Advertisement

Virchows Archiv

, Volume 473, Issue 2, pp 155–163 | Cite as

X chromosome gain is related to increased androgen receptor expression in male breast cancer

  • Enrico Di Oto
  • Giovanni B. Biserni
  • Zsuzsanna Varga
  • Luca Morandi
  • Maria C. Cucchi
  • Riccardo Masetti
  • Maria P. Foschini
Original Article

Abstract

X chromosome gain has been previously described in male breast cancer (MBC). Androgen receptor (AR) gene is located on X chromosome. The aim of this study was to investigate the role of the X chromosome gain in the development of MBC and its relation with AR gene copy number and expression.

The X chromosome status was assessed in 66 cases of male invasive and in situ duct breast carcinoma, in 34 cases of gynecomastia associated with cancer, and in 11 cases of tumor-free gynecomastia. Cases were tested by fluorescence in situ hybridization (FISH) to assess the X chromosome status and AR amplification. AR expression was studied by immunohistochemistry (IHC). In addition, AR methylation status was assessed.

X chromosome gain was observed in 74.7% of invasive duct carcinoma, in 20.6% of in situ duct carcinoma, and in 14.6% of gynecomastia when associated with cancer, while all cases of tumor-free gynecomastia showed wild X chromosome asset. AR gene copy number when increased paralleled the number of X chromosomes. AR IHC expression was observed in 100% of MBC tested. AR gene methylation status revealed low level or absence of methylation.

These data suggest that X chromosome can play a role in the neoplastic transformation of male breast epithelium. X chromosome gain is paralleled by AR gene polysomy. Polysomic AR genes show low methylation levels and high AR protein expression on IHC. These data should be taken into consideration for MBC treatment planning.

Keywords

Male breast cancer Invasive ductal carcinoma X chromosome Genetic marker FISH Androgen receptor 

Notes

Acknowledgements

The authors acknowledge Prof. V. Eusebi for having critically reviewed the manuscript.

Funding

The study was supported by grants from the Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna (Italy) (Fundamentally Oriented Funds for Research – RFO) and from Susan G. Komen Italia (Rome).

Compliance with ethical standards

The study has been performed according to ethical standards and was approved by the local Ethic Committee (protocol no. CE 15004).

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

428_2018_2377_MOESM1_ESM.docx (320 kb)
ESM 1 (DOCX 320 kb)

References

  1. 1.
    Harlan LC, Zujewski JA, Goodman MT, Stevens JL (2010) Breast cancer in men in the United States: a population-based study of diagnosis, treatment, and survival. Cancer 116:3558–3568.  https://doi.org/10.1002/cncr.25153 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Callari M, Cappelletti V, De Cecco L, Musella V, Miodini P, Veneroni S, Gariboldi M, Pierotti MA, Daidone MG (2011) Gene expression analysis reveals a different transcriptomic landscape in female and male breast cancer. Breast Cancer Res Treat 127:601–610.  https://doi.org/10.1007/s10549-010-1015-8 CrossRefPubMedGoogle Scholar
  3. 3.
    Humphries MP, Sundara Rajan S, Honarpisheh H, Cserni G, Dent J, Fulford L, Jordan LB, Jones JL, Kanthan R, Litwiniuk M, Di Benedetto A, Mottolese M, Provenzano E, Shousha S, Stephens M, Kulka J, Ellis IO, Titloye AN, Hanby AM, Shaaban AM, Speirs V (2017) Characterisation of male breast cancer: a descriptive biomarker study from a large patient series. Sci Rep 7:45293.  https://doi.org/10.1038/srep45293srep45293 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Kornegoor R, van Diest PJ, Buerger H, Korsching E (2015) Tracing differences between male and female breast cancer: both diseases own a different biology. Histopathology 67:888–897.  https://doi.org/10.1111/his.12727 CrossRefPubMedGoogle Scholar
  5. 5.
    Piscuoglio S, Ng CK, Murray MP, Guerini-Rocco E, Martelotto LG, Geyer FC, Bidard FC, Berman S, Fusco N, Sakr RA, Eberle CA, De Mattos-Arruda L, Macedo GS, Akram M, Baslan T, Hicks JB, King TA, Brogi E, Norton L, Weigelt B, Hudis CA, Reis-Filho JS (2016) The genomic landscape of male breast cancers. Clin Cancer Res 22:4045–4056.  https://doi.org/10.1158/1078-0432.CCR-15-28401078-0432.CCR-15-2840 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Vermeulen MA, Slaets L, Cardoso F, Giordano SH, Tryfonidis K, van Diest PJ, Dijkstra NH, Schroder CP, van Asperen CJ, Linderholm B, Benstead K, Foekens R, Martens JWM, Bartlett JMS, van Deurzen CHM (2017) Pathological characterisation of male breast cancer: results of the EORTC 10085/TBCRC/BIG/NABCG International Male Breast Cancer Program. Eur J Cancer 82:219–227.  https://doi.org/10.1016/j.ejca.2017.01.034 CrossRefPubMedGoogle Scholar
  7. 7.
    Doebar SC, Slaets L, Cardoso F, Giordano SH, Bartlett JM, Tryfonidis K, Dijkstra NH, Schroder CP, van Asperen CJ, Linderholm B, Benstead K, Dinjens WN, van Marion R, van Diest PJ, Martens JW, van Deurzen CH (2017) Male breast cancer precursor lesions: analysis of the EORTC 10085/TBCRC/BIG/NABCG International Male Breast Cancer Program. Mod Pathol 30:509–518.  https://doi.org/10.1038/modpathol.2016.229modpathol2016229 [pii]
  8. 8.
    Brown CJ, Goss SJ, Lubahn DB, Joseph DR, Wilson EM, French FS, Willard HF (1989) Androgen receptor locus on the human X chromosome: regional localization to Xq11-12 and description of a DNA polymorphism. Am J Hum Genet 44:264–269PubMedPubMedCentralGoogle Scholar
  9. 9.
    Ottesen AM, Garn ID, Aksglaede L, Juul A, Rajpert-De Meyts E (2007) A simple screening method for detection of Klinefelter syndrome and other X-chromosome aneuploidies based on copy number of the androgen receptor gene. Mol Hum Reprod 13:745–750.  https://doi.org/10.1093/molehr/gam053 CrossRefPubMedGoogle Scholar
  10. 10.
    Swerdlow AJ, Schoemaker MJ, Higgins CD, Wright AF, Jacobs PA (2005) Cancer incidence and mortality in men with Klinefelter syndrome: a cohort study. J Natl Cancer Inst 97:1204–1210.  https://doi.org/10.1093/jnci/dji24025 CrossRefPubMedGoogle Scholar
  11. 11.
    Di Oto E, Monti V, Cucchi MC, Masetti R, Varga Z, Foschini MP (2015) X chromosome gain in male breast cancer. Hum Pathol 46:1908–1912.  https://doi.org/10.1016/j.humpath.2015.08.008 CrossRefPubMedGoogle Scholar
  12. 12.
    Lakhani SR EI, Schnitt SJ, Tan PH, van de Vijver M (2012) WHO Classification of tumours of the breast, 4th Edition IARC Press, Lyon 4thGoogle Scholar
  13. 13.
    Zimpfer A, Schonberg S, Lugli A, Agostinelli C, Pileri SA, Went P, Dirnhofer S (2007) Construction and validation of a bone marrow tissue microarray. J Clin Pathol 60:57–61.  https://doi.org/10.1136/jcp.2005.035758 CrossRefPubMedGoogle Scholar
  14. 14.
    Graziano F, Galluccio N, Lorenzini P, Ruzzo A, Canestrari E, D'Emidio S, Catalano V, Sisti V, Ligorio C, Andreoni F, Rulli E, Di Oto E, Fiorentini G, Zingaretti C, De Nictolis M, Cappuzzo F, Magnani M (2011) Genetic activation of the MET pathway and prognosis of patients with high-risk, radically resected gastric cancer. J Clin Oncol 29:4789–4795.  https://doi.org/10.1200/JCO.2011.36.7706JCO.2011.36.7706 [pii]
  15. 15.
    Wolff AC, Hammond ME, Hayes DF (2012) Re: predictability of adjuvant trastuzumab benefit in N9831 patients using the ASCO/CAP HER2-positivity criteria. J Natl Cancer Inst 104:957–958.  https://doi.org/10.1093/jnci/djs243djs243 [pii]
  16. 16.
    Koivisto P, Kononen J, Palmberg C, Tammela T, Hyytinen E, Isola J, Trapman J, Cleutjens K, Noordzij A, Visakorpi T, Kallioniemi OP (1997) Androgen receptor gene amplification: a possible molecular mechanism for androgen deprivation therapy failure in prostate cancer. Cancer Res 57:314–319PubMedGoogle Scholar
  17. 17.
    Ropke A, Erbersdobler A, Hammerer P, Palisaar J, John K, Stumm M, Wieacker P (2004) Gain of androgen receptor gene copies in primary prostate cancer due to X chromosome polysomy. Prostate 59:59–68.  https://doi.org/10.1002/pros.10356 CrossRefPubMedGoogle Scholar
  18. 18.
    Morandi L, Gissi D, Tarsitano A, Asioli S, Gabusi A, Marchetti C, Montebugnoli L, Foschini MP (2017) CpG location and methylation level are crucial factors for the early detection of oral squamous cell carcinoma in brushing samples using bisulfite sequencing of a 13-gene panel. Clin Epigenetics 9:85.  https://doi.org/10.1186/s13148-017-0386-7386 [pii]
  19. 19.
    Morandi L, Righi A, Maletta F, Rucci P, Pagni F, Gallo M, Rossi S, Caporali L, Sapino A, Lloyd RV, Asioli S (2017) Somatic mutation profiling of hobnail variant of papillary thyroid carcinoma. Endocr Relat Cancer 24:107–117.  https://doi.org/10.1530/ERC-16-0546ERC-16-0546 [pii]
  20. 20.
    Afgan E, Baker D, van den Beek M, Blankenberg D, Bouvier D, Cech M, Chilton J, Clements D, Coraor N, Eberhard C, Gruning B, Guerler A, Hillman-Jackson J, Von Kuster G, Rasche E, Soranzo N, Turaga N, Taylor J, Nekrutenko A, Goecks J (2016) The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update. Nucleic Acids Res 44:W3–W10.  https://doi.org/10.1093/nar/gkw343 gkw343 [pii]
  21. 21.
    Rohde C, Zhang Y, Reinhardt R, Jeltsch A (2010) BISMA—fast and accurate bisulfite sequencing data analysis of individual clones from unique and repetitive sequences. BMC Bioinformatics 11:230.  https://doi.org/10.1186/1471-2105-11-2301471-2105-11-230 [pii]
  22. 22.
    Mallona I, Diez-Villanueva A, Peinado MA (2014) Methylation plotter: a web tool for dynamic visualization of DNA methylation data. Source Code Biol Med 9:11.  https://doi.org/10.1186/1751-0473-9-111751-0473-9-11 [pii]
  23. 23.
    Niewoehner CB, Schorer AE (2008) Gynaecomastia and breast cancer in men. BMJ 336:709–713.  https://doi.org/10.1136/bmj.39511.493391.BE336/7646/709 [pii]
  24. 24.
    Nakopoulou L, Panayotopoulou EG, Giannopoulou I, Tsirmpa I, Katsarou S, Mylona E, Alexandrou P, Keramopoulos A (2007) Extra copies of chromosomes 16 and X in invasive breast carcinomas are related to aggressive phenotype and poor prognosis. J Clin Pathol 60(7):808–815.  https://doi.org/10.1136/jcp.2006.037838 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Chaligné R, Popova T, Mendoza-Parra MA, Saleem MA, Gentien D, Ban K, Piolot T, Leroy O, Mariani O, Gronemeyer H, Vincent-Salomon A, Stern MH, Heard E (2015) The inactive X chromosome is epigenetically unstable and transcriptionally labile in breast cancer. Genome Res 25(4):488–503.  https://doi.org/10.1101/gr.185926.114 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Di Lauro L, Vici P, Barba M, Pizzuti L, Sergi D, Rinaldi M, Di Benedetto A, Sperduti I, Shaaban AM, Speirs V, Mottolese M, De Maria R, Maugeri-Sacca M (2014) Antiandrogen therapy in metastatic male breast cancer: results from an updated analysis in an expanded case series. Breast Cancer Res Treat 148:73–80.  https://doi.org/10.1007/s10549-014-3138-9 CrossRefPubMedGoogle Scholar
  27. 27.
    Zhu J, Davis CT, Silberman S, Spector N, Zhang T (2016) A role for the androgen receptor in the treatment of male breast cancer. Crit Rev Oncol Hematol 98:358–363.  https://doi.org/10.1016/j.critrevonc.2015.11.013S1040-8428(15)30085-8 [pii]
  28. 28.
    Severson TM, Zwart W (2017) A review of estrogen receptor/androgen receptor genomics in male breast cancer. Endocr Relat Cancer 24:R27–R34.  https://doi.org/10.1530/ERC-16-0225ERC-16-0225 [pii]
  29. 29.
    Conteduca V, Wetterskog D, Sharabiani MTA, Grande E, Fernandez-Perez MP, Jayaram A, Salvi S, Castellano D, Romanel A, Lolli C, Casadio V, Gurioli G, Amadori D, Font A, Vazquez-Estevez S, Gonzalez Del Alba A, Mellado B, Fernandez-Calvo O, Mendez-Vidal MJ, Climent MA, Duran I, Gallardo E, Rodriguez A, Santander C, Saez MI, Puente J, Gasi Tandefelt D, Wingate A, Dearnaley D, Demichelis F, De Giorgi U, Gonzalez-Billalabeitia E, Attard G (2017) Androgen receptor gene status in plasma DNA associates with worse outcome on enzalutamide or abiraterone for castration-resistant prostate cancer: a multi-institution correlative biomarker study. Ann Oncol 28:1508–1516.  https://doi.org/10.1093/annonc/mdx1553792654 [pii]
  30. 30.
    Salvi S, Casadio V, Conteduca V, Lolli C, Gurioli G, Martignano F, Schepisi G, Testoni S, Scarpi E, Amadori D, Calistri D, Attard G, De Giorgi U (2016) Circulating AR copy number and outcome to enzalutamide in docetaxel-treated metastatic castration-resistant prostate cancer. Oncotarget 7:37839–37845.  https://doi.org/10.18632/oncotarget.93419341 [pii]

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Enrico Di Oto
    • 1
  • Giovanni B. Biserni
    • 1
  • Zsuzsanna Varga
    • 2
  • Luca Morandi
    • 1
  • Maria C. Cucchi
    • 3
  • Riccardo Masetti
    • 4
  • Maria P. Foschini
    • 1
  1. 1.Department of Biomedical and Neuromotor Sciences, University of BolognaUnit of Anatomic Pathology “M. Malpighi”, Bellaria HospitalBolognaItaly
  2. 2.Institute of Pathology and Molecular PathologyUniversity Hospital ZürichZürichSwitzerland
  3. 3.Unit of Breast Surgery, Department of OncologyAUSL Bologna, Bellaria HospitalBolognaItaly
  4. 4.Multidisciplinary Breast CenterCatholic University of RomeRomeItaly

Personalised recommendations