Advertisement

Virchows Archiv

, Volume 470, Issue 4, pp 437–443 | Cite as

Factors that may influence polymorphous low-grade adenocarcinoma growth

  • Andresa Borges SoaresEmail author
  • Elizabeth Ferreira Martinez
  • Patricia Fernandes Avila Ribeiro
  • Icleia Siqueira Barreto
  • Maria Cássia Aguiar
  • Cristiane Furuse
  • Marcelo Sperandio
  • Victor Angelo Montalli
  • Ney Soares de Araújo
  • Vera Cavalcanti de Araújo
Original Article

Abstract

There is mounting evidence on the importance of some biological processes in tumor growth, such as vascular supply, apoptosis, autophagy, and senescence. We have investigated these processes in polymorphous low-grade adenocarcinoma (PLGA), in an attempt to identify those that are relevant for this particular lesion. We analyzed 31 cases of PLGA using immunohistochemistry to antibodies against CD34 and CD105 to detect blood vessels; against D2-40 to detect lymphatic vessels; against Bax, Bcl-2, and survivin to explore cell apoptosis; and against Beclin and LCB3 to investigate autophagy and against p21 and p16 to assess senescence. Our results showed that PLGA growth does not depend on newly formed vessels but only on preexisting vasculature. Furthermore, PLGA is promoted by autophagy, sustained by both anti-apoptotic and anti-senescence signals, and stimulated by Bcl-2 and survivin.

Keywords

Polymorphous low-grade adenocarcinoma Angiogenesis Apoptosis Autophagy Senescence Bcl2 Survivin LC3B 

Notes

Acknowledgements

The authors would like to thank Jeruza Bossonaro and Nadir Freitas for their technical expertise.

Authors’ contributions

All authors contributed equally to the preparation of the article.

Compliance with ethical standards

This study was approved by the Ethics Committee of the São Leopoldo Mandic Institute and Research Center (number 916.794).

Funding

The authors are also extremely grateful to FAPESP (São Paulo Research Foundation) and CNPq for their financial support (FAPESP #2015/12418-5 and CNPQ #304031/2014-3).

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Luna MA, Wenig BM (2005) Polymorphous low-grade adenocarcinoma. In: Barnes L, Eveson JW, Reichart P, Sidransky D, Ed. Pathol. Genet. Head Neck Tumours. pp 223–224Google Scholar
  2. 2.
    Freedman PD, Lumerman H (1983) Lobular carcinoma of intraoral minor salivary gland origin. Oral Surgery, Oral Med Oral Pathol 56:157–165. doi: 10.1016/0030-4220(83)90282-7 CrossRefGoogle Scholar
  3. 3.
    Batsakis JG, Pinkston GR, Luna MA et al (1983) Adenocarcinomas of the oral cavity: a clinicopathologic study of terminal duct carcinomas. J Laryngol Otol 97:825–835. doi: 10.1017/S0022215100095062 CrossRefPubMedGoogle Scholar
  4. 4.
    El-Naaj IA, Leiser Y, Wolff A, Peled M (2011) Polymorphous low grade adenocarcinoma: case series and review of surgical management. J Oral Maxillofac Surg 69:1967–1972. doi: 10.1016/j.joms.2010.10.010 CrossRefPubMedGoogle Scholar
  5. 5.
    Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407:249–257. doi: 10.1038/35025220 CrossRefPubMedGoogle Scholar
  6. 6.
    Detmar M, Hirakawa S (2002) The formation of lymphatic vessels and its importance in the setting of malignancy. J Exp Med 196:713–718CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Ouyang L, Shi Z, Zhao S et al (2012) Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell Prolif 45:487–498. doi: 10.1111/j.1365-2184.2012.00845.x CrossRefPubMedGoogle Scholar
  8. 8.
    Townson JL, Naumov GN, Chambers AF (2003) The role of apoptosis in tumor progression and metastasis. Curr Mol Med 3:631–642CrossRefPubMedGoogle Scholar
  9. 9.
    Roberg K, Jonsson A-C, Grénman R, Norberg-Spaak L (2007) Radiotherapy response in oral squamous carcinoma cell lines: evaluation of apoptotic proteins as prognostic factors. Head Neck 29:325–334. doi: 10.1002/hed CrossRefPubMedGoogle Scholar
  10. 10.
    Levine B (2007) Cell biology: autophagy and cancer. Nature 446:745–747. doi: 10.1038/446745a CrossRefPubMedGoogle Scholar
  11. 11.
    Lindqvist LM, Simon a K, Baehrecke EH (2015) Current questions and possible controversies in autophagy. Cell Death Discov 1:15036. doi: 10.1038/cddiscovery.2015.36 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Cosway B, Lovat P (2016) The role of autophagy in squamous cell carcinoma of the head and neck. Oral Oncol 54:1–6. doi: 10.1016/j.oraloncology.2015.12.007 CrossRefPubMedGoogle Scholar
  13. 13.
    Burada F, Nicoli ER, Ciurea ME et al (2015) Autophagy in colorectal cancer: an important switch from physiology to pathology. World J Gastrointest Oncol 7:271–284. doi: 10.4251/wjgo.v7.i11.271 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Parkhitko AA, Favorova OO, Henske EP (2013) Autophagy: mechanisms, regulation, and its role in tumorigenesis. Biochemistry 78:355–367. doi: 10.1134/S0006297913040044 PubMedGoogle Scholar
  15. 15.
    Campisi J, d’Adda di Fagagna F (2007) Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 8:729–740. doi: 10.1038/nrm2233 CrossRefPubMedGoogle Scholar
  16. 16.
    Collado M, Serrano M (2010) Senescence in tumours: evidence from mice and humans. Nat Rev Cancer 10:51–57. doi: 10.1038/nrc2772 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Kuilman T, Michaloglou C, Mooi WJ, Peeper DS (2010) The essence of senescence. Genes Dev 24:2463–2479. doi: 10.1101/gad.1971610 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Michal M, Skálová A, Simpson RHW et al (1999) Cribriform adenocarcinoma of the tongue: a hitherto unrecognized type of adenocarcinoma characteristically occurring in the tongue. Histopathology 35:495–501. doi: 10.1046/j.1365-2559.1999.00792.x CrossRefPubMedGoogle Scholar
  19. 19.
    Skalova A, Sima R, Kaspirkova-Nemcova J et al (2011) Cribriform adenocarcinoma of minor salivary gland origin principally affecting the tongue: characterization of new entity. Am J Surg Pathol 35:1168–1176. doi: 10.1097/PAS.0b013e31821e1f54 CrossRefPubMedGoogle Scholar
  20. 20.
    Weinreb I, Zhang L, Tirunagari LMS et al (2014) Novel PRKD gene rearrangements and variant fusions in cribriform adenocarcinoma of salivary gland origin. Genes Chromosom Cancer 53:845–856. doi: 10.1002/gcc.22195 CrossRefPubMedGoogle Scholar
  21. 21.
    Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473:298–307. doi: 10.1038/nature10144 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Wong RSY (2011) Apoptosis in cancer: from pathogenesis to treatment. J Exp Clin Cancer Res 30:87. doi: 10.1186/1756-9966-30-87 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Um H-D (2016) Bcl-2 family proteins as regulators of cancer cell invasion and metastasis: a review focusing on mitochondrial respiration and reactive oxygen species. Oncotarget 7:5193–5203. doi: 10.18632/oncotarget.6405 PubMedGoogle Scholar
  24. 24.
    Hirano H, Yamaguchi T, Yokota S et al (2015) Survivin expression in lung cancer: association with smoking, histological types and pathological stages. Oncol Lett 10:1456–1462PubMedPubMedCentralGoogle Scholar
  25. 25.
    Ko YH, Roh SY, Won HS et al (2010) Survivin expression in resected adenoid cystic carcinoma of the head and neck. Head Neck Oncol 30:30CrossRefGoogle Scholar
  26. 26.
    Ettl T, Stiegler C, Zeitler K et al (2012) EGFR, HER2, survivin, and loss of pSTAT3 characterize high-grade malignancy in salivary gland cancer with impact on prognosis. Hum Pathol 43:921–931. doi: 10.1016/j.humpath.2011.08.006 CrossRefPubMedGoogle Scholar
  27. 27.
    Kondo Y, Kanzawa T, Sawaya R, Kondo S (2005) The role of autophagy in cancer development and response to therapy. Nat Rev Cancer 5:726–734. doi: 10.1038/nrc1692 CrossRefPubMedGoogle Scholar
  28. 28.
    El-Khattouti A, Selimovic D, Haikel Y, Hassan M (2013) Crosstalk between apoptosis and autophagy: molecular mechanisms and therapeutic strategies in cancer. J Cell Death 6:37–55. doi: 10.4137/JCD.S11034 PubMedPubMedCentralGoogle Scholar
  29. 29.
    Beauséjour CM, Krtolica A, Galimi F et al (2003) Reversal of human cellular senescence: roles of the p53 and p16 pathways. EMBO J 22:4212–4222. doi: 10.1093/emboj/cdg417 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Dimri GP (2005) What has senescence got to do with cancer? Cancer Cell 7:505–512. doi: 10.1016/j.ccr.2005.05.025 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Andresa Borges Soares
    • 1
    Email author
  • Elizabeth Ferreira Martinez
    • 1
  • Patricia Fernandes Avila Ribeiro
    • 1
  • Icleia Siqueira Barreto
    • 1
  • Maria Cássia Aguiar
    • 2
  • Cristiane Furuse
    • 3
  • Marcelo Sperandio
    • 1
  • Victor Angelo Montalli
    • 1
  • Ney Soares de Araújo
    • 1
  • Vera Cavalcanti de Araújo
    • 1
  1. 1.Department of Oral PathologySão Leopoldo Mandic Institute and Research CenterCampinasBrazil
  2. 2.Department of Oral PathologyFederal University of Minas GeraisBelo HorizonteBrazil
  3. 3.Department of Oral PathologyState University of São PauloAraçatubaBrazil

Personalised recommendations