Advertisement

The current landscape of rhabdomyosarcomas: an update

  • Julia Leiner
  • François Le LoarerEmail author
Review Article

Abstract

Rhabdomyosarcomas are malignancies associated with a rhabdomyoblastic phenotype which can be demonstrated morphologically or by immunohistochemistry for MYOD1 and myogenin. Rhabdomyosarcomas are currently subdivided into 4 types in the 2013 WHO classification of tumors of soft tissue and bone, including embryonal rhabdomyosarcoma, alveolar rhabdomyosarcoma, spindle cell/sclerosing rhabdomyosarcoma, and pleomorphic rhabdomyosarcoma. Recent studies have significantly impacted this classification with the emergence of three distinct new subtypes of rhabdomyosarcomas, namely rhabdomyosarcoma with MYOD1 mutations, rhabdomyosarcoma with TFCP2 fusions, and rhabdomyosarcoma with VGLL2/NCOA2 fusions. Although all these tumors share the terminology “rhabdomyosarcoma,” their morphology, clinical behavior, and underlying molecular alterations are dramatically different. Finally, the presence of a rhabdomyoblastic phenotype within a tumor is by no means a diagnostic of a rhabdomyosarcoma, as this may be seen in many other mesenchymal malignancies, such as mesenchymal chondrosarcomas, malignant peripheral nerve sheaths tumors, and biphenotypic sinonasal sarcomas. In this review, we present the main clinical, morphological, and molecular features of these tumors and discuss the evolution of the current classification.

Keywords

Rhabdomyosarcoma TFCP2 FOXO1 VGLL2 MYOD1 NCOA2 DICER1 

Notes

Authors Contributions

JL and FLL drafted and reviewed the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Alaggio R, Zhang L, Sung YS, Huang SC, Chen CL, Bisogno G, Zin A, Agaram NP, LaQuaglia MP, Wexler LH, Antonescu CR (2016) A molecular study of pediatric spindle and sclerosing rhabdomyosarcoma: identification of novel and recurrent VGLL2-related fusions in infantile cases. Am J Surg Pathol 40:224–235.  https://doi.org/10.1097/PAS.0000000000000538 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Stock N, Chibon F, Binh MB, Terrier P, Michels JJ, Valo I, Robin YM, Guillou L, Ranchère-Vince D, Decouvelaere AV, Collin F, Birtwisle-Peyrottes I, Gregoire F, Aurias A, Coindre JM (2009) Adult-type rhabdomyosarcoma: analysis of 57 cases with clinicopathologic description, identification of 3 morphologic patterns and prognosis. Am J Surg Pathol 33:1850–1859.  https://doi.org/10.1097/PAS.0b013e3181be6209 CrossRefPubMedGoogle Scholar
  3. 3.
    Rekhi B, Gupta C, Chinnaswamy G, Qureshi S, Vora T, Khanna N, Laskar S (2018) Clinicopathologic features of 300 rhabdomyosarcomas with emphasis upon differential expression of skeletal muscle specific markers in the various subtypes: a single institutional experience. Ann Diagn Pathol 36:50–60.  https://doi.org/10.1016/j.anndiagpath.2018.07.002 CrossRefPubMedGoogle Scholar
  4. 4.
    Parham DM, Barr F (2013) Rhabdomyomas. In: Fletcher CDMBJ, Hogendoorn PCW, Mertens F (eds) WHO classification of tumours of soft tissue and bone, 4th edn. IARC press, Lyon, pp 124–126Google Scholar
  5. 5.
    Folpe AL, Graham RP, Martinez A, Schembri-Wismayer D, Boland J, Fritchie KJ (2018) Mesenchymal chondrosarcomas showing immunohistochemical evidence of rhabdomyoblastic differentiation: a potential diagnostic pitfall. Hum Pathol 77:28–34.  https://doi.org/10.1016/j.humpath.2018.03.012 CrossRefPubMedGoogle Scholar
  6. 6.
    Parham DMBFG, Montgomery EA, Nascimento AF (2013) Skeletal-muscle tumours. In: Fletcher CDMBJ, Hogendoorn PCW, Mertens F (eds) WHO classification of tumours of soft tissue and bone, 4th edn. IARC press, Lyon, pp 127–135Google Scholar
  7. 7.
    Oberlin O, Rey A, Lyden E, Bisogno G, Stevens MC, Meyer WH, Carli M, Anderson JR (2008) Prognostic factors in metastatic rhabdomyosarcomas: results of a pooled analysis from United States and European cooperative groups. J Clin Oncol 26:2384–2389.  https://doi.org/10.1200/jco.2007.14.7207 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Qualman S, Lynch J, Bridge J, Parham D, Teot L, Meyer W, Pappo A (2008) Prevalence and clinical impact of anaplasia in childhood rhabdomyosarcoma : a report from the Soft Tissue Sarcoma Committee of the Children’s Oncology Group. Cancer 113:3242–3247.  https://doi.org/10.1002/cncr.23929 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kodet R, Newton WA, Hamoudi AB, Asmar L, Jacobs DL, Maurer HM (1993) Childhood rhabdomyosarcoma with anaplastic (pleomorphic) features. A report of the Intergroup Rhabdomyosarcoma Study. Am J Surg Pathol 17:443–453CrossRefGoogle Scholar
  10. 10.
    Hettmer S, Archer NM, Somers GR, Novokmet A, Wagers AJ, Diller L, Rodriguez-Galindo C, Teot LA, Malkin D (2014) Anaplastic rhabdomyosarcoma in TP53 germline mutation carriers. Cancer 120:1068–1075.  https://doi.org/10.1002/cncr.28507 CrossRefPubMedGoogle Scholar
  11. 11.
    CM C (2013) Ectomesenchymoma. In: Fletcher CDM BJ, Hogendoorn PCW, Mertens F (ed) WHO classification of tumours of soft tissue and bone, 4th edn. IARC press, Lyon, p 191Google Scholar
  12. 12.
    Dantonello TM, Leuschner I, Vokuhl C, Gfroerer S, Schuck A, Kube S, Nathrath M, Bernbeck B, Kaatsch P, Pal N, Ljungman G, Bielack SS, Klingebiel T, Koscielniak E, CWS (2013) Malignant ectomesenchymoma in children and adolescents: report from the Cooperative Weichteilsarkom Studiengruppe (CWS). Pediatr Blood Cancer 60:224–229.  https://doi.org/10.1002/pbc.24174 CrossRefPubMedGoogle Scholar
  13. 13.
    Huang SC, Alaggio R, Sung YS, Chen CL, Zhang L, Kao YC, Agaram NP, Wexler LH, Antonescu CR (2016) Frequent HRAS mutations in malignant ectomesenchymoma: overlapping genetic abnormalities with embryonal rhabdomyosarcoma. Am J Surg Pathol.  https://doi.org/10.1097/PAS.0000000000000612
  14. 14.
    Paulson V, Chandler G, Rakheja D, Galindo RL, Wilson K, Amatruda JF, Cameron S (2011) High-resolution array CGH identifies common mechanisms that drive embryonal rhabdomyosarcoma pathogenesis. Genes Chromosomes Cancer 50:397–408.  https://doi.org/10.1002/gcc.20864 CrossRefPubMedGoogle Scholar
  15. 15.
    Shern JF, Chen L, Chmielecki J, Wei JS, Patidar R, Rosenberg M, Ambrogio L, Auclair D, Wang J, Song YK, Tolman C, Hurd L, Liao H, Zhang S, Bogen D, Brohl AS, Sindiri S, Catchpoole D, Badgett T, Getz G, Mora J, Anderson JR, Skapek SX, Barr FG, Meyerson M, Hawkins DS, Khan J (2014) Comprehensive genomic analysis of rhabdomyosarcoma reveals a landscape of alterations affecting a common genetic axis in fusion-positive and fusion-negative tumors. Cancer discovery 4:216–231.  https://doi.org/10.1158/2159-8290.cd-13-0639 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Chen L, Shern JF, Wei JS, Yohe ME, Song YK, Hurd L, Liao H, Catchpoole D, Skapek SX, Barr FG, Hawkins DS, Khan J (2015) Clonality and evolutionary history of rhabdomyosarcoma. PLoS Genet 11:e1005075.  https://doi.org/10.1371/journal.pgen.1005075 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Bridge JA, Liu J, Qualman SJ, Suijkerbuijk R, Wenger G, Zhang J, Wan X, Baker KS, Sorensen P, Barr FG (2002) Genomic gains and losses are similar in genetic and histologic subsets of rhabdomyosarcoma, whereas amplification predominates in embryonal with anaplasia and alveolar subtypes. Genes Chromosomes Cancer 33:310–321CrossRefGoogle Scholar
  18. 18.
    Rubin BP, Nishijo K, Chen HI, Yi X, Schuetze DP, Pal R, Prajapati SI, Abraham J, Arenkiel BR, Chen QR, Davis S, McCleish AT, Capecchi MR, Michalek JE, Zarzabal LA, Khan J, Yu Z, Parham DM, Barr FG, Meltzer PS, Chen Y, Keller C (2011) Evidence for an unanticipated relationship between undifferentiated pleomorphic sarcoma and embryonal rhabdomyosarcoma. Cancer Cell 19:177–191.  https://doi.org/10.1016/j.ccr.2010.12.023 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Martinelli S, McDowell HP, Vigne SD, Kokai G, Uccini S, Tartaglia M, Dominici C (2009) RAS signaling dysregulation in human embryonal rhabdomyosarcoma. Genes Chromosomes Cancer 48:975–982.  https://doi.org/10.1002/gcc.20702 CrossRefPubMedGoogle Scholar
  20. 20.
    Seki M, Nishimura R, Yoshida K, Shimamura T, Shiraishi Y, Sato Y, Kato M, Chiba K, Tanaka H, Hoshino N, Nagae G, Shiozawa Y, Okuno Y, Hosoi H, Tanaka Y, Okita H, Miyachi M, Souzaki R, Taguchi T, Koh K, Hanada R, Kato K, Nomura Y, Akiyama M, Oka A, Igarashi T, Miyano S, Aburatani H, Hayashi Y, Ogawa S, Takita J (2015) Integrated genetic and epigenetic analysis defines novel molecular subgroups in rhabdomyosarcoma. Nat Commun 6:7557.  https://doi.org/10.1038/ncomms8557 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Shukla N, Ameur N, Yilmaz I, Nafa K, Lau CY, Marchetti A, Borsu L, Barr FG, Ladanyi M (2012) Oncogene mutation profiling of pediatric solid tumors reveals significant subsets of embryonal rhabdomyosarcoma and neuroblastoma with mutated genes in growth signaling pathways. Clin Cancer Res 18:748–757.  https://doi.org/10.1158/1078-0432.CCR-11-2056 CrossRefPubMedGoogle Scholar
  22. 22.
    Williamson D, Missiaglia E, de Reynies A, Pierron G, Thuille B, Palenzuela G, Thway K, Orbach D, Lae M, Freneaux P, Pritchard-Jones K, Oberlin O, Shipley J, Delattre O (2010) Fusion gene-negative alveolar rhabdomyosarcoma is clinically and molecularly indistinguishable from embryonal rhabdomyosarcoma. J Clin Oncol 28:2151–2158.  https://doi.org/10.1200/jco.2009.26.3814 CrossRefPubMedGoogle Scholar
  23. 23.
    Watson S, Perrin V, Guillemot D, Reynaud S, Coindre JM, Karanian M, Guinebretiere JM, Freneaux P, Le Loarer F, Bouvet M, Galmiche-Rolland L, Larousserie F, Longchampt E, Ranchere-Vince D, Pierron G, Delattre O, Tirode F (2018) Transcriptomic definition of molecular subgroups of small round cell sarcomas. J Pathol 245:29–40.  https://doi.org/10.1002/path.5053 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Hettmer S, Teot LA, Kozakewich H, Werger AM, Davies KJ, Fletcher CD, Grier HE, Rodriguez-Galindo C, Wagers AJ (2015) Myogenic tumors in nevoid Basal cell carcinoma syndrome. J Pediatr Hematol Oncol 37:147–149.  https://doi.org/10.1097/MPH.0000000000000115 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Legius EBH (2013) Neurofibromatosis type 1. In: Fletcher CDMBJ, Hogendoorn PCW, Mertens F (eds) WHO classification of tumours of soft tissue and bone, 4th edn. IARC press, Lyon, pp 386–387Google Scholar
  26. 26.
    Gripp KW (2005) Tumor predisposition in Costello syndrome. Am J Med Genet C Semin Med Genet 137C:72–77.  https://doi.org/10.1002/ajmg.c.30065 CrossRefPubMedGoogle Scholar
  27. 27.
    Dehner LP, Jarzembowski JA, Hill DA (2012) Embryonal rhabdomyosarcoma of the uterine cervix: a report of 14 cases and a discussion of its unusual clinicopathological associations. Mod Pathol 25:602–614.  https://doi.org/10.1038/modpathol.2011.185 CrossRefPubMedGoogle Scholar
  28. 28.
    Bennicelli JL, Edwards RH, Barr FG (1996) Mechanism for transcriptional gain of function resulting from chromosomal translocation in alveolar rhabdomyosarcoma. Proc Natl Acad Sci U S A 93:5455–5459.  https://doi.org/10.1073/pnas.93.11.5455 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Sumegi J, Streblow R, Frayer RW, Dal Cin P, Rosenberg A, Meloni-Ehrig A, Bridge JA (2010) Recurrent t(2;2) and t(2;8) translocations in rhabdomyosarcoma without the canonical PAX-FOXO1 fuse PAX3 to members of the nuclear receptor transcriptional coactivator family. Genes Chromosomes Cancer 49:224–236.  https://doi.org/10.1002/gcc.20731 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Liu J, Guzman MA, Pezanowski D, Patel D, Hauptman J, Keisling M, Hou SJ, Papenhausen PR, Pascasio JM, Punnett HH, Halligan GE, de Chadarévian JP (2011) FOXO1-FGFR1 fusion and amplification in a solid variant of alveolar rhabdomyosarcoma. Mod Pathol 24:1327–1335.  https://doi.org/10.1038/modpathol.2011.98 CrossRefPubMedGoogle Scholar
  31. 31.
    Barr FG, Qualman SJ, Macris MH, Melnyk N, Lawlor ER, Strzelecki DM, Triche TJ, Bridge JA, Sorensen PH (2002) Genetic heterogeneity in the alveolar rhabdomyosarcoma subset without typical gene fusions. Cancer Res 62:4704–4710PubMedGoogle Scholar
  32. 32.
    Schoffski P, Wozniak A, Leahy MG, Aamdal S, Rutkowski P, Bauer S, Richter S, Grunwald V, Debiec-Rychter M, Sciot R, Geoerger B, Marreaud S, Collette S, Nzokirantevye A, Strauss SJ (2018) The tyrosine kinase inhibitor crizotinib does not have clinically meaningful activity in heavily pre-treated patients with advanced alveolar rhabdomyosarcoma with FOXO rearrangement: European Organisation for Research and Treatment of Cancer phase 2 trial 90101 ‘CREATE’. Eur J Cancer 94:156–167.  https://doi.org/10.1016/j.ejca.2018.02.011 CrossRefPubMedGoogle Scholar
  33. 33.
    Nascimento AFBFG (2013) Spindle cell/sclerosing rhabdomyosarcoma. In: Fletcher CDMBJ, Hogendoorn PCW, Mertens F (eds) WHO classification of tumours of soft tissue and bone, 4th edn. IARC press, Lyon, pp 134–135Google Scholar
  34. 34.
    Folpe AL et al (2018) Sclerosing rhabdomyosarcoma in adults: report of four cases of a hyalinizing, matrix-rich variant of rhabdomyosarcoma that may be confused with ost... - PubMed - NCBIGoogle Scholar
  35. 35.
    Mentzel T, Katenkamp D (2000) Sclerosing, pseudovascular rhabdomyosarcoma in adults. Clinicopathological and immunohistochemical analysis of three cases. Virchows Arch 436:305–311CrossRefGoogle Scholar
  36. 36.
    Mentzel T, Kuhnen C (2006) Spindle cell rhabdomyosarcoma in adults: clinicopathological and immunohistochemical analysis of seven new cases. Virchows Arch 449:554–560.  https://doi.org/10.1007/s00428-006-0284-4 CrossRefPubMedGoogle Scholar
  37. 37.
    Mosquera JM, Sboner A, Zhang L, Kitabayashi N, Chen CL, Sung YS, Wexler LH, LaQuaglia MP, Edelman M, Sreekantaiah C, Rubin MA, Antonescu CR (2013) Recurrent NCOA2 gene rearrangements in congenital/infantile spindle cell rhabdomyosarcoma. Genes Chromosomes Cancer 52:538–550.  https://doi.org/10.1002/gcc.22050 CrossRefPubMedGoogle Scholar
  38. 38.
    Maeda T, Chapman DL, Stewart AF (2002) Mammalian vestigial-like 2, a cofactor of TEF-1 and MEF2 transcription factors that promotes skeletal muscle differentiation. The Journal of biological chemistry 277:48889–48898.  https://doi.org/10.1074/jbc.M206858200 CrossRefPubMedGoogle Scholar
  39. 39.
    Pipes GC, Creemers EE, Olson EN (2006) The myocardin family of transcriptional coactivators: versatile regulators of cell growth, migration, and myogenesis. Genes Dev 20:1545–1556.  https://doi.org/10.1101/gad.1428006 CrossRefPubMedGoogle Scholar
  40. 40.
    Agaram NP, Zhang L, Sung YS, Cavalcanti MS, Torrence D, Wexler L, Francis G, Sommerville S, Swanson D, Dickson BC, Suurmeijer AJH, Williamson R, Antonescu CR (2019) Expanding the spectrum of intraosseous rhabdomyosarcoma: correlation between 2 distinct gene fusions and phenotype. Am J Surg Pathol 43:695–702.  https://doi.org/10.1097/PAS.0000000000001227 CrossRefPubMedGoogle Scholar
  41. 41.
    Kohsaka S, Shukla N, Ameur N, Ito T, Ng CK, Wang L, Lim D, Marchetti A, Viale A, Pirun M, Socci ND, Qin LX, Sciot R, Bridge J, Singer S, Meyers P, Wexler LH, Barr FG, Dogan S, Fletcher JA, Reis-Filho JS, Ladanyi M (2014) A recurrent neomorphic mutation in MYOD1 defines a clinically aggressive subset of embryonal rhabdomyosarcoma associated with PI3K-AKT pathway mutations. Nat Genet 46:595–600.  https://doi.org/10.1038/ng.2969 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Szuhai K, de Jong D, Leung WY, Fletcher CD, Hogendoorn PC (2014) Transactivating mutation of the MYOD1 gene is a frequent event in adult spindle cell rhabdomyosarcoma. J Pathol 232:300–307.  https://doi.org/10.1002/path.4307 CrossRefPubMedGoogle Scholar
  43. 43.
    Agaram NP, LaQuaglia MP, Alaggio R, Zhang L, Fujisawa Y, Ladanyi M, Wexler LH, Antonescu CR (2018) MYOD1-mutant spindle cell and sclerosing rhabdomyosarcoma: an aggressive subtype irrespective of age A reappraisal for molecular classification and risk stratification. Mod Pathol 32:27–36.  https://doi.org/10.1038/s41379-018-0120-9 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Rekhi B, Upadhyay P, Ramteke MP, Dutt A (2016) MYOD1 (L122R) mutations are associated with spindle cell and sclerosing rhabdomyosarcomas with aggressive clinical outcomes. Mod Pathol 29:1532–1540.  https://doi.org/10.1038/modpathol.2016.144 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Tsai JW, ChangChien YC, Lee JC, Kao YC, Li WS, Liang CW, Liao IC, Chang YM, Wang JC, Tsao CF, Yu SC, Huang HY (2019) The expanding morphological and genetic spectrum of MYOD1-mutant spindle cell/sclerosing rhabdomyosarcomas: a clinicopathological and molecular comparison of mutated and non-mutated cases. Histopathology 74:933–943.  https://doi.org/10.1111/his.13819 CrossRefPubMedGoogle Scholar
  46. 46.
    Leuschner I, Newton WA, Schmidt D, Sachs N, Asmar L, Hamoudi A, Harms D, Maurer HM (1993) Spindle cell variants of embryonal rhabdomyosarcoma in the paratesticular region. A report of the Intergroup Rhabdomyosarcoma Study. Am J Surg Pathol 17:221–230CrossRefGoogle Scholar
  47. 47.
    Le Loarer F, Cleven AHG, Bouvier C, Castex MP, Romagosa C, Moreau A, Salas S, Bonhomme B, Gomez-Brouchet A, Laurent C, Le Guellec S, Audard V, Giraud A, Ramos-Oliver I, Cleton-Jansen AM, Savci-Heijink DC, Kroon HM, Baud J, Pissaloux D, Pierron G, Sherwood A, Coindre JM, Bovée JVMG, Larousserie F, Tirode F (2019) A subset of epithelioid and spindle cell rhabdomyosarcomas is associated with TFCP2 fusions and common ALK upregulation. Mod Pathol:1–16.  https://doi.org/10.1038/s41379-019-0323-8
  48. 48.
    Dashti NK, Wehrs RN, Thomas BC, Nair A, Davila J, Buckner JC, Martinez AP, Sukov WR, Halling KC, Howe BM, Folpe AL (2018) Spindle cell rhabdomyosarcoma of bone with FUS-TFCP2 fusion: confirmation of a very recently described rhabdomyosarcoma subtype. Histopathology 73:514–520.  https://doi.org/10.1111/his.13649 CrossRefPubMedGoogle Scholar
  49. 49.
    Wong DD, van Vliet C, Gaman A, Giardina T, Amanuel B (2019) Rhabdomyosarcoma with FUS re-arrangement: additional case in support of a novel subtype. Pathology 51:116–120.  https://doi.org/10.1016/j.pathol.2018.09.056 CrossRefPubMedGoogle Scholar
  50. 50.
    Kodet R, Newton WA, Hamoudi AB, Asmar L (1991) Rhabdomyosarcomas with intermediate-filament inclusions and features of rhabdoid tumors. Light microscopic and immunohistochemical study. Am J Surg Pathol 15:257–267CrossRefGoogle Scholar
  51. 51.
    Zin A, Bertorelle R, Dall’Igna P, Manzitti C, Gambini C, Bisogno G, Rosolen A, Alaggio R (2014) Epithelioid rhabdomyosarcoma: a clinicopathologic and molecular study. Am J Surg Pathol 38:273–278.  https://doi.org/10.1097/pas.0000000000000105 CrossRefPubMedGoogle Scholar
  52. 52.
    Jo VY, Mariño-Enríquez A, Fletcher CD (2011) Epithelioid rhabdomyosarcoma: clinicopathologic analysis of 16 cases of a morphologically distinct variant of rhabdomyosarcoma. Am J Surg Pathol 35:1523–1530.  https://doi.org/10.1097/PAS.0b013e31822e0907 CrossRefPubMedGoogle Scholar
  53. 53.
    Furlong MA, Mentzel T, Fanburg-Smith JC (2001) Pleomorphic rhabdomyosarcoma in adults: a clinicopathologic study of 38 cases with emphasis on morphologic variants and recent skeletal muscle-specific markers. Mod Pathol 14:595–603.  https://doi.org/10.1038/modpathol.3880357 CrossRefPubMedGoogle Scholar
  54. 54.
    Carvalho SD, Pissaloux D, Crombe A, Coindre JM, Le Loarer F (2019) Pleomorphic sarcomas: the state of the art. Surg Pathol Clin 12:63–105.  https://doi.org/10.1016/j.path.2018.10.004 CrossRefPubMedGoogle Scholar
  55. 55.
    DM (2013) Li-Fraumeni syndrome. In: Fletcher CDM BJ, Hogendoorn PCW, Mertens F (ed) WHO classification of tumours of soft tissue and bone, 4th edn. IARC press, Lyon, pp 379–381Google Scholar
  56. 56.
    Gronchi A, Collini P, Miceli R, Valeri B, Renne SL, Dagrada G, Fiore M, Sanfilippo R, Barisella M, Colombo C, Morosi C, Stacchiotti S, Casali PG, Dei Tos AP, Pilotti S (2015) Myogenic differentiation and histologic grading are major prognostic determinants in retroperitoneal liposarcoma. Am J Surg Pathol 39:383–393.  https://doi.org/10.1097/pas.0000000000000366 CrossRefPubMedGoogle Scholar
  57. 57.
    Bridge JA, Sumegi J, Druta M, Bui MM, Henderson-Jackson E, Linos K, Baker M, Walko CM, Millis S, Brohl AS (2019) Clinical, pathological, and genomic features of EWSR1-PATZ1 fusion sarcoma. Mod Pathol:1–12.  https://doi.org/10.1038/s41379-019-0301-1
  58. 58.
    Chougule A, Taylor MS, Nardi V, Chebib I, Cote GM, Choy E, Nielsen GP, Deshpande V (2019) Spindle and round cell sarcoma With EWSR1-PATZ1 gene fusion: a sarcoma with polyphenotypic differentiation. Am J Surg Pathol 43:220–228.  https://doi.org/10.1097/PAS.0000000000001183 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Folpe AL et al (2018) Mesenchymal chondrosarcomas showing immunohistochemical evidence of rhabdomyoblastic differentiation: a potential diagnostic pitfall. -Google Scholar
  60. 60.
    Koelsche C, Mynarek M, Schrimpf D, Bertero L, Serrano J, Sahm F, Reuss DE, Hou Y, Baumhoer D, Vokuhl C, Flucke U, Petersen I, Bruck W, Rutkowski S, Zambrano SC, Garcia Leon JL, Diaz Coronado RY, Gessler M, Tirado OM, Mora J, Alonso J, Garcia Del Muro X, Esteller M, Sturm D, Ecker J, Milde T, Pfister SM, Korshunov A, Snuderl M, Mechtersheimer G, Schuller U, Jones DTW, von Deimling A (2018) Primary intracranial spindle cell sarcoma with rhabdomyosarcoma-like features share a highly distinct methylation profile and DICER1 mutations. Acta Neuropathol 136:327–337.  https://doi.org/10.1007/s00401-018-1871-6 CrossRefPubMedGoogle Scholar
  61. 61.
    Le Loarer F, Laffont S, Lesluyes T, Tirode F, Antonescu C, Baglin AC, Delespaul L, Soubeyran I, Hostein I, Pérot G, Chibon F, Baud J, Le Guellec S, Karanian M, Costes-Martineau V, Castain C, Eimer S, Le Bail B, Wassef M, Coindre JM (2019) Clinicopathologic and molecular features of a series of 41 biphenotypic sinonasal sarcomas expanding their molecular spectrum. Am J Surg Pathol 43:747–754.  https://doi.org/10.1097/PAS.0000000000001238 CrossRefPubMedGoogle Scholar
  62. 62.
    Martinez AP, Fritchie KJ, Weiss SW, Agaimy A, Haller F, Huang HY, Lee S, Bahrami A, Folpe AL (2019) Histiocyte-rich rhabdomyoblastic tumor: rhabdomyosarcoma, rhabdomyoma, or rhabdomyoblastic tumor of uncertain malignant potential? A histologically distinctive rhabdomyoblastic tumor in search of a place in the classification of skeletal muscle neoplasms. Mod Pathol 32:446–457.  https://doi.org/10.1038/s41379-018-0145-0 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Université de BordeauxTalenceFrance
  2. 2.Département de BiopathologieInstitut BergoniéBordeauxFrance
  3. 3.INSERM U1218, ACTIONInstitut BergoniéBordeauxFrance

Personalised recommendations