Virchows Archiv

, Volume 469, Issue 5, pp 523–532 | Cite as

Distinct pathways of pathogenesis of intraductal oncocytic papillary neoplasms and intraductal papillary mucinous neoplasms of the pancreas

  • Olca Basturk
  • Sun M. Chung
  • Ralph H. Hruban
  • N. Volkan Adsay
  • Gokce Askan
  • Christine Iacobuzio-Donahue
  • Serdar Balci
  • Sui Y. Zee
  • Bahar Memis
  • Jinru Shia
  • David S. Klimstra
Original Article


Intraductal oncocytic papillary neoplasm (IOPN) of the pancreas is classified as a variant of intraductal papillary mucinous neoplasm (IPMN) in the WHO guidelines. However, the neoplastic cells of IOPNs are unique, with distinctive architecture/oncocytic cytoplasm. Although molecular/immunohistochemical features of other IPMN variants have been extensively studied, those of IOPNs have not been well characterized. Expression profile of antibodies associated with genetic alterations previously described for ductal adenocarcinomas (DAs) and IPMNs (SMAD4/β-catenin/p53/mesothelin/claudin-4) as well as antibodies to mucins and differentiation markers [MUC1/MUC2/MUC5AC/MUC6/CDX2/hepatocyte paraffin-1 (HepPar-1)] was investigated in 24 IOPNs and 22 IPMNs to assess the similarities/differences between these tumors. Expression of mesothelin and claudin-4 was dissimilar between these tumor types: A higher proportion of IOPNs labeled with mesothelin [21/24 (87.5 %) of IOPNs, 6/22 (27 %) of IPMNs, p < 0.001], while the reverse was true for claudin-4 [2/23 (9 %) of IOPNs, 9/22 (41 %) of IPMNs, p = 0.01]. The results of immunolabeling for SMAD4/β-catenin/p53 were similar in both: None of the cases showed SMAD4 loss in the intraductal components, and only 1/21 (5 %) of IOPNs and 2/22 (9 %) of IPMNs revealed abnormal β-catenin expression (p = 0.49). Nuclear p53 accumulation was seen mostly in architecturally complex/high-grade dysplasia areas in both. Immunolabeling for MUC proteins showed that almost all lesions expressed MUC5AC. Twelve of the 24 (50 %) IOPNs and 6/22 (27 %) of IPMNs (p = 0.11) labeled for MUC1, whereas 7/24 (29 %) of IOPNs and 10/22 (45 %) of IPMNs labeled for MUC2 (p = 0.25). MUC6 was expressed in 8/9 (89 %) of IOPNs (strong) and 6/21 (29 %) of IPMNs (weak) (p = 0.002). Fourteen of the 23 (61 %) IOPNs and 4/22 (18 %) of IPMNs labeled for HepPar-1 (p = 0.003). These results show that IOPNs have distinct immunoprofile and provide support for the proposition that IOPN is a distinct entity developing through a mechanism different from other pancreatic ductal neoplasms.


Pancreas IOPN IPMN Immunohistochemistry Oncocytic 



The authors thank Ms. Tanisha Daniel for her assistance during manuscript preparation and Allyne Manzo and Lorraine Corsale for their assistance with the figures.

Compliance with ethical standards

The study was performed with approval of the Institutional Review Board and in accordance with Health Insurance Portability and Accountability Act regulations.


This work has been supported by the Cancer Center Support Grant (CCSG)/Core Grant/P30 CA008748.

Conflict of interest

The authors declare no conflict of interest.


  1. 1.
    Adsay NV, Adair CF, Heffess CS, Klimstra DS (1996) Intraductal oncocytic papillary neoplasms of the pancreas. Am J Surg Pathol 20(8):980–994PubMedCrossRefGoogle Scholar
  2. 2.
    Adsay NV, Kloeppel G, Fukushima N, Offerhaus GJ, Furukawa N (2010) Intraductal neoplasms of the pancreas. In: Bosman FT, Carneiro F, Hruban RH, Theise ND (eds) WHO classification of tumors. WHO Press, Lyon, pp. 304–313Google Scholar
  3. 3.
    Jyotheeswaran S, Zotalis G, Penmetsa P, Levea CM, Schoeniger LO, Shah AN (1998) A newly recognized entity: intraductal “oncocytic” papillary neoplasm of the pancreas. Am J Gastroenterol 93(12):2539–2543PubMedGoogle Scholar
  4. 4.
    Adsay NV, Longnecker DS, Klimstra DS (2000) Pancreatic tumors with cystic dilatation of the ducts: intraductal papillary mucinous neoplasms and intraductal oncocytic papillary neoplasms. Semin Diagn Pathol 17(1):16–30PubMedGoogle Scholar
  5. 5.
    D’Angelica M, Brennan MF, Suriawinata AA, Klimstra D, Conlon KC (2004) Intraductal papillary mucinous neoplasms of the pancreas: an analysis of clinicopathologic features and outcome. Ann Surg 239(3):400–408PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Sohn TA, Yeo CJ, Cameron JL, et al. (2004) Intraductal papillary mucinous neoplasms of the pancreas: an updated experience. Ann Surg 239(6):788–797 discussion 797-789PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Reid MD, Stallworth CR, Lewis MM, et al. (2015) Cytopathologic diagnosis of oncocytic type intraductal papillary mucinous neoplasm: criteria and clinical implications of accurate diagnosis. Cancer Cytopathol 124(2):122–134PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Yonezawa S, Taira M, Osako M, et al. (1998) MUC-1 mucin expression in invasive areas of intraductal papillary mucinous tumors of the pancreas. Pathol Int 48(4):319–322PubMedCrossRefGoogle Scholar
  9. 9.
    Yonezawa S, Horinouchi M, Osako M, et al. (1999) Gene expression of gastric type mucin (MUC5AC) in pancreatic tumors: its relationship with the biological behavior of the tumor. Pathol Int 49(1):45–54PubMedCrossRefGoogle Scholar
  10. 10.
    Luttges J, Zamboni G, Longnecker D, Kloppel G (2001) The immunohistochemical mucin expression pattern distinguishes different types of intraductal papillary mucinous neoplasms of the pancreas and determines their relationship to mucinous noncystic carcinoma and ductal adenocarcinoma. Am J Surg Pathol 25(7):942–948PubMedCrossRefGoogle Scholar
  11. 11.
    Adsay NV, Merati K, Andea A, et al. (2002) The dichotomy in the preinvasive neoplasia to invasive carcinoma sequence in the pancreas: differential expression of MUC1 and MUC2 supports the existence of two separate pathways of carcinogenesis. Mod Pathol 15(10):1087–1095PubMedCrossRefGoogle Scholar
  12. 12.
    Biankin AV, Biankin SA, Kench JG, et al. (2002) Aberrant p16(INK4A) and DPC4/Smad4 expression in intraductal papillary mucinous tumours of the pancreas is associated with invasive ductal adenocarcinoma. Gut 50(6):861–868PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Nakamura A, Horinouchi M, Goto M, et al. (2002) New classification of pancreatic intraductal papillary-mucinous tumour by mucin expression: its relationship with potential for malignancy. J Pathol 197(2):201–210PubMedCrossRefGoogle Scholar
  14. 14.
    Terris B, Dubois S, Buisine MP, et al. (2002) Mucin gene expression in intraductal papillary-mucinous pancreatic tumours and related lesions. J Pathol 197(5):632–637PubMedCrossRefGoogle Scholar
  15. 15.
    Adsay NV, Merati K, Basturk O, et al. (2004) Pathologically and biologically distinct types of epithelium in intraductal papillary mucinous neoplasms: delineation of an “intestinal” pathway of carcinogenesis in the pancreas. Am J Surg Pathol 28(7):839–848PubMedCrossRefGoogle Scholar
  16. 16.
    Levi E, Klimstra DS, Andea A, Basturk O, Adsay NV (2004) MUC1 and MUC2 in pancreatic neoplasia. J Clin Pathol 57(5):456–462PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Furukawa T, Kloppel G, Volkan Adsay N, et al. (2005) Classification of types of intraductal papillary-mucinous neoplasm of the pancreas: a consensus study. Virchows Arch 447(5):794–799PubMedCrossRefGoogle Scholar
  18. 18.
    Basturk O, Khayyata S, Klimstra DS, et al. (2010) Preferential expression of MUC6 in oncocytic and pancreatobiliary types of intraductal papillary neoplasms highlights a pyloropancreatic pathway, distinct from the intestinal pathway, in pancreatic carcinogenesis. Am J Surg Pathol 34(3):364–370PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Schonleben F, Qiu W, Bruckman KC, et al. (2007) BRAF and KRAS gene mutations in intraductal papillary mucinous neoplasm/carcinoma (IPMN/IPMC) of the pancreas. Cancer Lett 249(2):242–248PubMedCrossRefGoogle Scholar
  20. 20.
    Sessa F, Solcia E, Capella C, et al. (1994) Intraductal papillary-mucinous tumours represent a distinct group of pancreatic neoplasms: an investigation of tumour cell differentiation and K-ras, p53 and c-erbB-2 abnormalities in 26 patients. Virchows Arch 425(4):357–367PubMedCrossRefGoogle Scholar
  21. 21.
    Kitago M, Ueda M, Aiura K, et al. (2004) Comparison of K-ras point mutation distributions in intraductal papillary-mucinous tumors and ductal adenocarcinoma of the pancreas. Int J Cancer 110(2):177–182PubMedCrossRefGoogle Scholar
  22. 22.
    Wu J, Jiao Y, Dal Molin M, et al. (2011) Whole-exome sequencing of neoplastic cysts of the pancreas reveals recurrent mutations in components of ubiquitin-dependent pathways. Proc Natl Acad Sci U S A 108(52):21188–21193PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Schlitter AM, Born D, Bettstetter M, et al. (2014) Intraductal papillary neoplasms of the bile duct: stepwise progression to carcinoma involves common molecular pathways. Mod Pathol 27(1):73–86PubMedCrossRefGoogle Scholar
  24. 24.
    Jang JY, Park YC, Song YS, et al. (2009) Increased K-ras mutation and expression of S100 A4 and MUC2 protein in the malignant intraductal papillary mucinous tumor of the pancreas. J Hepato-Biliary-Pancreat Surg 16(5):668–674CrossRefGoogle Scholar
  25. 25.
    Yamaguchi K, Chijiiwa K, Noshiro H, Torata N, Kinoshita M, Tanaka M (1999) Ki-ras codon 12 point mutation and p53 mutation in pancreatic diseases. Hepato-Gastroenterology 46(28):2575–2581PubMedGoogle Scholar
  26. 26.
    Sasaki S, Yamamoto H, Kaneto H, et al. (2003) Differential roles of alterations of p53, p16, and SMAD4 expression in the progression of intraductal papillary-mucinous tumors of the pancreas. Oncol Rep 10(1):21–25PubMedGoogle Scholar
  27. 27.
    Amato E, Molin MD, Mafficini A, et al. (2014) Targeted next-generation sequencing of cancer genes dissects the molecular profiles of intraductal papillary neoplasms of the pancreas. J Pathol 233(3):217–227PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Hruban RH, Wilentz RE, Kern SE (2000) Genetic progression in the pancreatic ducts. Am J Pathol 156(6):1821–1825PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Iacobuzio-Donahue CA, Klimstra DS, Adsay NV, et al. (2000) Dpc-4 protein is expressed in virtually all human intraductal papillary mucinous neoplasms of the pancreas: comparison with conventional ductal adenocarcinomas. Am J Pathol 157(3):755–761PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Iacobuzio-Donahue CA, Wilentz RE, Argani P, et al. (2000) Dpc4 protein in mucinous cystic neoplasms of the pancreas: frequent loss of expression in invasive carcinomas suggests a role in genetic progression. Am J Surg Pathol 24(11):1544–1548PubMedCrossRefGoogle Scholar
  31. 31.
    Inoue H, Furukawa T, Sunamura M, Takeda K, Matsuno S, Horii A (2001) Exclusion of SMAD4 mutation as an early genetic change in human pancreatic ductal tumorigenesis. Genes Chromosomes Cancer 31(3):295–299PubMedCrossRefGoogle Scholar
  32. 32.
    Furukawa T, Kuboki Y, Tanji E, et al. (2011) Whole-exome sequencing uncovers frequent GNAS mutations in intraductal papillary mucinous neoplasms of the pancreas. Sci Rep 1:161PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Dal Molin M, Matthaei H, Wu J, et al. (2013) Clinicopathological correlates of activating GNAS mutations in intraductal papillary mucinous neoplasm (IPMN) of the pancreas. Ann Surg Oncol 20(12):3802–3808PubMedCrossRefGoogle Scholar
  34. 34.
    Tan MC, Basturk O, Brannon AR, et al. (2015) GNAS and KRAS mutations define separate progression pathways in intraductal papillary mucinous neoplasm-associated carcinoma. J Am Coll Surg 220(5):845–854 e841PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Jiang X, Hao HX, Growney JD, et al. (2013) Inactivating mutations of RNF43 confer Wnt dependency in pancreatic ductal adenocarcinoma. Proc Natl Acad Sci U S A 110(31):12649–12654PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Schonleben F, Qiu W, Remotti HE, Hohenberger W, Su GH (2008) PIK3CA, KRAS, and BRAF mutations in intraductal papillary mucinous neoplasm/carcinoma (IPMN/C) of the pancreas. Langenbeck’s Arch Surg 393(3):289–296CrossRefGoogle Scholar
  37. 37.
    Patel SA, Adams R, Goldstein M, Moskaluk CA (2002) Genetic analysis of invasive carcinoma arising in intraductal oncocytic papillary neoplasm of the pancreas. Am J Surg Pathol 26(8):1071–1077PubMedCrossRefGoogle Scholar
  38. 38.
    Xiao HD, Yamaguchi H, Dias-Santagata D, et al. (2011) Molecular characteristics and biological behaviours of the oncocytic and pancreatobiliary subtypes of intraductal papillary mucinous neoplasms. J Pathol 224(4):508–516PubMedCrossRefGoogle Scholar
  39. 39.
    Mohri D, Asaoka Y, Ijichi H, et al. (2012) Different subtypes of intraductal papillary mucinous neoplasm in the pancreas have distinct pathways to pancreatic cancer progression. J Gastroenterol 47(2):203–213PubMedCrossRefGoogle Scholar
  40. 40.
    Basturk O, Tan M, Bhanot U et al (2016) The oncocytic subtype is genetically distinct from other pancreatic intraductal papillary mucinous neoplasm subtypes. Mod PatholGoogle Scholar
  41. 41.
    Adsay V, Mino-Kenudson M, Furukawa T, et al. (2016) Pathologic evaluation and reporting of intraductal papillary mucinous neoplasms of the pancreas and other Tumoral intraepithelial neoplasms of pancreatobiliary tract: recommendations of Verona consensus meeting. Ann Surg 263(1):162–177PubMedCrossRefGoogle Scholar
  42. 42.
    Basturk O, Hong SM, Wood LD, et al. (2015) A revised classification system and recommendations from the Baltimore consensus meeting for neoplastic precursor lesions in the pancreas. Am J Surg Pathol 39(12):1730–1741PubMedCrossRefGoogle Scholar
  43. 43.
    Marchegiani G, Mino-Kenudson M, Ferrone CR, Warshaw AL, Lillemoe KD, Fernandez-del CC (2015) Oncocytic-type intraductal papillary mucinous neoplasms: a unique malignant pancreatic tumor with good long-term prognosis. J Am Coll Surg 220(5):839–844PubMedCrossRefGoogle Scholar
  44. 44.
    Askan G, Klimstra D, Adsay V, et al. (2016) “Oncocytic-type” of intraductal papillary mucinous neoplasm (IPMN): an analysis of 25 cases (abstract). Lab Investig 96(S1):1740Google Scholar
  45. 45.
    Terris B, Blaveri E, Crnogorac-Jurcevic T, et al. (2002) Characterization of gene expression profiles in intraductal papillary-mucinous tumors of the pancreas. Am J Pathol 160(5):1745–1754PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Yonezawa S, Nakamura A, Horinouchi M, Sato E (2002) The expression of several types of mucin is related to the biological behavior of pancreatic neoplasms. J Hepato-Biliary-Pancreat Surg 9(3):328–341CrossRefGoogle Scholar
  47. 47.
    Hruban RH, Takaori K, Klimstra DS, et al. (2004) An illustrated consensus on the classification of pancreatic intraepithelial neoplasia and intraductal papillary mucinous neoplasms. Am J Surg Pathol 28(8):977–987PubMedCrossRefGoogle Scholar
  48. 48.
    Sato N, Fukushima N, Maitra A, et al. (2004) Gene expression profiling identifies genes associated with invasive intraductal papillary mucinous neoplasms of the pancreas. Am J Pathol 164(3):903–914PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Argani P, Iacobuzio-Donahue C, Ryu B, et al. (2001) Mesothelin is overexpressed in the vast majority of ductal adenocarcinomas of the pancreas: identification of a new pancreatic cancer marker by serial analysis of gene expression (SAGE). Clin Cancer Res 7(12):3862–3868PubMedGoogle Scholar
  50. 50.
    Ordonez NG (2003) Application of mesothelin immunostaining in tumor diagnosis. Am J Surg Pathol 27(11):1418–1428PubMedCrossRefGoogle Scholar
  51. 51.
    Ryu B, Jones J, Blades NJ, et al. (2002) Relationships and differentially expressed genes among pancreatic cancers examined by large-scale serial analysis of gene expression. Cancer Res 62(3):819–826PubMedGoogle Scholar
  52. 52.
    Morita K, Furuse M, Fujimoto K, Tsukita S (1999) Claudin multigene family encoding four-transmembrane domain protein components of tight junction strands. Proc Natl Acad Sci U S A 96(2):511–516PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Iacobuzio-Donahue CA, Maitra A, Olsen M, et al. (2003) Exploration of global gene expression patterns in pancreatic adenocarcinoma using cDNA microarrays. Am J Pathol 162(4):1151–1162PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Maitra A, Iacobuzio-Donahue C, Rahman A, et al. (2002) Immunohistochemical validation of a novel epithelial and a novel stromal marker of pancreatic ductal adenocarcinoma identified by global expression microarrays: sea urchin fascin homolog and heat shock protein 47. Am J Clin Pathol 118(1):52–59PubMedCrossRefGoogle Scholar
  55. 55.
    Iacobuzio-Donahue CA, Maitra A, Shen-Ong GL, et al. (2002) Discovery of novel tumor markers of pancreatic cancer using global gene expression technology. Am J Pathol 160(4):1239–1249PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Allen A, Hutton DA, Pearson JP (1998) The MUC2 gene product: a human intestinal mucin. Int J Biochem Cell Biol 30(7):797–801PubMedCrossRefGoogle Scholar
  57. 57.
    Abraham SC, Klimstra DS, Wilentz RE, et al. (2002) Solid-pseudopapillary tumors of the pancreas are genetically distinct from pancreatic ductal adenocarcinomas and almost always harbor beta-catenin mutations. Am J Pathol 160(4):1361–1369PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Abraham SC, Wu TT, Klimstra DS, et al. (2001) Distinctive molecular genetic alterations in sporadic and familial adenomatous polyposis-associated pancreatoblastomas: frequent alterations in the APC/beta-catenin pathway and chromosome 11p. Am J Pathol 159(5):1619–1627PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Satoh S, Hinoda Y, Hayashi T, Burdick MD, Imai K, Hollingsworth MA (2000) Enhancement of metastatic properties of pancreatic cancer cells by MUC1 gene encoding an anti-adhesion molecule. Int J Cancer 88(4):507–518PubMedCrossRefGoogle Scholar
  60. 60.
    Velcich A, Yang W, Heyer J, et al. (2002) Colorectal cancer in mice genetically deficient in the mucin Muc2. Science 295(5560):1726–1729PubMedCrossRefGoogle Scholar
  61. 61.
    Adsay NV, Conlon KC, Zee SY, Brennan MF, Klimstra DS (2002) Intraductal papillary-mucinous neoplasms of the pancreas: an analysis of in situ and invasive carcinomas in 28 patients. Cancer 94(1):62–77PubMedCrossRefGoogle Scholar
  62. 62.
    Adsay NV (2006) Role of MUC genes and mucins in pancreatic neoplasia. Am J Gastroenterol 101(10):2330–2332PubMedCrossRefGoogle Scholar
  63. 63.
    Pang Y, von Turkovich M, Wu H, et al. (2006) The binding of thyroid transcription factor-1 and hepatocyte paraffin 1 to mitochondrial proteins in hepatocytes: a molecular and immunoelectron microscopic study. Am J Clin Pathol 125(5):722–726PubMedCrossRefGoogle Scholar
  64. 64.
    Lugli A, Tornillo L, Mirlacher M, Bundi M, Sauter G, Terracciano LM (2004) Hepatocyte paraffin 1 expression in human normal and neoplastic tissues: tissue microarray analysis on 3,940 tissue samples. Am J Clin Pathol 122(5):721–727PubMedCrossRefGoogle Scholar
  65. 65.
    Martin RC, Klimstra DS, Schwartz L, Yilmaz A, Blumgart LH, Jarnagin W (2002) Hepatic intraductal oncocytic papillary carcinoma. Cancer 95(10):2180–2187PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Olca Basturk
    • 1
  • Sun M. Chung
    • 2
    • 3
  • Ralph H. Hruban
    • 4
  • N. Volkan Adsay
    • 5
  • Gokce Askan
    • 1
  • Christine Iacobuzio-Donahue
    • 1
  • Serdar Balci
    • 5
  • Sui Y. Zee
    • 6
  • Bahar Memis
    • 5
  • Jinru Shia
    • 1
  • David S. Klimstra
    • 1
  1. 1.Department of PathologyMemorial Sloan Kettering Cancer CenterNew YorkUSA
  2. 2.Department of PathologyWeill Medical College of Cornell UniversityNew YorkUSA
  3. 3.Montefiore Medical CenterBronxUSA
  4. 4.Department of PathologyJohns Hopkins University HospitalsBaltimoreUSA
  5. 5.Department of PathologyEmory University School of MedicineAtlantaUSA
  6. 6.Department of PathologyStony Brook MedicineStony BrookUSA

Personalised recommendations