Virchows Archiv

, Volume 471, Issue 4, pp 491–500 | Cite as

DNA degrades during storage in formalin-fixed and paraffin-embedded tissue blocks

  • Alice Guyard
  • Alice Boyez
  • Anaïs Pujals
  • Cyrielle Robe
  • Jeanne Tran Van Nhieu
  • Yves Allory
  • Julien Moroch
  • Odette Georges
  • Jean-Christophe Fournet
  • Elie-Serge Zafrani
  • Karen LeroyEmail author
Original Article


Formalin-fixed paraffin-embedded (FFPE) tissue blocks are widely used to identify clinically actionable molecular alterations or perform retrospective molecular studies. Our goal was to quantify degradation of DNA occurring during mid to long-term storage of samples in usual conditions. We selected 46 FFPE samples of surgically resected carcinomas of lung, colon, and urothelial tract, of which DNA had been previously extracted. We performed a second DNA extraction on the same blocks under identical conditions after a median period of storage of 5.5 years. Quantitation of DNA by fluorimetry showed a 53% decrease in DNA quantity after storage. Quantitative PCR (qPCR) targeting KRAS exon 2 showed delayed amplification of DNA extracted after storage in all samples but one. The qPCR/fluorimetry quantification ratio decreased from 56 to 15% after storage (p < 0.001). Overall, remaining proportion of DNA analyzable by qPCR represented only 11% of the amount obtained at first extraction. Maximal length of amplifiable DNA fragments assessed with a multiplex PCR was reduced in DNA extracted from stored tissue, indicating that DNA fragmentation had increased in the paraffin blocks during storage. Next-generation sequencing was performed on 12 samples and showed a mean 3.3-fold decrease in library yield and a mean 4.5-fold increase in the number of single-nucleotide variants detected after storage. In conclusion, we observed significant degradation of DNA extracted from the same FFPE block after 4 to 6 years of storage. Better preservation strategies should be considered for storage of FFPE biopsy specimens.


DNA Degradation Storage  FFPE tissue blocks 



We thank the technicians of molecular biology and tissue bank from the department of pathology for their technical participation.

Compliance with ethical standards

DNA was extracted from FFPE tissue blocks for medical diagnosis in compliance with French regulations.


This study was supported by institutional funding (AP-HP, hospital Henri Mondor, departement de Pathologie).

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

428_2017_2213_MOESM1_ESM.docx (222 kb)
ESM 1 (DOCX 222 kb)


  1. 1.
    Ferrer I, Armstrong J, Capellari S, Parchi P, Arzberger T, Bell J, Budka H, Strobel T, Giaccone G, Rossi G, Bogdanovic N, Fakai P, Schmitt A, Riederers P, Al-Sarraj S, Ravid R, Kretzschmar H (2007) Effects of formalin fixation, paraffin embedding, and time of storage on DNA preservation in brain tissue: a BrainNet Europe study. Brain Pathol 17(3):297–303. doi: 10.1111/j.1750-3639.2007.00073.x CrossRefPubMedGoogle Scholar
  2. 2.
    Hedegaard J, Thorsen K, Lund MK, Hein AM, Hamilton-Dutoit SJ, Vang S, Nordentoft I, Birkenkamp-Demtroder K, Kruhoffer M, Hager H, Knudsen B, Andersen CL, Sorensen KD, Pedersen JS, Orntoft TF, Dyrskjot L (2014) Next-generation sequencing of RNA and DNA isolated from paired fresh-frozen and formalin-fixed paraffin-embedded samples of human cancer and normal tissue. PLoS One 9(5):e98187. doi: 10.1371/journal.pone.0098187 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Kokkat TJ, Patel MS, McGarvey D, LiVolsi VA, Baloch ZW (2013) Archived formalin-fixed paraffin-embedded (FFPE) blocks: a valuable underexploited resource for extraction of DNA, RNA, and protein. Biopreserv Biobank 11(2):101–106. doi: 10.1089/bio.2012.0052 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Nam SK, Im J, Kwak Y, Han N, Nam KH, Seo AN, Lee HS (2014) Effects of fixation and storage of human tissue samples on nucleic acid preservation. Korean J Pathol 48(1):36–42. doi: 10.4132/KoreanJPathol.2014.48.1.36 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Bhat S, Curach N, Mostyn T, Bains GS, Griffiths KR, Emslie KR (2010) Comparison of methods for accurate quantification of DNA mass concentration with traceability to the international system of units. Anal Chem 82(17):7185–7192. doi: 10.1021/ac100845m CrossRefPubMedGoogle Scholar
  6. 6.
    Simbolo M, Gottardi M, Corbo V, Fassan M, Mafficini A, Malpeli G, Lawlor RT, Scarpa A (2013) DNA qualification workflow for next generation sequencing of histopathological samples. PLoS One 8(6):e62692. doi: 10.1371/journal.pone.0062692 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Adema V, Torres E, Sole F, Serrano S, Bellosillo B (2014) Paraffin treasures: do they last forever? Biopreserv Biobank 12(4):281–283. doi: 10.1089/bio.2014.0010 CrossRefPubMedGoogle Scholar
  8. 8.
    van Dongen JJ, Langerak AW, Bruggemann M, Evans PA, Hummel M, Lavender FL, Delabesse E, Davi F, Schuuring E, Garcia-Sanz R, van Krieken JH, Droese J, Gonzalez D, Bastard C, White HE, Spaargaren M, Gonzalez M, Parreira A, Smith JL, Morgan GJ, Kneba M, Macintyre EA (2003) Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 concerted action BMH4-CT98-3936. Leukemia 17(12):2257–2317. doi: 10.1038/sj.leu.2403202 CrossRefPubMedGoogle Scholar
  9. 9.
    Navin N, Kendall J, Troge J, Andrews P, Rodgers L, McIndoo J, Cook K, Stepansky A, Levy D, Esposito D, Muthuswamy L, Krasnitz A, McCombie WR, Hicks J, Wigler M (2011) Tumour evolution inferred by single-cell sequencing. Nature 472(7341):90–94. doi: 10.1038/nature09807 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Zong C, Lu S, Chapman AR, Xie XS (2012) Genome-wide detection of single-nucleotide and copy-number variations of a single human cell. Science 338(6114):1622–1626. doi: 10.1126/science.1229164 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Khairat R, Ball M, Chang CC, Bianucci R, Nerlich AG, Trautmann M, Ismail S, Shanab GM, Karim AM, Gad YZ, Pusch CM (2013) First insights into the metagenome of Egyptian mummies using next-generation sequencing. J Appl Genet 54(3):309–325. doi: 10.1007/s13353-013-0145-1 CrossRefPubMedGoogle Scholar
  12. 12.
    Reich D, Green RE, Kircher M, Krause J, Patterson N, Durand EY, Viola B, Briggs AW, Stenzel U, Johnson PL, Maricic T, Good JM, Marques-Bonet T, Alkan C, Fu Q, Mallick S, Li H, Meyer M, Eichler EE, Stoneking M, Richards M, Talamo S, Shunkov MV, Derevianko AP, Hublin JJ, Kelso J, Slatkin M, Paabo S (2010) Genetic history of an archaic hominin group from Denisova cave in Siberia. Nature 468(7327):1053–1060. doi: 10.1038/nature09710 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Brotherton P, Endicott P, Sanchez JJ, Beaumont M, Barnett R, Austin J, Cooper A (2007) Novel high-resolution characterization of ancient DNA reveals C > U-type base modification events as the sole cause of post mortem miscoding lesions. Nucleic Acids Res 35(17):5717–5728. doi: 10.1093/nar/gkm588 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Schweiger MR, Kerick M, Timmermann B, Albrecht MW, Borodina T, Parkhomchuk D, Zatloukal K, Lehrach H (2009) Genome-wide massively parallel sequencing of formaldehyde fixed-paraffin embedded (FFPE) tumor tissues for copy-number- and mutation-analysis. PLoS One 4(5):e5548. doi: 10.1371/journal.pone.0005548 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Choudhary A, Mambo E, Sanford T, Boedigheimer M, Twomey B, Califano J, Hadd A, Oliner KS, Beaudenon S, Latham GJ, Adai AT (2014) Evaluation of an integrated clinical workflow for targeted next-generation sequencing of low-quality tumor DNA using a 51-gene enrichment panel. BMC Med Genet 7:62. doi: 10.1186/s12920-014-0062-0 CrossRefGoogle Scholar
  16. 16.
    Sie D, Snijders PJ, Meijer GA, Doeleman MW, van Moorsel MI, van Essen HF, Eijk PP, Grunberg K, van Grieken NC, Thunnissen E, Verheul HM, Smit EF, Ylstra B, Heideman DA (2014) Performance of amplicon-based next generation DNA sequencing for diagnostic gene mutation profiling in oncopathology. Cell Oncol (Dordr) 37(5):353–361. doi: 10.1007/s13402-014-0196-2 CrossRefGoogle Scholar
  17. 17.
    Hagemann IS, Devarakonda S, Lockwood CM, Spencer DH, Guebert K, Bredemeyer AJ, Al-Kateb H, Nguyen TT, Duncavage EJ, Cottrell CE, Kulkarni S, Nagarajan R, Seibert K, Baggstrom M, Waqar SN, Pfeifer JD, Morgensztern D, Govindan R (2015) Clinical next-generation sequencing in patients with non-small cell lung cancer. Cancer 121(4):631–639. doi: 10.1002/cncr.29089 CrossRefPubMedGoogle Scholar
  18. 18.
    McGranahan N, Swanton C (2015) Biological and therapeutic impact of intratumor heterogeneity in cancer evolution. Cancer Cell 27(1):15–26. doi: 10.1016/j.ccell.2014.12.001 CrossRefPubMedGoogle Scholar
  19. 19.
    Jekunen AP (2015) Role of rebiopsy in relapsed non-small cell lung cancer for directing oncology treatments. J Oncol 2015:809835. doi: 10.1155/2015/809835 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kuiper JL, Heideman DA, Thunnissen E, Paul MA, van Wijk AW, Postmus PE, Smit EF (2014) Incidence of T790M mutation in (sequential) rebiopsies in EGFR-mutated NSCLC-patients. Lung Cancer 85(1):19–24. doi: 10.1016/j.lungcan.2014.03.016 CrossRefPubMedGoogle Scholar
  21. 21.
    Murtaza M, Dawson SJ, Tsui DW, Gale D, Forshew T, Piskorz AM, Parkinson C, Chin SF, Kingsbury Z, Wong AS, Marass F, Humphray S, Hadfield J, Bentley D, Chin TM, Brenton JD, Caldas C, Rosenfeld N (2013) Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature 497(7447):108–112. doi: 10.1038/nature12065 CrossRefPubMedGoogle Scholar
  22. 22.
    Xie R, Chung JY, Ylaya K, Williams RL, Guerrero N, Nakatsuka N, Badie C, Hewitt SM (2011) Factors influencing the degradation of archival formalin-fixed paraffin-embedded tissue sections. J Histochem Cytochem 59(4):356–365. doi: 10.1369/0022155411398488 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Grillo F, Pigozzi S, Ceriolo P, Calamaro P, Fiocca R, Mastracci L (2015) Factors affecting immunoreactivity in long-term storage of formalin-fixed paraffin-embedded tissue sections. Histochem Cell Biol. doi: 10.1007/s00418-015-1316-4

Copyright information

© Springer-Verlag GmbH Deutschland 2017

Authors and Affiliations

  • Alice Guyard
    • 1
  • Alice Boyez
    • 1
  • Anaïs Pujals
    • 1
    • 2
  • Cyrielle Robe
    • 3
  • Jeanne Tran Van Nhieu
    • 1
    • 2
  • Yves Allory
    • 1
    • 2
  • Julien Moroch
    • 1
  • Odette Georges
    • 4
  • Jean-Christophe Fournet
    • 4
  • Elie-Serge Zafrani
    • 1
    • 2
  • Karen Leroy
    • 5
    • 6
    Email author
  1. 1.Département de pathologieAP-HP, Groupe Hospitalier Henri Mondor-Albert ChenevierCréteilFrance
  2. 2.Faculté de médecine de CréteilUniversité Paris-Est CréteilCréteilFrance
  3. 3.CréteilFrance
  4. 4.Cabinet d’anatomie pathologiqueParisFrance
  5. 5.AP-HP, Groupe Hospitalier Paris-Centre, hôpital CochinParisFrance
  6. 6.Faculté de médecineUniversité Paris DescartesParisFrance

Personalised recommendations