: a distinctive, often multicentric tumor with indolent behavior. Am J Surg Pathol 35(2):190–201PubMedCrossRefGoogle Scholar
  71. 71.
    Fittall MW, Mifsud W, Pillay N, Ye H, Strobl AC, Verfaillie A et al (2018) Recurrent rearrangements of FOS and FOSB define osteoblastoma. Nat Commun 9(1):2150PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Milde-Langosch K (2005) The Fos family of transcription factors and their role in tumourigenesis. Eur J Cancer 41(16):2449–2461PubMedCrossRefGoogle Scholar
  73. 73.
    Trombetta D, Magnusson L, von Steyern FV, Hornick JL, Fletcher CD, Mertens F (2011) Translocation t(7;19)(q22;q13)-a recurrent chromosome aberration in pseudomyogenic hemangioendothelioma? Cancer Gene Ther 204(4):211–215CrossRefGoogle Scholar
  74. 74.
    Walther C, Tayebwa J, Lilljebjorn H, Magnusson L, Nilsson J, von Steyern FV et al (2014) A novel SERPINE1-FOSB fusion gene results in transcriptional up-regulation of FOSB in pseudomyogenic haemangioendothelioma. J Pathol 232(5):534–540PubMedCrossRefGoogle Scholar
  75. 75.
    Agaram NP, Zhang L, Cotzia P, Antonescu CR (2018) Expanding the Spectrum of Genetic Alterations in Pseudomyogenic Hemangioendothelioma With Recurrent Novel ACTB-FOSB Gene Fusions. Am J Surg Pathol 42(12):1653–1661PubMedCrossRefGoogle Scholar
  76. 76.
    Panagopoulos I, Lobmaier I, Gorunova L, Heim S (2019) Fusion of the Genes WWTR1 and FOSB in Pseudomyogenic Hemangioendothelioma. Cancer Genomics Proteomics 16(4):293–298PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Walther C, Tayebwa J, Lilljebjorn H, Magnusson L, Nilsson J, von Steyern FV et al (2013) A novel SERPINE1-FOSB fusion gene results in transcriptional up-regulation of FOSB in pseudomyogenic hemangioendothelioma. J PatholGoogle Scholar
  78. 78.
    Antonescu CR, Chen HW, Zhang L, Sung YS, Panicek D, Agaram NP et al (2014) ZFP36-FOSB fusion defines a subset of epithelioid hemangioma with atypical features. Genes Chromosom Cancer 53(11):951–959PubMedCrossRefGoogle Scholar
  79. 79.
    Huang SC, Zhang L, Sung YS, Chen CL, Krausz T, Dickson BC et al (2015) Frequent FOS Gene Rearrangements in Epithelioid Hemangioma: A Molecular Study of 58 Cases With Morphologic Reappraisal. Am J Surg Pathol 39(10):1313–1321PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Ide YH, Tsukamoto Y, Ito T, Watanabe T, Nakagawa N, Haneda T et al (2015) Penile pseudomyogenic hemangioendothelioma/epithelioid sarcoma-like hemangioendothelioma with a novel pattern of SERPINE1-FOSB fusion detected by RT-PCR--report of a case. Pathol Res Pract 211(5):415–420PubMedCrossRefGoogle Scholar
  81. 81.
    Sugita S, Hirano H, Kikuchi N, Kubo T, Asanuma H, Aoyama T et al (2016) Diagnostic utility of FOSB immunohistochemistry in pseudomyogenic hemangioendothelioma and its histological mimics. Diagn Pathol 11(1):75PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Hung YP, Fletcher CD, Hornick JL (2017) FOSB is a Useful Diagnostic Marker for Pseudomyogenic Hemangioendothelioma. Am J Surg Pathol 41(5):596–606PubMedCrossRefGoogle Scholar
  83. 83.
    Ortins-Pina A, Llamas-Velasco M, Turpin S, Soares-de-Almeida L, Filipe P, Kutzner H (2018) FOSB immunoreactivity in endothelia of epithelioid hemangioma (angiolymphoid hyperplasia with eosinophilia). J Cutan Pathol 45(6):395–402PubMedCrossRefGoogle Scholar
  84. 84.
    Aman P, Panagopoulos I, Lassen C, Fioretos T, Mencinger M, Toresson H et al (1996) Expression patterns of the human sarcoma-associated genes FUS and EWS and the genomic structure of FUS. Genomics. 37(1):1–8PubMedCrossRefGoogle Scholar
  85. 85.
    Taylor BS, Barretina J, Maki RG, Antonescu CR, Singer S, Ladanyi M Advances in sarcoma genomics and new therapeutic targets. Nat Rev Cancer 11(8):541–557PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Hallor KH, Mertens F, Jin Y, Meis-Kindblom JM, Kindblom LG, Behrendtz M et al (2005) Fusion of the EWSR1 and ATF1 genes without expression of the MITF-M transcript in angiomatoid fibrous histiocytoma. Genes Chromosom Cancer 44(1):97–102PubMedCrossRefGoogle Scholar
  87. 87.
    Chen G, Folpe AL, Colby TV, Sittampalam K, Patey M, Chen MG et al (2011) Angiomatoid fibrous histiocytoma: unusual sites and unusual morphology. Mod Pathol 24(12):1560–1570PubMedCrossRefGoogle Scholar
  88. 88.
    Rossi S, Szuhai K, Ijszenga M, Tanke HJ, Zanatta L, Sciot R et al (2007) EWSR1-CREB1 and EWSR1-ATF1 fusion genes in angiomatoid fibrous histiocytoma. Clin Cancer Res 13(24):7322–7328PubMedCrossRefGoogle Scholar
  89. 89.
    Antonescu CR, Dal Cin P, Nafa K, Teot LA, Surti U, Fletcher CD et al (2007) EWSR1-CREB1 is the predominant gene fusion in angiomatoid fibrous histiocytoma. Genes Chromosom Cancer 46(12):1051–1060PubMedCrossRefGoogle Scholar
  90. 90.
    Zucman J, Delattre O, Desmaze C, Epstein AL, Stenman G, Speleman F et al (1993) EWS and ATF-1 gene fusion induced by t(12;22) translocation in malignant melanoma of soft parts. Nat Genet 4(4):341–345PubMedCrossRefGoogle Scholar
  91. 91.
    Hisaoka M, Ishida T, Kuo TT, Matsuyama A, Imamura T, Nishida K et al (2008) Clear cell sarcoma of soft tissue: a clinicopathologic, immunohistochemical, and molecular analysis of 33 cases. Am J Surg Pathol 32(3):452–460PubMedCrossRefGoogle Scholar
  92. 92.
    Wang WL, Mayordomo E, Zhang W, Hernandez VS, Tuvin D, Garcia L et al (2009) Detection and characterization of EWSR1/ATF1 and EWSR1/CREB1 chimeric transcripts in clear cell sarcoma (melanoma of soft parts). Mod Pathol 22(9):1201–1209PubMedCrossRefGoogle Scholar
  93. 93.
    Thway K, Nicholson AG, Lawson K, Gonzalez D, Rice A, Balzer B et al (2011) Primary pulmonary myxoid sarcoma with EWSR1-CREB1 fusion: a new tumor entity. Am J Surg Pathol 35(11):1722–1732PubMedCrossRefGoogle Scholar
  94. 94.
    Thway K, Fisher C (2012) Tumors with EWSR1-CREB1 and EWSR1-ATF1 fusions: the current status. Am J Surg Pathol 36(7):e1–e11PubMedCrossRefGoogle Scholar
  95. 95.
    Flucke U, Mentzel T, Verdijk MA, Slootweg PJ, Creytens DH, Suurmeijer AJ et al (2012) EWSR1-ATF1 chimeric transcript in a myoepithelial tumor of soft tissue: a case report. Hum Pathol 43(5):764–768CrossRefGoogle Scholar
  96. 96.
    Tanguay J, Weinreb I (2013) What the EWSR1-ATF1 fusion has taught us about hyalinizing clear cell carcinoma. Head Neck Pathol 7(1):28–34PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Kao YC, Sung YS, Zhang L, Chen CL, Vaiyapuri S, Rosenblum MK et al (2017) EWSR1 Fusions With CREB Family Transcription Factors Define a Novel Myxoid Mesenchymal Tumor With Predilection for Intracranial Location. Am J Surg Pathol 41(4):482–490PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Bale TA, Oviedo A, Kozakewich H, Giannini C, Davineni PK, Ligon K et al (2018) Intracranial myxoid mesenchymal tumors with EWSR1-CREB family gene fusions: myxoid variant of angiomatoid fibrous histiocytoma or novel entity? Brain Pathol 28(2):183–191PubMedCrossRefGoogle Scholar
  99. 99.
    Chapman E, Skalova A, Ptakova N, Martinek P, Goytain A, Tucker T et al (2018) Molecular Profiling of Hyalinizing Clear Cell Carcinomas Revealed a Subset of Tumors Harboring a Novel EWSR1-CREM Fusion: Report of 3 Cases. Am J Surg Pathol 42(9):1182–1189PubMedCrossRefGoogle Scholar
  100. 100.
    Watson S, Perrin V, Guillemot D, Reynaud S, Coindre JM, Karanian M et al (2018) Transcriptomic definition of molecular subgroups of small round cell sarcomas. J Pathol 245(1):29–40PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Koelsche C, Kriegsmann M, Kommoss FKF, Stichel D, Kriegsmann K, Vokuhl C et al (2019) DNA methylation profiling distinguishes Ewing-like sarcoma with EWSR1-NFATc2 fusion from Ewing sarcoma. J Cancer Res Clin Oncol 145(5):1273–1281PubMedCrossRefGoogle Scholar
  102. 102.
    Diaz-Perez JA, Nielsen GP, Antonescu C, Taylor MS, Lozano-Calderon SA, Rosenberg AE (2019) EWSR1/FUS - NFATc2 rearranged round cell sarcoma: Clinicopathological series of four cases and literature review. Hum PatholGoogle Scholar
  103. 103.
    Wang GY, Thomas DG, Davis JL, Ng T, Patel RM, Harms PW et al (2019) EWSR1-NFATC2 Translocation-associated Sarcoma Clinicopathologic Findings in a Rare Aggressive Primary Bone or Soft Tissue Tumor. Am J Surg PatholGoogle Scholar
  104. 104.
    Michal M, Berry RS, Rubin BP, Kilpatrick SE, Agaimy A, Kazakov DV et al (2018) EWSR1-SMAD3-rearranged Fibroblastic Tumor: An Emerging Entity in an Increasingly More Complex Group of Fibroblastic/Myofibroblastic Neoplasms. Am J Surg Pathol 42(10):1325–1333PubMedCrossRefGoogle Scholar
  105. 105.
    Kao YC, Flucke U, Eijkelenboom A, Zhang L, Sung YS, Suurmeijer AJH et al (2018) Novel EWSR1-SMAD3 Gene Fusions in a Group of Acral Fibroblastic Spindle Cell Neoplasms. Am J Surg Pathol 42(4):522–528PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Agaram NP, Zhang L, Sung YS, Cavalcanti MS, Torrence D, Wexler L et al (2019) Expanding the Spectrum of Intraosseous Rhabdomyosarcoma: Correlation Between 2 Distinct Gene Fusions and Phenotype. Am J Surg Pathol 43(5):695–702CrossRefGoogle Scholar
  107. 107.
    Dashti NK, Wehrs RN, Thomas BC, Nair A, Davila J, Buckner JC et al (2018) Spindle cell rhabdomyosarcoma of bone with FUS-TFCP2 fusion: confirmation of a very recently described rhabdomyosarcoma subtype. Histopathology. 73(3):514–520PubMedCrossRefGoogle Scholar
  108. 108.
    Suurmeijer AJ, Dickson BC, Swanson D, Zhang L, Sung YS, Huang HY et al (2019) The histologic spectrum of soft tissue spindle cell tumors with NTRK3 gene rearrangements. Genes Chromosom CancerGoogle Scholar
  109. 109.
    Hung YP, Fletcher CDM, Hornick JL (2018) Evaluation of pan-TRK immunohistochemistry in infantile fibrosarcoma, lipofibromatosis-like neural tumour and histological mimics. Histopathology. 73(4):634–644PubMedCrossRefGoogle Scholar
  110. 110.
    Rudzinski ER, Lockwood CM, Stohr BA, Vargas SO, Sheridan R, Black JO et al (2018) Pan-Trk Immunohistochemistry Identifies NTRK Rearrangements in Pediatric Mesenchymal Tumors. Am J Surg Pathol 42(7):927–935PubMedCrossRefGoogle Scholar
  111. 111.
    Hechtman JF, Benayed R, Hyman DM, Drilon A, Zehir A, Frosina D et al (2017) Pan-Trk Immunohistochemistry Is an Efficient and Reliable Screen for the Detection of NTRK Fusions. Am J Surg Pathol 41(11):1547–1551PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Wong D, Yip S, Sorensen PH (2019) Methods for Identifying Patients with Tropomyosin Receptor Kinase (TRK) Fusion Cancer. Pathol Oncol ResGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Sarcoma UnitRoyal Marsden HospitalLondonUK
  2. 2.Department of Laboratory Medicine and PathologyMayo ClinicRochesterUSA

Personalised recommendations